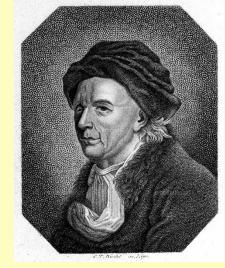


University of Basel Basel, Switzerland



Towards minimal Flavor model via CP violation

Morimitsu Tanimoto

Niigata University

July 5, 2018

Kang, Simizu, Takagi, Takahashi, TM : arXiv: 1804.10468

Outline of my talk

- I Introduction
- 2 Neutrino mixing and Flavor symmetry
- 3 Minimal flavor model with A₄
- 4 Summary

1 Introduction

In the beginning of 21st century, neutrino data indicated $\sin^2\theta_{12} \sim 1/3$, $\sin^2\theta_{23} \sim 1/2$.

Harrison, Perkins, Scott (2002) proposed Tri-bimaximal Mixing of Neutrino flavors.

$$U_{12} = 1/3, \ \sin^2 \theta_{23} = 1/2, \ \sin^2 \theta_{13} = 0$$
 $U_{\text{tri-bimaximal}} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$

Tri-bimaximal Mixing (TBM) is realized by the mass matrix

$$m_{TBM} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

in the diagonal basis of charged leptons. Integer (inter-family related) matrix elements suggest Non-Abelian Discrete Flavor Symmetry.

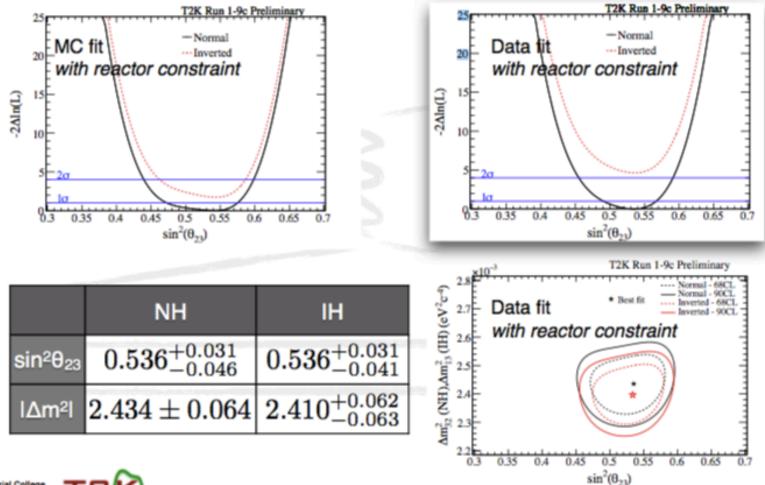
 $\sin^2 \theta$

A₄ symmetric E. Ma, G. Rajasekaran (2001)

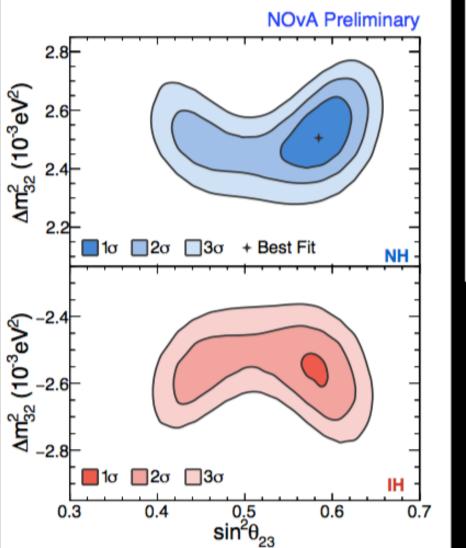
З

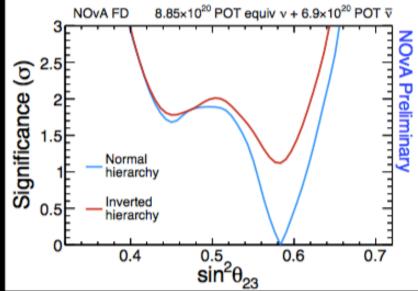
Neutrino2018 @ Heidelberg

Atmospheric sector: θ_{23} , $\Delta m^2_{32(1)}$



ALLOWED OSCILLATION PARAMETERS



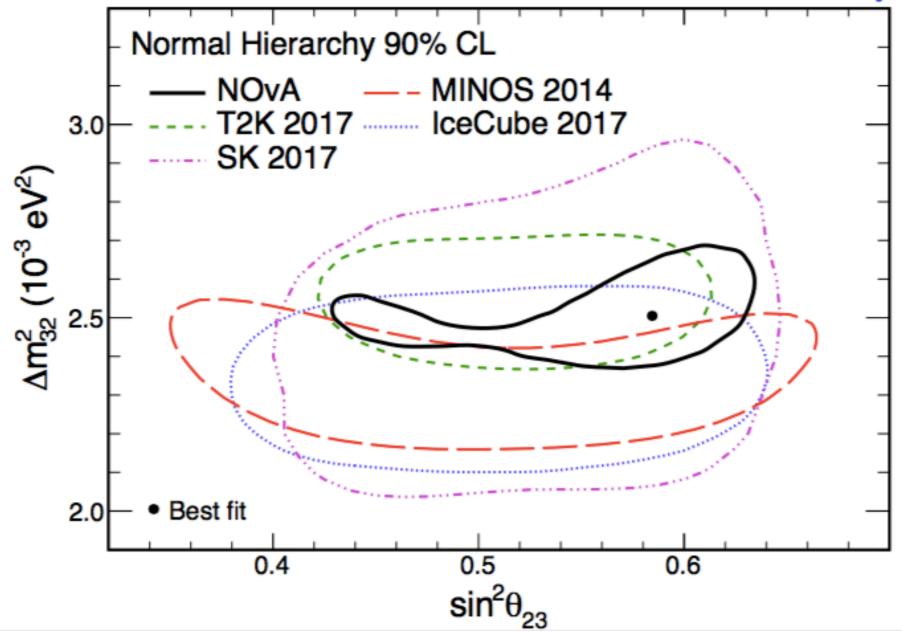


Best fit: Normal Hierarchy $\sin^2\theta_{23} = 0.58 \pm 0.03$ (UO) $\Delta m^2_{32} = (2.51^{+0.12} - 0.08) \cdot 10^{-3} eV^2$

Prefer non-maximal at 1.8σ Exclude LO at similar level

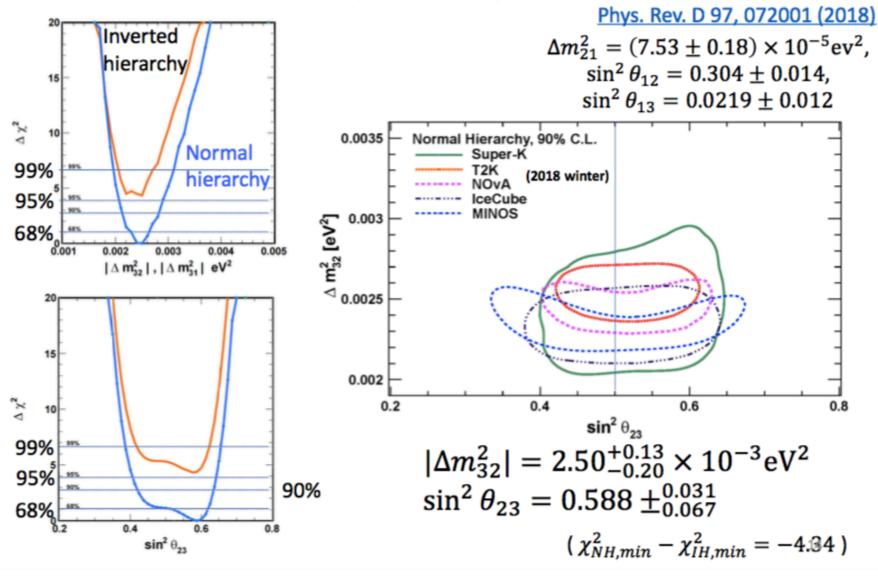
Mayly Sanchez - ISU

NOvA Preliminary



Determination of v oscillation parameters

SK-I to SK-IV, 5326 days (2519 days from SK-IV), 328 kt·yr



Summary

Daya Bay is releasing three new results this summer:

new oscillation results
with 1958 days
$$\begin{aligned}
\sin^2 2\theta_{13} &= 0.0856 \pm 0.0029 \\
&\mid \Delta m_{ee}^2 \mid = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2 \\
&\Delta m_{32}^2 &= (2.47 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ (NH)}
\end{aligned}$$
Articles in preparation
absolute reactor
antineutrino flux (wrt
Huber+Mueller)
with 1230 days
$$R_{data/pred} = 0.952 \pm 0.014(\exp.) \pm 0.023(\text{model})
\end{aligned}$$

also a search for a time-varying electron antineutrino signal.

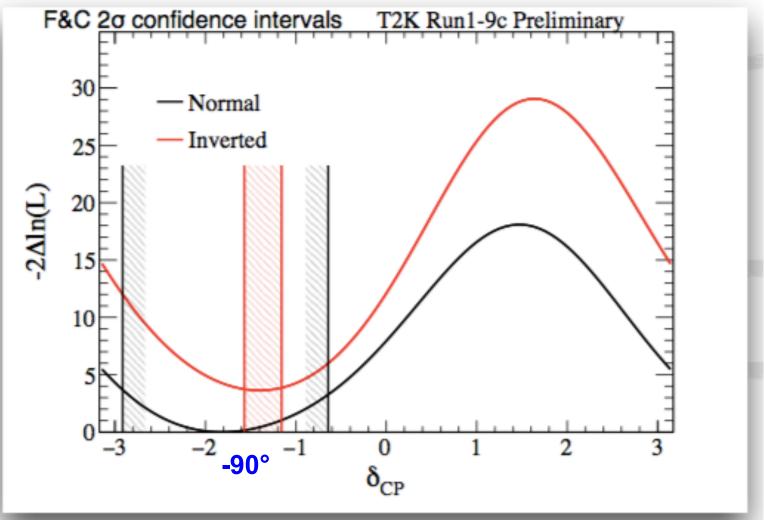
We also have many other recent results in other areas

We encourage you to look at the 9 posters from Daya Bay in this conference

- Much work is going into better understanding and improving our systematics, given the statistical precision we have achieved with a > 5 year data set
- Future looks bright ahead with ~2.5 more years of data taking, as well as many new and improved results in the works

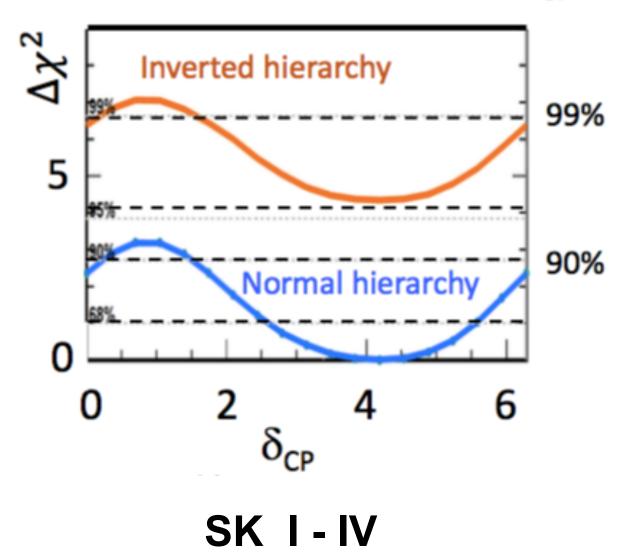
Neutrino 2018

DATA FIT with reactor constraint

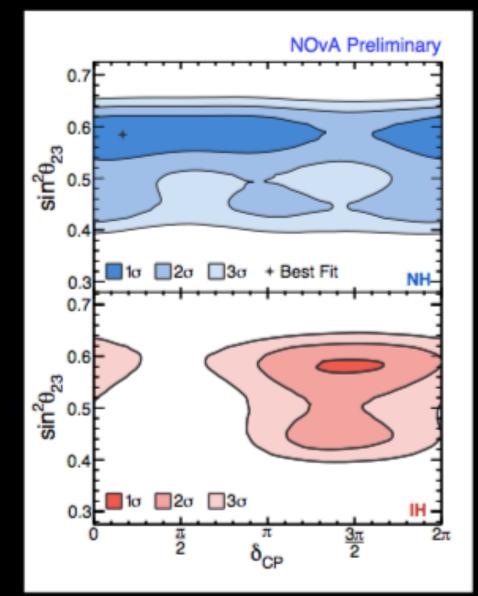


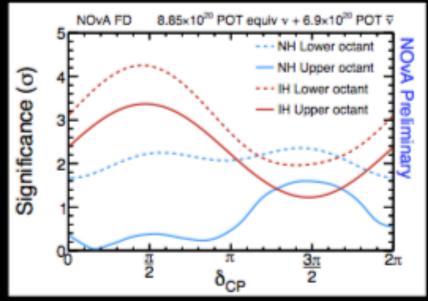
• CP conserving values of δ_{CP} lie outside 2σ region.

CP violation parameter δ_{CP}



ALLOWED OSCILLATION PARAMETERS





Best fit: Normal Hierarchy $\delta_{CP} = 0.17\pi$ $\sin^2\theta_{23} = 0.58 \pm 0.03$ (UO) $\Delta m^2_{32} = (2.51^{+0.12} - 0.08) \cdot 10^{-3} \text{ eV}^2$

Prefer NH by 1.8σ Exclude δ=π/2 in the IH at > 3σ

Mayly Sanchez - ISU

If θ_{23} is rather less than 45° it could be related neutrino masses. For example,

$$\sin^2 \theta_{23} \simeq \sqrt[4]{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.40 \sim 0.43$$

FTY(2003), FSTY(2012)

Just like GST relation
$$M_{\rm d} = \begin{pmatrix} 0 & A \\ A & B \end{pmatrix} \Rightarrow \theta_{12} \simeq \sqrt{\frac{m_d}{m_s}}$$

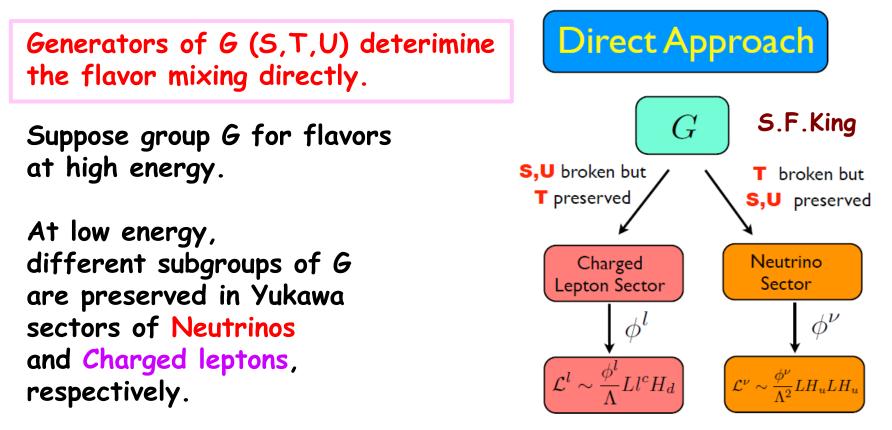
GST 1968 Weinberg 1977

However, the closer $\theta_{23} = 45^{\circ}$ or > 45° the more likely that some symmetry/structure behind it.

Also the closer $\delta_{CP} = -90^{\circ}$ the more likely that some symmetry/structure behind it.

2 Neutrino mixing and Flavor Symmetry

Footprint of the non-Abelian discrete symmetry is expected to be seen in the neutrino mixing matrix, which is the imprint of generators of finite groups.



Consider the case of A_4 flavor symmetry: A_4 has subgroups: three Z_2 , four Z_3 , one $Z_2 \times Z_2$ (klein four-group) $S^2 = T^3 = (ST)^3 = 1$

 Z_2 : {1,S}, {1,T²ST}, {1,TST²} Z_3 : {1,T,T²}, {1,ST,T²S}, {1,TS, ST²}, {1,STS,ST²S} K_4 : {1,S,T²ST,TST²}

Suppose A₄ is spontaneously broken to one of subgroups: Neutrino sector preserves Z_2 : {1,S} Charged lepton sector preserves Z_3 : {1,T,T²} $S^T m_{LL}^{\nu} S = m_{LL}^{\nu}, \quad T^{\dagger} Y_e Y_e^{\dagger} T = Y_e Y_e^{\dagger}$ $[S, m_{LL}^{\nu}] = 0, \quad [T, Y_e Y_e^{\dagger}] = 0$

Mixing matrices diagonalise $m_{LL}^{\nu},\ Y_eY_e^{\dagger}$ also diagonalize S and T, respectively !

For the triplet, the representations are given as

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega^2 & 0\\ 0 & 0 & \omega \end{pmatrix}; \quad \omega = e^{2\pi i/3}$$

$$V_{\nu}^{T}SV_{\nu} = \operatorname{diag}(-1, 1, -1)$$

$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Independent of mass eigenvalues !

Freedom of the rotation between 1st and 3rd column because a column corresponds to a mass eigenvalue.

Then, we obtain PMNS matrix.

$$V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} \\ -c/\sqrt{6} + s/\sqrt{2} \\ -c/\sqrt{6} - s/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ -s/\sqrt{6} - c/\sqrt{2} \\ 1/\sqrt{3} \end{pmatrix} - s/\sqrt{6} + c/\sqrt{2} \end{pmatrix}$$

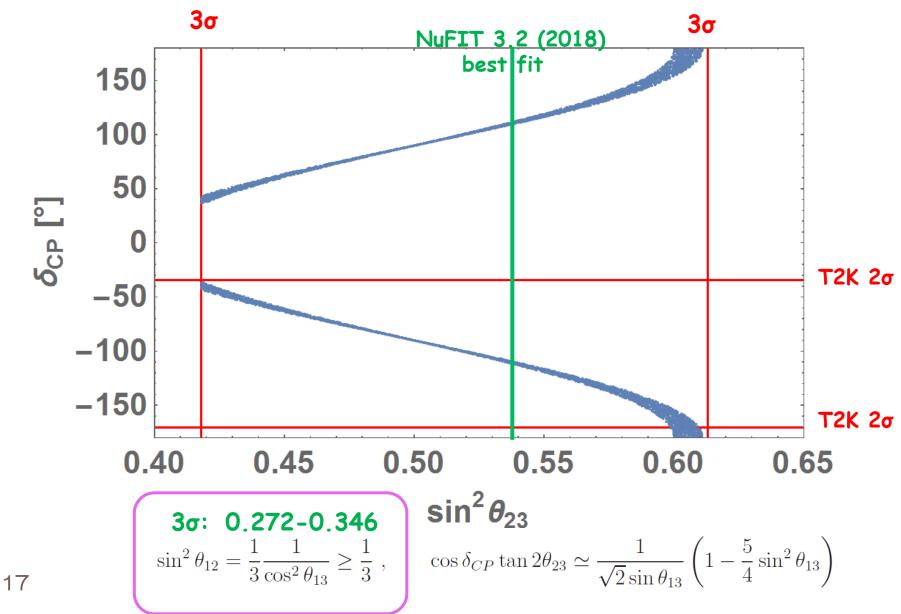
$$c = \cos\theta \quad s = \sin\theta e^{-i\sigma} \quad \text{CP violating phase appears accidentally.}$$
Tri-maximal mixing : so called TM₂

Θ and σ are not fixed.

Since two parameters appear, there are two relations among mixing angles and CP violating phase.

Mixing sum rules

$$\sin^2 \theta_{12} = \frac{1}{3} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{3} , \qquad \cos \delta_{CP} \tan 2\theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}} \left(1 - \frac{5}{4} \sin^2 \theta_{13} \right)$$



Prediction CP violating phase by using sum rules.

Direct Approach

 \Rightarrow Flavor Structure of Yukawa Interactions is directly related with the Generators of Finite groups. Predictions are clear.

★ One cannot discuss the related phenomena without Lagrangian. Leptogenesis, Quark CP violation, Lepton flavor violation

Model building is required.

Introduce flavons (gauge singlet scalars) to discuss dynamics of flavors, so write down Lagrangian.
 Flavor symmetry is broken spontaneously.
 Also investigate the vacuum structure in the broken symmetry.

The number of parameters of Yukawa interactions increases.
Predictivity of models is less than the Direct approach.

3 Minimal flavor model with A_4

Flavor symmetry G is broken by flavon (SU₂ singlet scalors)VEV's. Flavor symmetry controls Yukaw couplings among leptons and flavons with special vacuum alignments.

A₄ model: E. Ma, G. Rajasekaran (2001)
 K.S.Babu, E.Ma, J.W.F.Valle(2004) M.Hirsch et al(2004)
 A₄ group is the minimal one including a triplet of ir.r.

Leptons A_4 triplets (L_e, L_μ, L_τ)

flavons

$$\phi_
u(\phi_{
u1},\phi_{
u2},\phi_{
u3}) \ \phi_E(\phi_{E1},\phi_{E2},\phi_{E3})$$

couple to neutrino sector

couple to charged lepton sector

A₄ singlets $e_R: \mathbf{1} \ \mu_R: \mathbf{1}^{"} \ \tau_R: \mathbf{1}^{'}$

Mass matrices are given by A_4 invariant couplings with flavons

 $\begin{array}{rcl} 3_{L} \times 3_{L} \times 3_{flavon} \rightarrow 1 & 3_{L} \times 1_{R}^{(')('')} \times 3_{flavon} \rightarrow 1 \\ \end{array}$ 19 Majorana neutrino G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) 64

Flavor symmetry G is broken by VEV of flavons

$$3_{L} \times 3_{L} \times 3_{flavon} \to 1 \qquad 3_{L} \times 1_{R}(1_{R}, 1_{R}) \times 3_{flavon} \to 1$$
$$m_{\nu LL} \sim (y) \begin{pmatrix} 2\langle \phi_{\nu 1} \rangle & -\langle \phi_{\nu 3} \rangle & -\langle \phi_{\nu 2} \rangle \\ -\langle \phi_{\nu 3} \rangle & 2\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle \\ -\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle & 2\langle \phi_{\nu 3} \rangle \end{pmatrix} \qquad m_{E} \sim \begin{pmatrix} y_{e}\langle \phi_{E1} \rangle & y_{e}\langle \phi_{E3} \rangle & y_{e}\langle \phi_{E2} \rangle \\ y_{\mu}\langle \phi_{E1} \rangle & y_{\mu}\langle \phi_{E3} \rangle \\ y_{\tau}\langle \phi_{E3} \rangle & y_{\tau}\langle \phi_{E2} \rangle & y_{\tau}\langle \phi_{E1} \rangle \end{pmatrix}$$

Residual symmetries lead to specific Vacuum Alingnments Z₂ (1,S) in neutrinos $\langle \phi_{\nu 1} \rangle = \langle \phi_{\nu 2} \rangle = \langle \phi_{\nu 3} \rangle$ Z₃ (1,T,T²) in charged leptons $\langle \phi_{E2} \rangle = \langle \phi_{E3} \rangle = 0$

$$\Rightarrow \langle \phi_{\nu} \rangle \sim (1, 1, 1)^T , \qquad \langle \phi_E \rangle \sim (1, 0, 0)^T$$

$$S\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix} , \quad T\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\end{pmatrix}$$

 m_E is a diagonal matrix, on the other hand, m_{vLL} is

$$m_{\nu LL} \sim 3y \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - y \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Rank 2

two generated masses and one massless neutrinos ! (0, 3y, 3y) Flavor mixing is not fixed !

Z_2 (1,S) is preserved

Adding A_4 singlet flavon $\xi : 1$ \blacksquare flavor mixing matrix is fixed. $3_{\rm L} \times 3_{\rm L} \times 1_{\rm flavon} \rightarrow 1$ G. Altarelli, F. Feruglio, Nucl. Phys. B720 (2005) 64 $m_{\nu LL} \sim y_1 \begin{pmatrix} 2\langle \phi_{\nu 1} \rangle & -\langle \phi_{\nu 3} \rangle & -\langle \phi_{\nu 2} \rangle \\ -\langle \phi_{\nu 3} \rangle & 2\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle \\ -\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle & 2\langle \phi_{\nu 3} \rangle \end{pmatrix} + y_2 \langle \xi \rangle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\langle \phi_{\nu 1} \rangle = \langle \phi_{\nu 2} \rangle = \langle \phi_{\nu 3} \rangle$, which preserves S symmetry. $m_{\nu LL} = 3a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - a \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Flavor mixing is determined: Tri-bimaximal mixing.

 $m_{\nu} = 3a + b, \ b, \ 3a - b \ \Rightarrow m_{\nu_1} - m_{\nu_3} = 2m_{\nu_2}$

There appears a Neutrino Mass Sum Rule.

This is a minimal framework of A_4 symmetry predicting mixing angles and masses.

Prototype A₄ flavor model has been modified ! Three directions:

- Another flavon in A₄ flavor model: my talk
- Larger symmetry S₄ ··· : Y.Shimizu, many works
- Another aspect of A₄ modulei : F. Feruglio, T.Tatsuishi, J. Penedo (S₄)

 S_3 , A_4 , S_4 , A_5 are congruence subgroups of the modular symmetry. Couplings Ys are not constant, but in the modular form. Flavor structure is determined essentially by the modular parameter τ without flavons.

A_4 model easily realizes non-vanishing θ_{13} .

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

Add 1' or 1" flavon

$$\begin{array}{c}
\textbf{LL} \ \mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2 \\
\textbf{LL} \ \mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1'} = a_1 * b_2 + a_2 * b_1 + a_3 * b_3 \\
\textbf{LL} \ \mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1''} = a_1 * b_3 + a_2 * b_2 + a_3 * b_1 \\
\hline \mathbf{\xi} \\ \mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1} \\
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}
\end{array}$$

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \quad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \quad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \quad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda} \qquad a = -3b$$

Both normal and inverted mass hierarchies are possible.

$$M_{\nu} = V_{\text{tri-bi}} \begin{pmatrix} a+c-\frac{d}{2} & 0 & \frac{\sqrt{3}}{2}d \\ 0 & a+3b+c+d & 0 \\ \frac{\sqrt{3}}{2}d & 0 & a-c+\frac{d}{2} \end{pmatrix} V_{\text{tri-bi}}^{T} \qquad V_{\text{tri-bi}} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Realization of Tri-maximal mixing: TM₂

3
$$\sigma$$
: **0.272-0.346**
 $\sin^2 \theta_{12} = \frac{1}{3} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{3}$,

$$\cos \delta_{CP} \tan 2\theta_{23} \simeq \frac{1}{\sqrt{2}\sin \theta_{13}} \left(1 - \frac{5}{4}\sin^2 \theta_{13}\right)$$

24

 TM_2 may be soon excluded $Z_2(1,S)$ is broken by 1' and 1"

Further modification of A₄ Model

Kang, Simizu, Takagi, Takahashi, TM : arXiv: 1804.10468

	(l_e, l_μ, l_τ)	e^{c}	μ^{c}	$ au^c$	$h_{u,d}$	ϕ_l	$\phi_{ u}$	ξ	E	-	η
SU(2)	2	1	1	1	2	1	1	1	1		
A_4	3	1	1''	1'	1	3	3	1	(1)		1"
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	ω		\1/

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 8(2011)

Next-leading couplings

For Charged leptons $(\phi_T l)_{\mathbf{1'(1'')}} e^c h_d \eta$ $(\phi_T l)_{\mathbf{1''(1)}} \mu^c h_d \eta$ $(\phi_T l)_{\mathbf{1(1')}} \tau^c h_d \eta$

Neutrinos for

 $(ll)_{\mathbf{1'(1'')}}h_uh_u\xi\eta/\Lambda^3$

Scalar potential

 $V = V_T + V_S$

$$\begin{split} V_T &= \sum_{i} \left| \frac{\partial w_d^T}{\partial \phi_{0i}^T} \right|^2 + h.c. \\ &= 2 \left| -M\phi_{T1} + \lambda\phi_{T2}\tilde{\eta} + \frac{2g}{3} \left(\phi_{T1}^2 - \phi_{T2}\phi_{T3} \right) \right|^2 \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T1}\tilde{\eta} + \frac{2g}{3} \left(\phi_{T2}^2 - \phi_{T1}\phi_{T3} \right) \right|^2 \\ &+ 2 \left| -M\phi_{T2} + \lambda\phi_{T3}\tilde{\eta} + \frac{2g}{3} \left(\phi_{T3}^2 - \phi_{T1}\phi_{T2} \right) \right|^2 \\ &+ 2 \left| -\lambda_1 \left(\phi_{T2}\phi_{S2} + \phi_{T1}\phi_{S3} + \phi_{T3}\phi_{S1} \right) + \lambda_2\eta\xi + \lambda_3\eta\tilde{\xi} + \lambda_4\tilde{\eta}\xi + \lambda_5\tilde{\eta}\tilde{\xi} \right|^2 \end{split} \\ V_S &= \sum \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial X} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &= 2 \left| \frac{\partial w_d^S}{\partial Y} \right|^2 + h.c. \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 + h.c. \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 + h.c. \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 \\ &+ 2 \left| -M\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 \\ &+ 2 \left| -h\phi_{T3} + \lambda\phi_{T3} \tilde{\eta} + \frac{2g}{\partial Y} \right|^2 \\ &+ 2 \left| -h\phi_{T3} + \lambda\phi_{T3} + \lambda\phi_{T3$$

Vacuum alignments

VEVs of flavons give Mass matrices

$$M_{\ell} = v_{d} \alpha_{\ell} \begin{pmatrix} y_{e} \lambda^{4} & 0 & y_{\tau}^{\prime} \alpha_{\eta} \\ y_{e}^{\prime} \alpha_{\eta} \lambda^{4} & y_{\mu} \lambda^{2} & 0 \\ 0 & y_{\mu}^{\prime} \alpha_{\eta} \lambda^{2} & y_{\tau} \end{pmatrix} \text{Next-leading couplings of } \eta$$

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$a + 3b = 0$$

$$a = \frac{y_{S} \alpha_{\nu}}{\Lambda} v_{u}^{2}, \quad b = -\frac{y_{S} \alpha_{\nu}}{3\Lambda} v_{u}^{2}, \quad c = \frac{y_{\xi} \alpha_{\xi}}{\Lambda} v_{u}^{2}, \quad d = \frac{y_{\tau}^{\prime} \alpha_{\xi} (\alpha_{\eta})}{\Lambda} v_{u}^{2},$$

$$\alpha_{\ell} \equiv \frac{\langle \phi_{T} \rangle}{\Lambda} = \frac{v_{T}}{\Lambda}, \quad \alpha_{\eta} \equiv \frac{\langle \eta \rangle}{\Lambda} = \frac{q}{\Lambda}, \qquad \alpha_{\nu} \equiv \frac{\langle \phi_{S} \rangle}{\Lambda} = \frac{v_{S}}{\Lambda}, \quad \alpha_{\xi} \equiv \frac{\langle \xi \rangle}{\Lambda} = \frac{u}{\Lambda}$$

 α_{η} is expected to be O(0.1). λ is FN suppression coefficient ~0.2.

$$U_{\rm PMNS} = U_{\ell} \ V_{\rm TBM} \ U_{\nu}^{\dagger} \ P$$

$$U_{\ell}^{\dagger} \simeq \frac{1}{\sqrt{1 + \alpha_{\eta}^{\tau^2}}} \begin{pmatrix} 1 & -\mathcal{O}(\alpha_{\eta}^2) & \alpha_{\eta}^{\tau} e^{i\varphi} \\ \mathcal{O}(\alpha_{\eta}^2) & \sqrt{1 + \alpha_{\eta}^{\tau^2}} & \mathcal{O}(\alpha_{\eta}\lambda^4) \\ -\alpha_{\eta}^{\tau} e^{-i\varphi} & \mathcal{O}(\alpha_{\eta}^3) & 1 \end{pmatrix} \qquad \alpha_{\eta}^{\tau} e^{i\varphi} \equiv \frac{y'_{\tau}}{y_{\tau}} \alpha_{\eta}$$

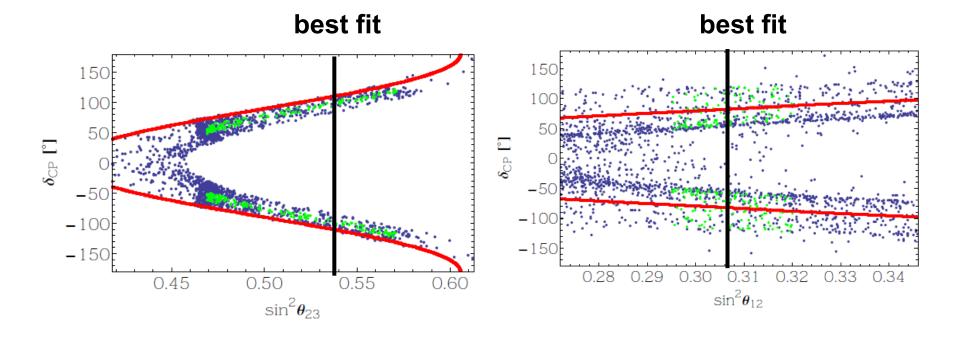
$$V_{\rm TBM} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad U_{\nu}^{\dagger} = \begin{pmatrix} \cos\theta & 0 & \sin\theta e^{-i\sigma} \\ 0 & 1 & 0 \\ -\sin\theta e^{i\sigma} & 0 & \cos\theta \end{pmatrix}$$

$$\tan 2\theta = \sqrt{3} \frac{d\sqrt{a^2 \cos^2\phi_d + c^2 \sin^2(\phi_c - \phi_d)}}{a(d\cos\phi_d - 2c\cos\phi_c)}, \qquad \sigma = -\frac{c\sin(\phi_c - \phi_d)}{a\cos\phi_d} \cdot \begin{bmatrix} \frac{d}{c} = \left| \frac{y'_{\tau}}{y_{\xi}} \right| \alpha_{\eta} \equiv \alpha_{\eta}^{\nu} \end{bmatrix}$$

Both neutrinos and charged leptons have extra (1-3) family rotations from Tri-bimaximal mixing.



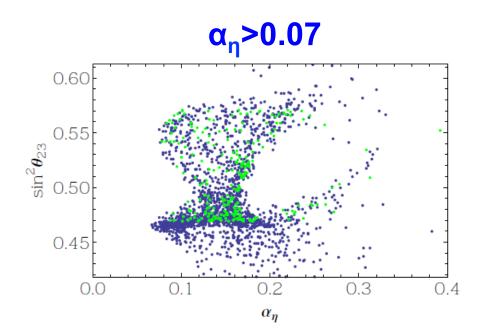
Blue dots: input of 3 σ data green dots: input of 1 σ data

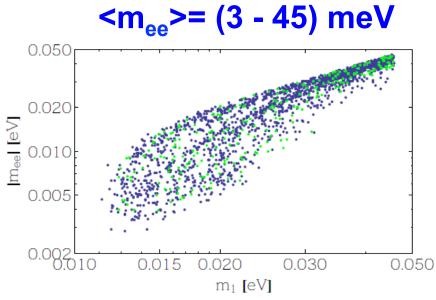


Red curve denotes the case of diagonal charged leptons (TM₂), where $\sin^2\theta_{12} > 1/3$

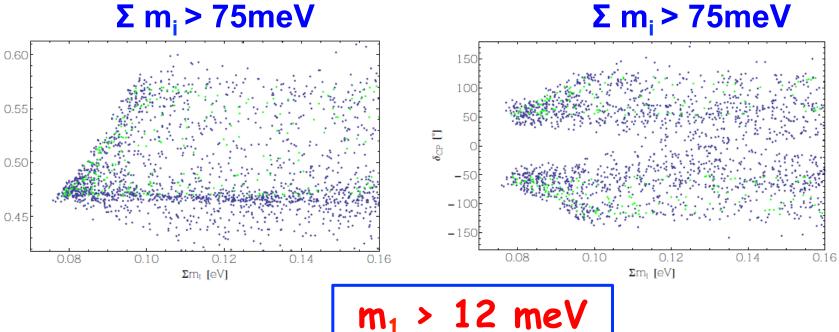
Red curve denotes the case of d=0, where $\sin^2\theta_{23} = 0.51$

 $90^{\circ} \lesssim |\delta_{\rm CP}| \lesssim 110^{\circ}$ at the best fit of $\sin^2 \theta_{23} = 0.538$.





Σ m_i > 75meV



0.60

0.55

0.50

 $\sin^2 \theta_{23}$

4 Summary

Imprint of the non-Abelian discrete symmetry is found in the neutrino flavor structure by using the direct approach of flavor symmetry.

Generators S, T, U of the residual symmetry

That will be precisely examined in the future experiments of flavor mixing angles and CP violation.

In order to discuss the flavor dynamics, models are build by introducing flavons (gauge singlet scalars).

Alignment of VEVs of flavons

Simplest flavor model is built based on the A_4 group, which is the smallest group including a triplet (order 12) in the irreducible representations.

Alignment of triplet flavons are (1,1,1) and (1,0,0) with singlet flavons 1 and 1" (1')

 $90^{\circ} \lesssim |\delta_{\rm CP}| \lesssim 110^{\circ}$ at the best fit of $\sin^2 \theta_{23} = 0.538$.

Alternative approach is the modular symmetry.

 A_4 is a congruence subgroup of the modular symmetry. Couplings Ys are not constant, but in the modular form. Flavor structure is determined essentially by the modular parameter τ without flavons.

The phenomenology is going on (Tatsuishi's talk).

Thank you !