



### Discrete Dark Matter and the reactor mixing angle

Eduardo Peinado Institute of Physics UNAM Mexico





Flasy 2018, University of Basel





- Neutrino oscillation and masses
- Dark Matter Stability
  - DDM and texture zeros
- Summary and conclusions

# The Standard Model



EWSB mechanism

#### 3 generations

neutrino oscillations (massive neutrinos)

# The Standard Model

#### BSM

- \* Dark Matter
- Neutrino masses
- \* BAU
- \* Dark Energy

#### \*Theoretical issues

- Number of families
- \* Masses and mixings
- Hierarchy problem



# Higgs mechanism



#### W's and Z boson masses





### Brout-Englert-Higgs Mechanism

## BSM?

#### Limits on some scenarios by LCH



\*Only a selection of the swallable results shown.

## Yukawas and masses

Yukawa Lagrangiana

$$\mathcal{L} = i\overline{L'_{\alpha L}} \mathcal{D}L'_{\alpha L} + i \overline{Q'_{\alpha L}} \mathcal{D}Q'_{\alpha L} + i\overline{l'_{\alpha R}} \mathcal{D}l'_{\alpha R}$$

$$+ i\overline{q''_{\alpha R}} \mathcal{D}q''_{\alpha R} + i\overline{q''_{\alpha R}} \mathcal{D}q''_{\alpha R} - \frac{1}{4}\vec{F}_{\mu\nu} \cdot \vec{F}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$+ (D_{\rho}\Phi)^{\dagger}(D^{\rho}\Phi) + \mu^{2}\Phi^{\dagger}\Phi - \lambda \left(\Phi^{\dagger}\Phi\right)^{2}$$

$$- \left(Y'_{\alpha\beta} \overline{L'_{\alpha L}} \Phi l'_{\beta R} + Y'^{A*}_{\alpha\beta} \overline{l'_{\beta R}} \Phi^{\dagger} L'_{\alpha L}\right)$$

$$- \left(Y'^{D}_{\alpha\beta} \overline{Q'_{\alpha L}} \Phi q'^{D}_{\beta R} + Y'^{D*}_{\alpha\beta} \overline{q'^{D}_{\beta R}} \Phi^{\dagger} Q'_{\alpha L}\right)$$

$$- \left(Y'^{U}_{\alpha\beta} \overline{Q'_{\alpha L}} (i\sigma_{2}\Phi^{*}) q'^{U}_{\beta R} + Y'^{U*}_{\alpha\beta} \overline{q'^{H}_{\beta R}} (-i\Phi^{T}\sigma_{2}) Q'_{\alpha L}\right)$$

 $m_{\nu} \ll m_e \ll m_t$ 

Very different Yukawa Couplings



 $Y_{\nu_e}: Y_e: Y_t$ <  $10^{-11}: 10^-6: 1$ 



# Neutrino oscillation



3 mixing angles and 2 squared mass differences

## **Neutrino mixings**

| parameter                                            | best fit $\pm \; 1\sigma$        | $2\sigma$ range | $3\sigma$ range |
|------------------------------------------------------|----------------------------------|-----------------|-----------------|
| $\Delta m_{21}^2 \left[ 10^{-5} \text{eV}^2 \right]$ | $7.55\substack{+0.20\\-0.16}$    | 7.20 - 7.94     | 7.05-8.14       |
| $ \Delta m^2_{31}  [10^{-3} { m eV}^2]$ (NO          | ) 2.50±0.03                      | 2.44 - 2.57     | 2.41-2.60       |
| $ \Delta m_{31}^2  [10^{-3} \text{eV}^2]$ (IO)       | $2.42^{+0.03}_{-0.04}$           | 2.34 - 2.47     | 2.31 - 2.51     |
| $\sin^2\theta_{12}/10^{-1}$                          | $3.20\substack{+0.20\\-0.16}$    | 2.89-3.59       | 2.73 - 3.79     |
| $\theta_{12}/^{\circ}$                               | $34.5^{\pm 1.2}_{\pm 1.0}$       | 32.5 - 36.8     | 31.5 - 38.0     |
| $\sin^2 	heta_{23}/10^{-1}$ (NO)                     | $5.47\substack{+0.20\\-0.30}$    | 4.67-5.83       | 4.45 - 5.99     |
| $\theta_{23}/^{\circ}$                               | $47.7^{+1.2}_{-1.7}$             | 43.1 - 49.8     | 41.8 - 50.7     |
| $\sin^2 \theta_{23} / 10^{-1}$ (IO)                  | $5.51\substack{+0.18\\-0.30}$    | 4.91 - 5.84     | 4.53 - 5.98     |
| $\theta_{23}/^{\circ}$                               | $47.9^{+1.0}_{-1.7}$             | 44.5 - 48.9     | 42.3-50.7       |
| $\sin^2 	heta_{13} / 10^{-2}$ (NO)                   | $2.160\substack{+0.083\\-0.069}$ | 2.03-2.34       | 1.96 - 2.41     |
| $\theta_{13}/^{\circ}$                               | $8.45\substack{+0.18\\-0.14}$    | 8.2-8.8         | 8.0-8.9         |
| $\sin^2 \theta_{13} / 10^{-2}$ (IO)                  | $2.220\substack{+0.074\\-0.076}$ | 2.07 - 2.36     | 1.99 - 2.44     |
| $\theta_{13}/^{\circ}$                               | $8.53\substack{+0.14\\-0.15}$    | 8.3-8.8         | 8.1 - 9.0       |
| $\delta/\pi$ (NO)                                    | $1.21\substack{+0.21\-0.15}$     | 1.01 - 1.75     | 0.87-1.94       |
| δ/°                                                  | $218^{+38}_{-27}$                | 182 - 315       | 157 - 349       |
| $\delta/\pi$ (IO)                                    | $1.56\substack{+0.13\\-0.15}$    | 1.27 - 1.82     | 1.12 - 1.94     |
| $\delta/^{\circ}$                                    | $281^{+23}_{-27}$                | 229-328         | 202-349         |

\* 2 nearly maximal mixings

- \* One small  $\mathcal{O}(\lambda_{\mathcal{C}})$
- \* CP violation
- \* 2 squared mass differences

## **Neutrino mixings**

|                                                       |                                  | ~               | -                 |                   |                                                                                                        |                                                                                   |                           |
|-------------------------------------------------------|----------------------------------|-----------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|
| parameter                                             | best fit $\pm 1\sigma$           | $2\sigma$ range | $3\sigma$ range   |                   |                                                                                                        |                                                                                   |                           |
| $\Delta m_{21}^2 \left[ 10^{-5} \text{eV}^2 \right]$  | $7.55^{+0.20}_{-0.16}$           | 7.20 - 7.94     | 7.05 - 8.14       |                   |                                                                                                        |                                                                                   | PDG (2018)                |
| $ \Delta m_{31}^2  [10^{-3} \text{eV}^2] (\text{NO})$ | $2.50{\pm}0.03$                  | 2.44 - 2.57     | 2.41-2.60         |                   |                                                                                                        |                                                                                   |                           |
| $ \Delta m_{31}^2  [10^{-3} \text{eV}^2]$ (IO)        | $2.42\substack{+0.03\\-0.04}$    | 2.34 - 2.47     | 2.31 - 2.51       |                   | $(0.97446 \pm 0.00010)$                                                                                | $0.22452 \pm 0.00044$                                                             | $0.00365 \pm 0.00012$     |
| $\sin^2 \theta_{12} / 10^{-1}$                        | $3.20\substack{+0.20\\-0.16}$    | 2.89-3.59       | 2.73-3.79         | $V_{\rm CKM} =$   | $0.22438 \pm 0.00044$                                                                                  | $0.97359\substack{+0.00010\\-0.00011}$                                            | $0.04214 \pm 0.00076$     |
| $\theta_{12}/^{\circ}$                                | $34.5^{+1.2}_{-1.0}$             | 32.5 - 36.8     | <b>31.5</b> –38.0 |                   | $ \begin{pmatrix} 0.22438 \pm 0.00044 \\ 0.00896 \substack{+0.00024 \\ -0.00023} \end{pmatrix} $       | $0.04133 \pm 0.00074$                                                             | $0.999105 \pm 0.000032$ / |
| $\sin^2 \theta_{23} / 10^{-1}$ (NO)                   | $5.47^{+0.20}_{-0.30}$           | 4.67-5.83       | 4.45-5.99         |                   |                                                                                                        |                                                                                   |                           |
| $\theta_{23}/^{\circ}$                                | $47.7^{+1.2}_{-1.7}$             | 43.1-49.8       | 41.8 - 50.7       |                   |                                                                                                        |                                                                                   |                           |
| $\sin^2 \theta_{23} / 10^{-1}$ (IO)                   | $5.51\substack{+0.18\\-0.30}$    | 4.91 - 5.84     | 4.53 - 5.98       |                   |                                                                                                        |                                                                                   |                           |
| $\theta_{23}/^{\circ}$                                | $47.9^{+1.0}_{-1.7}$             | 44.5 - 48.9     | 42.3 - 50.7       |                   |                                                                                                        |                                                                                   |                           |
| $\sin^2 	heta_{13} / 10^{-2}$ (NO)                    | $2.160\substack{+0.083\\-0.069}$ | 2.03-2.34       | 1.96 - 2.41       |                   |                                                                                                        |                                                                                   | NuFIT 3.2 (2018)          |
| $\theta_{13}/^{\circ}$                                | $8.45\substack{+0.18\\-0.14}$    | 8.2-8.8         | 8.0-8.9           |                   | ,                                                                                                      |                                                                                   |                           |
| $\sin^2 \theta_{13} / 10^{-2}$ (IO)                   | $2.220\substack{+0.074\\-0.076}$ | 2.07 - 2.36     | 1.99 - 2.44       |                   | $(0.799 \rightarrow 0.844)$                                                                            | 0.516  ightarrow 0.582                                                            | $0.141 \rightarrow 0.156$ |
| $\theta_{13}/^{\circ}$                                | $8.53^{+0.14}_{-0.15}$           | 8.3-8.8         | 8.1-9.0           | $ U _{3\sigma} =$ | $= egin{pmatrix} 0.799  ightarrow 0.844 \ 0.242  ightarrow 0.494 \ 0.284  ightarrow 0.521 \end{cases}$ | $\begin{array}{c} 0.467 \rightarrow 0.678 \\ 0.490 \rightarrow 0.695 \end{array}$ |                           |
| $\delta/\pi$ (NO)                                     | $1.21\substack{+0.21\\-0.15}$    | 1.01 - 1.75     | 0.87 - 1.94       |                   | $0.284 \rightarrow 0.521$                                                                              | $0.490 \rightarrow 0.695$                                                         | $0.615 \rightarrow 0.754$ |
| $\delta/^{\circ}$                                     | $218^{+38}_{-27}$                | 182 - 315       | 157 - 349         |                   | (0.201 + 0.021                                                                                         | 0.100 / 0.000                                                                     | 0.010 1 0.001/            |
| $\delta/\pi$ (IO)                                     | $1.56\substack{+0.13\\-0.15}$    | 1.27 - 1.82     | 1.12 - 1.94       |                   |                                                                                                        |                                                                                   |                           |
| $\delta/^{\circ}$                                     | $281^{+23}_{-27}$                | 229 - 328       | 202 - 349         |                   |                                                                                                        |                                                                                   |                           |

de Salas, Forero, Ternes, Tortola, Valle (2018)

### **Fermion masses**

$$\begin{aligned} \mathcal{L} &= i \overline{L'_{\alpha L}} \mathcal{D} L'_{\alpha L} + i \overline{Q'_{\alpha L}} \mathcal{D} Q'_{\alpha L} + i \overline{l'_{\alpha R}} \mathcal{D} l'_{\alpha R} \\ &+ i \overline{q'_{\alpha R}} \mathcal{D} q'_{\alpha R}^{\prime D} + i \overline{q'_{\alpha R}} \mathcal{D} q'_{\alpha R}^{\prime U} - \frac{1}{4} \vec{F}_{\mu \nu} \cdot \vec{F}^{\mu \nu} - \frac{1}{4} B_{\mu \nu} B^{\mu \nu} \\ &+ \left( D_{\rho} \Phi \right)^{\dagger} (D^{\rho} \Phi) + \mu^{2} \Phi^{\dagger} \Phi - \lambda \left( \Phi^{\dagger} \Phi \right)^{2} \\ &- \left( Y'_{\alpha \beta} \overline{L'_{\alpha L}} \Phi l'_{\beta R} + Y'^{**}_{\alpha \beta} \overline{l'_{\beta R}} \Phi^{\dagger} L'_{\alpha L} \right) \\ &- \left( Y'^{D}_{\alpha \beta} \overline{Q'_{\alpha L}} \Phi q'^{D}_{\beta R} + Y'^{D*}_{\alpha \beta} \overline{q'^{D}_{\beta R}} \Phi^{\dagger} Q'_{\alpha L} \right) \\ &- \left( Y'^{U}_{\alpha \beta} \overline{Q'_{\alpha L}} (i \sigma_{2} \Phi^{*}) q'^{U}_{\beta R} + Y'^{U*}_{\alpha \beta} \overline{q'^{U}_{\beta R}} (-i \Phi^{T} \sigma_{2}) Q'_{\alpha L} \right) \end{aligned}$$

#### Fermion masses:

| $m_{e}$   | .5  MeV   |
|-----------|-----------|
| $m_d$     | 4.8  MeV  |
| $m_u$     | 2.3  MeV  |
| $m_{\mu}$ | 105  MeV  |
| $m_s$     | 95  MeV   |
| $m_c$     | 1.275~GeV |
| $m_{	au}$ | 1.776~GeV |
| $m_b$     | 4.18~GeV  |
| $m_t$     | 174~GeV   |
|           |           |

### Yukawa Lagrangiana

$$(b, \phi) D^{*} - U(\phi) - \frac{i}{4} F_{\mu\nu} F^{\mu\nu}$$

$$(b, \phi) D^{*} - V(\phi) - \frac{i}{4} F_{\mu\nu} F^{\mu\nu}$$

$$(b, \phi) D^{*} - V(\phi) - \frac{i}{4} F_{\mu\nu} F^{\mu\nu}$$

$$(c, \phi) = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

## **Fermion masses**

#### Fermion masses:

| $m_{e}$   | .5  MeV     |
|-----------|-------------|
| $m_d$     | 4.8  MeV    |
| $m_u$     | 2.3~MeV     |
| $m_{\mu}$ | $105 \ MeV$ |
| $m_s$     | 95  MeV     |
| $m_c$     | 1.275~GeV   |
| $m_{	au}$ | 1.776~GeV   |
| $m_b$     | 4.18~GeV    |
| $m_t$     | $174 \ GeV$ |
|           |             |

### Yukawa Lagrangiana



## **Neutrino masses Cosmology**



de Salas, Gariazzo, Mena, Ternes, Tortola (2018)

## Neutrinoless double beta decay



11 neutrino mass matrix  $m_{ee}$ 

## **Dirac neutrino masses**

If we impose Lepton number then the neutrinos are Dirac particles just like quarks and charged leptons



#### many orders of magnitude

| $< 1 \ eV$  |
|-------------|
| .5  MeV     |
| $174 \ GeV$ |
|             |

 $m_{\nu} \ll m_e \ll m_t \qquad Y_{\nu_e} : Y_e : Y_t$ 

The Yukawa couplings  $< 10^{-11} : 10^{-6} : 1$ are very different

 $Y_{\nu_e} : Y_e : Y_t$  $10^{-11} : 10^{-6} : 1$ 

#### How can we give mass to the neutrinos?

- Neutrinos are neutral particles
- If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$\lambda_{\alpha i} \bar{L_{\alpha}} \epsilon H^* N_i$$

But there is no symmetry that forbids also this term

 $M_i \bar{N}_i N_i$ 

#### How can we give mass to the neutrinos?

- Neutrinos are neutral particles
- If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$\lambda_{\alpha i} \bar{L_{\alpha}} \epsilon H^* N_i$$

 $M_i N_i N_i$ 

But there is no symmetry that forbids also this term

Violates lepton number

### How can we give mass to the neutrinos?

- Neutrinos are neutral particles
- If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$\lambda_{\alpha i} \bar{L_{\alpha}} \epsilon H^* N_i$$

But there is no symmetry that forbids also this term



## See-Saw



## See-Saw



See-Saw

The simplest effective source of Majorana neutrino masses dim 5 Weinberg operator



Weinberg, S. (1980)

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5$$

 $\mathcal{L}_5 = LL\Phi\Phi \qquad \Delta L = 2$ 

See-Saw

The simplest effective source of Majorana neutrino masses dim 5 Weinberg operator



 $0\nu\beta\beta$ 

Weinberg, S. (1980)

 $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5$ 

 $\mathcal{L}_5 = LL\Phi\Phi$ 

 $\Delta L = 2$ 

Implications?

## **UV-completion dim 5 operator**

seesaw

We have several possibilities SU(2) doublets L

 $2\otimes 2 = 1+3$ 

type I seesawLHN $2 \otimes 2 \otimes 1$ type II seesaw $L\Delta L$  $2 \otimes 3 \otimes 2$ type III seesawLH $\Sigma$  $2 \otimes 3 \otimes 2$ 

## **UV-completion dim 5 operator**

seesaw

We have several possibilities SU(2) doublets L

 $2 \otimes 2 = 1 + 3$  $\langle \Phi \rangle$  × ×〈Φ〉 type I seesaw  $\nu^c$ 1,0  $2\otimes 2\otimes 1$ LHN $\langle \Phi \rangle \times$ type II seesaw  $L\Delta L$  $2\otimes 3\otimes 2$  $\nu$  $\nu$ type III seesaw H١  $\Sigma_R$  $2\otimes 3\otimes 2$  $LH\Sigma$ 

Type III

## **UV-completion dim 5 operator**

seesaw

We have several possibilities SU(2) doublets L



### **Flavour symmetries**

FS has been used to reduce # of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions such as TBM mixing

### **Flavour symmetries**

### FS has been used to reduce # of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions such as TBM mixing

Texture Zeros to obtain Correlations

$$A_{1}: \begin{pmatrix} 0 & 0 & X \\ 0 & X & X \\ X & X & X \end{pmatrix}, \quad A_{2}: \begin{pmatrix} 0 & X & 0 \\ X & X & X \\ 0 & X & X \end{pmatrix}$$
$$B_{1}: \begin{pmatrix} X & X & 0 \\ X & 0 & X \\ 0 & X & X \end{pmatrix}, \quad B_{2}: \begin{pmatrix} X & 0 & X \\ 0 & X & X \\ X & X & 0 \end{pmatrix},$$
$$B_{3}: \begin{pmatrix} X & 0 & X \\ 0 & 0 & X \\ X & X & X \end{pmatrix}, \quad B_{4}: \begin{pmatrix} X & X & 0 \\ X & X & X \\ 0 & X & 0 \end{pmatrix},$$
$$C: \begin{pmatrix} X & X & X \\ X & 0 & X \\ X & X & 0 \end{pmatrix},$$

Frampton, Glashow, Marfatia

## **Flavour symmetries**

### FS has been used to reduce # of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions such as TBM mixing

Texture Zeros to obtain Correlations

$$A_{1}: \begin{pmatrix} 0 & 0 & X \\ 0 & X & X \\ X & X & X \end{pmatrix}, \quad A_{2}: \begin{pmatrix} 0 & X & 0 \\ X & X & X \\ 0 & X & X \end{pmatrix}$$
$$B_{1}: \begin{pmatrix} X & X & 0 \\ X & 0 & X \\ 0 & X & X \end{pmatrix}, \quad B_{2}: \begin{pmatrix} X & 0 & X \\ 0 & X & X \\ X & X & 0 \end{pmatrix},$$
$$B_{3}: \begin{pmatrix} X & 0 & X \\ 0 & 0 & X \\ X & X & X \end{pmatrix}, \quad B_{4}: \begin{pmatrix} X & X & 0 \\ X & X & X \\ 0 & X & 0 \end{pmatrix},$$
$$C: \begin{pmatrix} X & A & A \\ X & 0 & X \\ X & X & 0 \end{pmatrix},$$

#### Frampton, Glashow, Marfatia

The SM







## **Stability**



# Symmetry

- SM + χ
- $Z_2 +1 -1$

## **Stability**



## Symmetry







#### **Flavor symmetries**

vertical gauge symmetry





Abelian, non abelian continuous, discrete, global, local

#### $Z_N$ already in these symmetries

**A4** 

Ma and Rajasekaran 2001 Babu, Ma, Valle 2003 Altarelli, Feruglio 2005

The generators are :

S and T 1, 1', 1" and 3  $\begin{bmatrix}
1 & S = 1 \\
1' & S = 1 \\
1'' & S = 1
\end{bmatrix}
\begin{bmatrix}
T = e^{i4\pi/3} \equiv \omega^2 \\
T = e^{i2\pi/3} \equiv \omega
\end{bmatrix}$ 

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

#### A4 and TBM



#### How to use it to stabilise DM

#### Instead of breaking A4 in two different directions

$$\langle \phi \rangle = (1,0,0)$$

Preserves "S" (Z<sub>2</sub>)



#### How to use it to stabilise DM

#### Instead of breaking A4 in two different directions

$$\langle \phi \rangle = (1,0,0)$$

Preserves "S" (Z<sub>2</sub>)





#### **The Discrete Dark Matter**

- We need a non-abelian flavor group
- Scalar fields in a non-trivial irrep
- This scalar only couples with leptons
- not connected with quarks
- The vev of the scalar breaks the flavor into a  $Z_{\rm N}$  subgroup of the FS
- This breaking dictates the Neutrino pheno

#### The model

#### SM + 3 Higgs SU(2) doublets , 4 right handed neutrinos

Hirsch, Morisi, Peinado and Valle Phys. Rev. D 82, 116003 (2010)

|       |   |    |    |   |     |     |   | $N_4$  |   |   |
|-------|---|----|----|---|-----|-----|---|--------|---|---|
| SU(2) | 2 | 2  | 2  | 1 | 1   | 1   | 1 | 1      | 2 | 2 |
| $A_4$ | 1 | 1' | 1″ | 1 | -1″ | -1' | 3 | 1<br>1 | 1 | 3 |





#### **Neutrino Pheno**



#### **Inverse mass Hierarchy**

 $\left\{ m_{ee} \sim 0.03 - 0.05 \ eV \right\}$ 

#### **Neutrino Pheno**



Lets couple a scalar field with RH neutrinos





## The model(s)

M. Lamprea and E. Peinado (2016)

|       | $L_e$ | $L_{\mu}$ | $L_{	au}$ | $l_e^c$ | $l^c_\mu$ | $l^c_{	au}$ | $N_T$ | $N_4$ | $N_5$ | H | η | φ |
|-------|-------|-----------|-----------|---------|-----------|-------------|-------|-------|-------|---|---|---|
| SU(2) | 2     | 2         | 2         | 1       | 1         | 1           | 1     | 1     | 1     | 2 | 2 | 1 |
| $A_4$ | 1     | 1′        | 1″        | 1       | 1″        | 1′          | 3     | 1     | 1'    | 1 | 3 | 3 |





In order to preserve the  $Z_2$ , only  $\eta_1$  acquire vev

$$\begin{aligned} \mathcal{L}_{Y}^{(A)} &= y_e L_e l_e^c H + y_\mu L_\mu l_\mu^c H + y_\tau L_\tau l_\tau^c H \\ &+ y_1^\nu L_e [N_T \eta]_1 + y_2^\nu L_\mu [N_T \eta]_{1''} + y_3^\nu L_\tau [N_T \eta]_{1'} + y_4^\nu L_e N_4 H + y_5^\nu L_\tau N_5 H \\ &+ M_1 N_T N_T + M_2 N_4 N_4 + y_1^N [N_T \phi]_{3_i} N_T + y_2^N [N_T \phi]_1 N_4 + y_3^N [N_T \phi]_{1''} N_5 \end{aligned}$$

M. Lamprea and E. Peinado (2016)

$$m_{\rm D}^{\rm (A)} = \begin{pmatrix} y_1^{\nu} v_\eta & 0 & 0 & y_4^{\nu} v_h & 0 \\ y_2^{\nu} v_\eta & 0 & 0 & 0 & 0 \\ y_3^{\nu} v_\eta & 0 & 0 & 0 & y_5^{\nu} v_h \end{pmatrix} \qquad \qquad M_{\rm R} = \begin{pmatrix} M_1 & 0 & 0 & y_2^{N} v_\phi & y_3^{N} v_\phi \\ 0 & M_1 & y_1^{N} v_\phi & 0 & 0 \\ 0 & y_1^{N} v_\phi & M_1 & 0 & 0 \\ y_2^{N} v_\phi & 0 & 0 & M_2 & 0 \\ y_3^{N} v_\phi & 0 & 0 & 0 & 0 \end{pmatrix}$$

M. Lamprea and E. Peinado (2016)

$$m_{\rm D}^{\rm (A)} = \begin{pmatrix} y_1^{\nu} v_\eta & 0 & 0 & y_4^{\nu} v_h & 0 \\ y_2^{\nu} v_\eta & 0 & 0 & 0 & 0 \\ y_3^{\nu} v_\eta & 0 & 0 & 0 & y_5^{\nu} v_h \end{pmatrix} \qquad \qquad M_{\rm R} = \begin{pmatrix} M_1 & 0 & 0 & y_2^{\rm N} v_\phi & y_3^{\rm N} v_\phi \\ 0 & M_1 & y_1^{\rm N} v_\phi & 0 & 0 \\ 0 & y_1^{\rm N} v_\phi & M_1 & 0 & 0 \\ y_2^{\rm N} v_\phi & 0 & 0 & M_2 & 0 \\ y_3^{\rm N} v_\phi & 0 & 0 & 0 & 0 \end{pmatrix}$$

#### Effectively only 3 RHN participate in the see-saw

M. Lamprea and E. Peinado (2016)

$$m_{\rm D}^{\rm (A)} = \begin{pmatrix} y_1^{\nu} v_\eta & 0 & 0 & y_4^{\nu} v_h & 0 \\ y_2^{\nu} v_\eta & 0 & 0 & 0 & 0 \\ y_3^{\nu} v_\eta & 0 & 0 & 0 & y_5^{\nu} v_h \end{pmatrix} \qquad \qquad M_{\rm R} = \begin{pmatrix} M_1 & 0 & 0 & y_2^{N} v_\phi & y_3^{N} v_\phi \\ 0 & M_1 & y_1^{N} v_\phi & 0 & 0 \\ 0 & y_1^{N} v_\phi & M_1 & 0 & 0 \\ y_2^{N} v_\phi & 0 & 0 & M_2 & 0 \\ y_3^{N} v_\phi & 0 & 0 & 0 & 0 \end{pmatrix}$$

Effectively only 3 RHN participate in the see-saw

$$m_{
u}^{(\mathrm{A})}\equiv egin{pmatrix} a & 0 & b \ 0 & 0 & c \ b & c & d \end{pmatrix}$$

Two zero-texture B3

Frampton, Glashow ,Marfatia Merle, Rodejohan Xing, Fritsch Ludl, Morisi, Peinado Meroni, Meloni, Peinado

. . .

M. Lamprea and E. Peinado (2016)

$$m_{\rm D}^{\rm (A)} = \begin{pmatrix} y_1^{\nu} v_\eta & 0 & 0 & y_4^{\nu} v_h & 0 \\ y_2^{\nu} v_\eta & 0 & 0 & 0 & 0 \\ y_3^{\nu} v_\eta & 0 & 0 & 0 & y_5^{\nu} v_h \end{pmatrix} \qquad \qquad M_{\rm R} = \begin{pmatrix} M_1 & 0 & 0 & y_2^{N} v_\phi & y_3^{N} v_\phi \\ 0 & M_1 & y_1^{N} v_\phi & 0 & 0 \\ 0 & y_1^{N} v_\phi & M_1 & 0 & 0 \\ y_2^{N} v_\phi & 0 & 0 & M_2 & 0 \\ y_3^{N} v_\phi & 0 & 0 & 0 & 0 \end{pmatrix}$$

. . .

Effectively only 3 RHN participate in the see-saw

$$m_{
u}^{(\mathrm{A})}\equiv egin{pmatrix} a & 0 & b \ 0 & 0 & c \ b & c & d \end{pmatrix}$$

# **Neutrino Phenomenology**



## Updated

de Salas, Forero, Ternes, Tortola, Valle (2018)





## Updated

de Salas, Forero, Ternes, Tortola, Valle (2018)







- Neutrino pheno "compatible" with DDM
   The atmospheric mixing angle correlates with neutrino masses
   Neutrinoless double beta decay lower bound also for NH
- Barion assymetry?

# Thank you and Let's the game begin!!!!!







