

Discrete Dark Matter and the reactor mixing angle

Eduardo Peinado
Institute of Physics UNAM
Mexico

Plan of the talk

* Neutrino oscillation and masses
- Dark Matter Stability

DDM and texture zeros

- Summary and conclusions

The Standard Model

neutrino oscillations

The Standard Model

BSM

* Dark Matter
* Neutrino masses
- BAU
* Dark Energy

*Theoretical issues

* Number of families
* Masses and mixings
* Hierarchy problem

Higgs mechanism

W's and Z boson masses

Brout-Englert-Higgs Mechanism

BSM?

Limits on some scenarios by LCH

Yukawas and masses

$$
\begin{aligned}
\mathcal{L}= & i \overline{L_{\alpha L}^{\prime}} p L_{\alpha L}^{\prime}+i \overline{Q_{\alpha L}^{\prime}} D Q_{\alpha L}^{\prime}+i \overline{l_{\alpha R}^{\prime}} p l_{\alpha R}^{\prime} \\
& +i \overline{q_{\alpha R}^{\prime D}} D q_{\alpha R}^{\prime D}+i \overline{q_{\alpha R}^{\prime \prime}} D q_{\alpha R}^{\prime U}-\frac{1}{4} \vec{F}_{\mu v} \cdot \vec{F}^{\mu v}-\frac{1}{4} B_{\mu v} B^{\mu v} \\
& +\left(D_{\rho} \Phi\right)^{\dagger}\left(D^{\rho} \Phi\right)+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
& -\left(Y_{\alpha \beta}^{\prime \prime} \overline{L_{\alpha L}^{\prime}} \Phi l_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime \prime} \cdot \overline{\bar{l}_{\beta R}^{\prime}} \Phi^{\dagger} L_{\alpha L}^{\prime}\right) \\
& -\left(Y_{\alpha \beta}^{\prime D} \overline{Q_{\alpha L}^{\prime}} \Phi{q_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime D *}}_{q_{\beta R}^{\prime D}}^{q^{\dagger}} Q_{\alpha L}^{\prime}\right)
\end{aligned}
$$

$$
m_{\nu} \ll m_{e} \ll m_{t}
$$

Very different Yukawa

Yukawa Lagrangiana

$$
\left.-\left(Y_{\alpha \beta}^{\prime \prime} \overline{Q_{\alpha L}^{\prime}}\left(i \sigma_{2} \Phi^{*}\right) q_{\beta R}^{\prime U}+Y_{\alpha \beta}^{\prime U} \overline{q_{\beta R}^{\prime \prime \prime}}\left(-i \Phi^{T} \sigma_{2}\right) Q_{\alpha L}^{\prime}\right) \quad\right\} \quad \text { Lagrangiana }
$$

Couplings

$$
\begin{array}{r}
Y_{\nu_{e}}: Y_{e}: Y_{t} \\
<10^{-11}: 10^{-} 6: 1
\end{array}
$$

Neutrino masses

Neutrino oscillation

week eigenstates

$$
\binom{v_{e}^{\prime}}{v_{\mu}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{v_{1}}{v_{2}}
$$

$$
\Gamma\left(\nu_{\mu} \rightarrow \nu_{e}\right)-\left|\left\langle\nu_{e} \mid \nu_{\mu}(t)\right\rangle\right|^{2}=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{1} \frac{L}{E_{v}}\right)
$$

3 mixing angles and 2 squared mass differences

Neutrino mixings

parameter	best fit $\pm 1 \sigma$	2σ range	3σ range
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.55_{-0.16}^{+0.20}$	7.20-7.94	7.05-8.14
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ (NO)	2.50 ± 0.03	2.44-2.57	2.41-2.60
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ (IO)	$2.422_{-0.04}^{+0.03}$	$2.34-2.47$	2.31-2.51
$\sin ^{2} \theta_{12} / 10^{-1}$	$3.20{ }_{-0.16}^{+0.20}$	2.89-3.59	2.73-3.79
$0_{12} /{ }^{\circ}$	$34.5{ }_{-1.0}^{+1.2}$	$32.5-36.8$	31.538 .0
$\sin ^{2} \theta_{23} / 10^{-1}$ (NO)	$5.47_{-0.30}^{+0.20}$	$4.67-5.83$	4.455 .99
$0_{23} /{ }^{\circ}$	$47.7_{-1.7}^{+1.2}$	43.1-49.8	41.8-50.7
$\sin ^{2} \theta_{23} / 10^{-1}$ (IO)	$5.51_{-0.30}^{+0.13}$	4.91-5.84	4.535 .98
$\theta_{23} /{ }^{\circ}$	$47.9{ }_{-1.7}^{+1.0}$	44.5-48.9	42.3-50.7
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NO})$	$2.160_{-0.069}^{+0.083}$	2.03-2.34	1.96-2.41
$\theta_{13} /{ }^{\circ}$	$8.455_{-0.14}^{+0.18}$	8.2-8.8	8.0-8.9
$\sin ^{2} \theta_{15} / 10^{-2}$ (TO)	$2.220{ }_{-0.676}^{+0.074}$	2.07-2.36	1.99-2.44
$0_{13} /{ }^{\text {c }}$	$8.53_{-0.15}^{+0.14}$	8.38 .8	8.19 .0
δ / π (NO)	$1.21_{-0.15}^{+0.31}$	1.01-1.75	0.87-1.94
$\delta /{ }^{\circ}$	218_{-27}^{+38}	182315	157-349
δ / π (IO)	$1.56{ }_{-0.15}^{+0.13}$	1.27-1.82	1.12-1.94
$\delta /{ }^{\circ}$	2811_{-27}^{+23}	229-328	202-349

\}

\author{

* 2 nearly maximal mixings
 * One small $\mathcal{O}\left(\lambda_{\mathcal{C}}\right)$
 * CP violation
 * 2 squared mass differences
}

Neutrino mixings

parameter	best fit $\pm 1 \sigma$	2σ range	3σ range			PDG (2018)
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.55{ }_{-0.16}^{+0.20}$	7.20-7.94	7.05-8.14			
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ (NO)	2.50 ± 0.03	2.44-2.57	2.41-2.60	$V_{\mathrm{CKM}}=$		
$\left\|\Delta \pi n_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ (IO)	$2.42_{-0.04}^{+0.03}$	2.342 .47	2.31-2.51		0.22452 ± 0.00044	0.00365 ± 0.00012
$\sin ^{2} \theta_{12} / 10^{-1}$	$3.20{ }_{-0.16}^{+0.30}$	2.89-3.59	2.73-3.79		$0.97359_{-0.00011}^{+0.00010}$	0.04214 ± 0.00076
$0_{12}{ }^{\circ}$	$34.5{ }_{-1.0}^{+1.2}$	32.5-36.8	$31.5-38.0$		0.04133 ± 0.00074	0.999105 ± 0.000032
$\sin ^{2} \theta_{23} / 10^{-1}$ (NO)	$5.47_{-0.30}^{+0.30}$	4.675 .83	4.455 .99			
$0_{23} /{ }^{\circ}$	$47.7_{-1.7}^{+1.2}$	43.1-49.8	41.8-50.7			
$\sin ^{2} \theta_{23} / 10^{-1}$ (IO)	$5.511_{-0.30}^{+0.13}$	4.91-5.84	4.535 .98			
$\theta_{23} /{ }^{\circ}$	$47.9_{-1.7}^{+1.0}$	44.5-48.9	42.3-50.7			
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NO})$	$2.160_{-0.068}^{+0.083}$	2.03-2.34	1.96-2.41	$\left(\begin{array}{l}0.799 \rightarrow 0.844 \\ 0.242 \rightarrow 0.494 \\ 0.284 \rightarrow 0.521\end{array}\right.$	$0.516 \rightarrow 0.582$$0.467 \rightarrow 0.678$	NuFIT 3.2 (2018)
$\theta_{13} /{ }^{\circ}$	$8.455_{-0.14}^{+0.16}$	8.2-8.8	$8.0-8.9$			
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{TO})$	$2.220_{-0.076}^{+0.074}$	2.07-2.36	$1.99-2.44$			$0.141 \rightarrow 0.156$
$\theta_{13} /{ }^{\mathrm{c}}$	$8.533_{-0.15}^{+0.14}$	8.38 .8	8.19 .0			$0.639 \rightarrow 0.774$
δ / π (NO)	$1.21_{-0.15}^{+0.31}$	1.01-1.75	0.87-1.94		$0.490 \rightarrow 0.695$	$0.615 \rightarrow 0.754$
$\delta /{ }^{\circ}$	$218{ }_{-27}^{+38}$	182315	$157-349$			
δ / π (IO)	$1.566_{-0.15}^{+0.13}$	1.27-1.82	1.12-1.94			
$\delta /{ }^{\circ}$	2811_{-27}^{+23}	229-328	202-349			

[^0]
Fermion masses

$$
\begin{aligned}
\mathcal{L}= & i \overline{L_{\alpha L}^{\prime}} D L_{\alpha L}^{\prime}+i \overline{Q_{\alpha L}^{\prime}} D Q_{\alpha L}^{\prime}+i \overline{l_{\alpha R}^{\prime}} D l_{\alpha R}^{\prime} \\
& +i \overline{q_{\alpha R}^{\prime D}} D q_{\alpha R}^{\prime D}+i \overline{q_{\alpha R}^{\prime U}} D q_{\alpha R}^{\prime U}-\frac{1}{4} \vec{F}_{\mu \nu} \cdot \vec{F}^{\mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu} \\
& +\left(D_{\rho} \Phi\right)^{\dagger}\left(D^{\rho} \Phi\right)+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
& -\left(Y_{\alpha \beta}^{\prime \prime} \overline{L_{\alpha L}^{\prime}} \Phi l_{\beta R}^{\prime}+Y_{\alpha \beta}^{n *} \overline{l_{\beta R}^{\prime}} \Phi^{\dagger} L_{\alpha L}^{\prime}\right) \\
& -\left(Y_{\alpha \beta}^{\prime D} \overline{\left.Q_{\alpha L}^{\prime} \Phi q_{\beta R}^{\prime D}+Y_{\alpha \beta}^{\prime D *} \overline{q_{\beta R}^{\prime D}} \Phi^{\dagger} Q_{\alpha L}^{\prime}\right)}\right. \\
& -\left(Y_{\alpha \beta}^{\prime} \overline{Q_{\alpha L}^{\prime}}\left(i \sigma_{2} \Phi^{*}\right) q_{\beta R}^{\prime U}+Y_{\alpha \beta}^{\prime U *} \overline{q_{\beta R}^{\prime \prime}}\left(-i \Phi^{T} \sigma_{2}\right) Q_{\alpha L}^{\prime}\right)
\end{aligned}
$$

Yukawa Lagrangiana

Fermion masses:

m_{e}	.5 MeV
m_{d}	4.8 MeV
m_{u}	2.3 MeV
m_{μ}	105 MeV
m_{s}	95 MeV
m_{c}	1.275 GeV
m_{τ}	1.776 GeV
m_{b}	4.18 GeV
m_{t}	174 GeV

Fermion masses

$$
\begin{aligned}
\mathcal{L}= & i \overline{L_{\alpha L}^{\prime}} D D L_{\alpha L}^{\prime}+i \overline{Q_{\alpha L}^{\prime}} D D Q_{\alpha L}^{\prime}+i \overline{l_{\alpha R}^{\prime}} D l_{\alpha R}^{\prime} \\
& +i \overline{q_{\alpha R}^{\prime D}} D q_{\alpha R}^{\prime D}+i \overline{q_{\alpha R}^{\prime U}} D q_{\alpha R}^{\prime U}-\frac{1}{4} \vec{F}_{\mu \nu} \cdot \vec{F}^{\mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu} \\
& +\left(D_{\rho} \Phi\right)^{\dagger}\left(D^{\rho} \Phi\right)+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
& -\left(Y_{\alpha \beta}^{\prime \prime} \overline{L_{\alpha L}^{\prime}} \Phi l_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime *} \overline{l_{\beta R}^{\prime}} \Phi^{\dagger} L_{\alpha L}^{\prime}\right) \\
& -\left(Y_{\alpha \beta}^{\prime D} \overline{Q_{\alpha L}^{\prime}} \Phi q_{\beta R}^{\prime D}+Y_{\alpha \beta}^{\prime D *} \overline{q_{\beta R}^{\prime D}} \Phi^{\dagger} Q_{\alpha L}^{\prime}\right) \\
& -\left(Y_{\alpha \beta}^{\prime U} \overline{Q_{\alpha L}^{\prime}}\left(i \sigma_{2} \Phi^{*}\right) q_{\beta R}^{\prime U}+Y_{\alpha \beta}^{\prime U *} \overline{q_{\beta R}^{\prime J}}\left(-i \Phi^{T} \sigma_{2}\right) Q_{\alpha L}^{\prime}\right)
\end{aligned}
$$

Yukawa Lagrangiana

Fermion masses:

m_{e}	.5 MeV
m_{d}	4.8 MeV
m_{u}	2.3 MeV
m_{μ}	105 MeV
m_{s}	95 MeV
m_{c}	1.275 GeV
m_{τ}	1.776 GeV
m_{b}	4.18 GeV
m_{t}	174 GeV

Neutrino mass scale:

Mainz current limit
$\Sigma \mathrm{mv}<2 \mathrm{eV}$

Katrin future sensitivity

PLANK+BAO
$\sim 0.2 \mathrm{eV}$
$\Sigma \mathrm{mv}<0.23 \mathrm{eV}$

Neutrino masses Cosmology

de Salas, Gariazzo, Mena, Ternes, Tortola (2018)

Neutrinoless double beta decay

$$
m_{\beta \beta}=\sum_{k=1}^{N} e^{i \alpha_{k}}\left|U_{e k}\right|^{2} m_{k}
$$

§ If neutrinos are Majorana particles

Dirac neutrino masses

\& If we impose Lepton number then the neutrinos are Dirac particles just like quarks and charged leptons

\& many orders of magnitude

| m_{ν} | $<1 \mathrm{eV}$ | | |
| :---: | :---: | :---: | :---: | :---: |
| m_{e} | .5 MeV | | |
| m_{t} | 174 GeV | The Yukawa couplings | $m_{\nu} \ll m_{e} \ll m_{t}$$\quad Y_{\nu_{e}}: Y_{e}: Y_{t}$ |
| are very different | | | |

Neutrino masses

How can we give mass to the neutrinos?

\& Neutrinos are neutral particles
\& If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$
\lambda_{\alpha i} \bar{L}_{\alpha} \epsilon H^{\star} N_{i}
$$

\& But there is no symmetry that forbids also this term

$$
M_{i} \bar{N}_{i} N_{i}
$$

Neutrino masses

How can we give mass to the neutrinos?

\& Neutrinos are neutral particles
© If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$
\lambda_{\alpha i} \bar{L}_{\alpha} \epsilon H^{\star} N_{i}
$$

\& But there is no symmetry that forbids also this term

$$
M_{i} \bar{N}_{i} N_{i}
$$

Neutrino masses

How can we give mass to the neutrinos?

§ Neutrinos are neutral particles
\% If we add a Right-Handed neutrino (singlet of SM) then we have the Yukawa coupling with the Higgs (like quarks and leptons)

$$
\lambda_{\alpha i} \bar{L}_{\alpha} \epsilon H^{\star} N_{i}
$$

\& But there is no symmetry that forbids also this term

See-Saw

See-Saw

See-Saw

\& The simplest effective source of Majorana neutrino masses dim 5 Weinberg operator

Weinberg, S. (1980)

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}_{5} \\
\mathcal{L}_{5}=L L \Phi \Phi \quad \Delta L=2
\end{gathered}
$$

See-Saw

\& The simplest effective source of Majorana neutrino masses dim 5 Weinberg operator

Weinberg, S. (1980)

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}_{5} \\
\mathcal{L}_{5}=L L \Phi \Phi \quad \Delta L=2
\end{gathered}
$$

© Implications?
$0 \nu \beta \beta$

UV-completion dim 5 operator

seesaw

\& We have several possibilities SU(2) doublets L

$$
2 \otimes 2=1+3
$$

type I seesaw

$$
L H N \quad 2 \otimes 2 \otimes 1
$$

type II seesaw

$$
L \Delta L \quad 2 \otimes 3 \otimes 2
$$

type III seesaw

$$
L H \Sigma \quad 2 \otimes 3 \otimes 2
$$

UV-completion dim 5 operator

seesaw

\& We have several possibilities SU(2) doublets L

$$
2 \otimes 2=1+3
$$

type I seesaw

$$
L H N \quad 2 \otimes 2 \otimes 1
$$

type II seesaw

$$
L \Delta L \quad 2 \otimes 3 \otimes 2
$$

type III seesaw

$$
L H \Sigma \quad 2 \otimes 3 \otimes 2
$$

Type III

UV-completion dim 5 operator

seesaw

\& We have several possibilities SU(2) doublets L

Flavour symmetries

FS has been used to reduce \# of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions
such as TBM mixing

Flavour symmetries

FS has been used to reduce \# of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions such as TBM mixing

Texture Zeros to obtain Correlations

$$
\begin{gathered}
A_{1}:\left(\begin{array}{ccc}
0 & 0 & X \\
0 & X & X \\
X & X & X
\end{array}\right), \\
B_{1}:\left(\begin{array}{lll}
X & X & 0 \\
X & 0 & X \\
0 & X & X
\end{array}\right),\left(\begin{array}{ccc}
0 & X & 0 \\
X & X & X \\
0 & X & X
\end{array}\right) \\
B_{2}:\left(\begin{array}{ccc}
X & 0 & X \\
0 & X & X \\
X & X & 0
\end{array}\right), \\
B_{3}:\left(\begin{array}{ccc}
X & 0 & X \\
0 & 0 & X \\
X & X & X
\end{array}\right), \\
B_{4}:\left(\begin{array}{ccc}
X & X & 0 \\
X & X & X \\
0 & X & 0
\end{array}\right), \\
C
\end{gathered}
$$

Frampton, Glashow, Marfatia

Flavour symmetries

FS has been used to reduce \# of Yukawa couplings

Correlations among observables masses, mixings and CP phases

Sometimes predictions such as TBM mixing

Texture Zeros to obtain Correlations

$$
\left.\begin{array}{c}
A_{1}:\left(\begin{array}{lll}
0 & 0 & X \\
0 & X & X \\
X & X & X
\end{array}\right),\left(\begin{array}{ccc}
0 & X & 0 \\
X & X & X \\
0 & X & X
\end{array}\right) \\
B_{1}:\left(\begin{array}{ccc}
X & X & 0 \\
X & 0 & X \\
0 & X & X
\end{array}\right), \\
B_{3}:\left(\begin{array}{lll}
X & 0 & X \\
0 & 0 & X \\
X & X & X
\end{array}\right), \\
B_{2}:\left(\begin{array}{lll}
X & 0 & X \\
0 & X & X \\
X & X & 0
\end{array}\right) \\
A_{2}
\end{array}\right],\left(\begin{array}{ccc}
X & X & 0 \\
X & X & X \\
0 & X & 0
\end{array}\right),
$$

Frampton, Glashow, Marfatia

Connection of neutrinos with DM

The SM

Connection of neutrinos with DM

Connection of neutrinos with DM

Connection of neutrinos with DM

Loops with higher Higgs representations
KeV sterile neutrinos
elc...

Stability

Symmetry

SM $+\chi$
$Z_{2} \quad+1$
-1

Stability

Symmetry

Higgs portal

Flavor symmetries

Z_{N} already in these symmetries

A4

Ma and Rajasekaran 2001
Babu, Ma, Valle 2003
Altarelli, Feruglio 2005

$$
S \text { and } T
$$

The generators are :

$$
S^{2}=T^{3}=(S T)^{3}=\mathcal{I} .
$$

$1,1^{\prime}, 1^{\prime \prime}$ and 3

$$
\begin{array}{|ll|l}
\hline 1 & S-1 & T-1 \\
\hline 1^{\prime} & S=1 & T=e^{i 4 \pi / 3} \equiv \omega^{2} \\
1^{\prime \prime} & S=1 & T=e^{i 2 \pi / 3}=\omega
\end{array}
$$

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

A4 and TBM

How to use it to stabilise DM

Instead of breaking A4 in two different directions

$$
\langle\phi\rangle=(1,0,0)
$$

Preserves "S" (Z2)

How to use it to stabilise DM

Instead of breaking A4 in two different directions

$$
\langle\phi\rangle=(1,0,0)
$$

Preserves "S" (Z2)

No TBM, but Z2

DM Stability

The Discrete Dark Matter

- We need a non-abelian flavor group
- Scalar fields in a non-trivial irrep
- This scalar only couples with leptons
- not connected with quarks
- The vev of the scalar breaks the flavor into a ZN subgroup of the FS
- This breaking dictates the Neutrino pheno

The model

SM + 3 Higgs SU(2) doublets , 4 right handed neutrinos
Hirsch, Morisi, Peinado and Valle Phys. Rev. D 82, 116003 (2010)

	L_{e}	L_{μ}	L_{τ}	l_{e}^{c}	l_{μ}^{c}	l_{τ}^{c}	N_{T}	N_{1}	H	η
$S U(2)$	2	2	2	1	1	1	1	1	2	2
Λ_{4}	1	1^{\prime}	$1^{\prime \prime}$	1	$1^{\prime \prime}$	1^{\prime}	3	1	1	3

inert part Rank 2 matrix

Neutrino Pheno

Scaling matrix,
Rodejohan and Mohapatra

Inverse mass Hierarchy

$$
\left\{m_{e e} \sim 0.03-0.05 \mathrm{eV}\right\}
$$

Neutrino Pheno

The path to $\boldsymbol{\theta}_{13}$

The path to $\boldsymbol{\theta}_{13}$

Lets couple a scalar field with RH neutrinos

The path to θ_{13}

Lets couple a scalar field with RH neutrinos

This scalar field breaks the FS at the see-saw scale

The path to θ_{13}

Lets couple a scalar field with RH neutrinos

This scalar field breaks the FS at the see-saw scale

At EW we have a Z_{2} (like in the inert case)

The model(s)

M. Lamprea and E. Peinado (2016)

	L_{e}	L_{μ}	L_{τ}	l_{e}^{c}	l_{μ}^{c}	l_{τ}^{c}	N_{T}	N_{4}	N_{5}	H	η	ϕ
$\mathrm{SU}(2)$	2	2	2	1	1	1	1	1	1	2	2	1
$\mathrm{~A}_{4}$	1	1^{\prime}	$1^{\prime \prime}$	1	$1^{\prime \prime}$	1^{\prime}	3	1	1^{\prime}	1	3	3

$\langle\phi\rangle=(1,0,0)$
$A_{4} \longrightarrow Z_{2}$

In order to preserve the Z_{2}, only η_{1} acquire vev

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Y}}^{(\mathrm{A})} & =y_{e} L_{e} l_{e}^{c} H+y_{\mu} L_{\mu} l_{\mu}^{c} H+y_{\tau} L_{\tau} l_{\tau}^{c} H \\
& +y_{1}^{\nu} L_{e}\left[N_{T} \eta\right]_{1}+y_{2}^{\nu} L_{\mu}\left[N_{T} \eta\right]_{1^{\prime \prime}}+y_{3}^{\nu} L_{\tau}\left[N_{T} \eta\right]_{1^{\prime}}+y_{4}^{\nu} L_{e} N_{4} H+y_{5}^{\nu} L_{\tau} N_{5} H \\
& +M_{1} N_{T} N_{T}+M_{2} N_{4} N_{4}+y_{1}^{N}\left[N_{T} \phi\right]_{3_{i}} N_{T}+y_{2}^{N}\left[N_{T} \phi\right]_{1} N_{4}+y_{3}^{N}\left[N_{T} \phi\right]_{1^{\prime \prime}} N_{5}
\end{aligned}
$$

Neutrino masses

M. Lamprea and E. Peinado (2016)

$$
m_{\mathrm{D}}^{(\mathrm{A})}=\left(\begin{array}{ccccc}
y_{1}^{\nu} v_{\eta} & 0 & 0 & y_{4}^{\nu} v_{h} & 0 \\
y_{2}^{\nu} v_{\eta} & 0 & 0 & 0 & 0 \\
y_{3}^{\nu} v_{\eta} & 0 & 0 & 0 & y_{5}^{\nu} v_{h}
\end{array}\right) \quad M_{\mathrm{R}}=\left(\begin{array}{ccccc}
M_{1} & 0 & 0 & y_{2}^{N} v_{\phi} y_{3}^{N} v_{\phi} \\
0 & M_{1} & y_{1}^{N} v_{\phi} & 0 & 0 \\
0 & y_{1}^{N} v_{\phi} & M_{1} & 0 & 0 \\
y_{2}^{N} v_{\phi} & 0 & 0 & M_{2} & 0 \\
y_{3}^{N} v_{\phi} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Neutrino masses

M. Lamprea and E. Peinado (2016)

$$
m_{\mathrm{D}}^{(\mathrm{A})}=\left(\begin{array}{ccccc}
y_{1}^{\nu} v_{\eta} & 0 & 0 & y_{4}^{\nu} v_{h} & 0 \\
y_{2}^{\nu} v_{\eta} & 0 & 0 & 0 & 0 \\
y_{3}^{\nu} v_{\eta} & 0 & 0 & 0 & y_{5}^{\nu} v_{h}
\end{array}\right) \quad M_{\mathrm{R}}=\left(\begin{array}{ccccc}
M_{1} & 0 & 0 & y_{2}^{N} v_{\phi} y_{3}^{N} v_{\phi} \\
0 & M_{1} & y_{1}^{N} v_{\phi} & 0 & 0 \\
0 & y_{1}^{N} v_{\phi} & M_{1} & 0 & 0 \\
y_{2}^{N} v_{\phi} & 0 & 0 & M_{2} & 0 \\
y_{3}^{N} v_{\phi} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Effectively only 3 RHN participate in the see-saw

Neutrino masses

M. Lamprea and E. Peinado (2016)

$$
m_{\mathrm{D}}^{(\mathrm{A})}=\left(\begin{array}{ccccc}
y_{1}^{\nu} v_{\eta} & 0 & 0 & y_{4}^{\nu} v_{h} & 0 \\
y_{2}^{\nu} v_{\eta} & 0 & 0 & 0 & 0 \\
y_{3}^{\nu} v_{\eta} & 0 & 0 & 0 & y_{5}^{\nu} v_{h}
\end{array}\right) \quad M_{\mathrm{R}}=\left(\begin{array}{ccccc}
M_{1} & 0 & 0 & y_{2}^{N} v_{\phi} & y_{3}^{N} v_{\phi} \\
0 & M_{1} & y_{1}^{N} v_{\phi} & 0 & 0 \\
0 & y_{1}^{N} v_{\phi} & M_{1} & 0 & 0 \\
y_{2}^{N} v_{\phi} & 0 & 0 & M_{2} & 0 \\
y_{3}^{N} v_{\phi} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Effectively only 3 RHN participate in the see-saw

$$
m_{\nu}^{(A)} \equiv\left(\begin{array}{lll}
a & 0 & b \\
0 & 0 & c \\
b & c & d
\end{array}\right)
$$

Two zero-texture B3

Neutrino masses

M. Lamprea and E. Peinado (2016)

$$
m_{\mathrm{D}}^{(\mathrm{A})}=\left(\begin{array}{ccccc}
y_{1}^{\nu} v_{\eta} & 0 & 0 & y_{4}^{\nu} v_{h} & 0 \\
y_{2}^{\nu} v_{\eta} & 0 & 0 & 0 & 0 \\
y_{3}^{\nu} v_{\eta} & 0 & 0 & 0 & y_{5}^{\nu} v_{h}
\end{array}\right) \quad M_{\mathrm{R}}=\left(\begin{array}{ccccc}
M_{1} & 0 & 0 & y_{2}^{N} v_{\phi} & y_{3}^{N} v_{\phi} \\
0 & M_{1} & y_{1}^{N} v_{\phi} & 0 & 0 \\
0 & y_{1}^{N} v_{\phi} & M_{1} & 0 & 0 \\
y_{2}^{N} v_{\phi} & 0 & 0 & M_{2} & 0 \\
y_{3}^{N} v_{\phi} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Effectively only 3 RHN participate in the see-saw

$$
m_{\nu}^{(A)} \equiv\left(\begin{array}{lll}
a & 0 & b \\
0 & 0 & c \\
b & c & d
\end{array}\right)
$$

$$
m_{\nu}^{(\mathrm{B})} \equiv\left(\begin{array}{ccc}
a & b & 0 \\
b & d & c \\
0 & c & 0
\end{array}\right)
$$

Neutrino Phenomenology

Data from D.V.Forero,M.Tortola and J.W.F.Valle,Phys.Rev.D90(2014)9,093006

Updated

de Salas, Forero, Ternes, Tortola, Valle (2018)

Updated

de Salas, Forero, Ternes, Tortola, Valle (2018)

Summary

■ Neutrino pheno "compatible" with DDM
-The atmospheric mixing angle correlates
with neutrino masses
■ Neutrinoless double beta decay lower bound also for NH

■Barion assymetry?

Thank you and Let's the game begin!!!!!!!

[^0]: de Salas, Forero, Ternes, Tortola, Valle (2018)

