Neutrino physics and CP violation in three generation seesaw model with four-zero textures

Akihiro Yuu (Hiroshima University)

This work is in collaboration with
T. Morozumi (Hiroshima U.)
Y. Shimizu (Hiroshima U.)
H. Umeeda (Shimane U.)

Introduction

- seesaw mechanism (type I)
- model and parameters
-CP asymmetry
Contents
-Four-zero texture model
-numerical analysis
-summary

Seesaw mechanism (Type I)

- heavy right-handed neutrinos v_{R}
- Majorana particle

Lagrangian

$$
\begin{aligned}
\mathcal{L}_{m} & =-\frac{1}{2} m_{R}\left(\bar{\nu}_{R}\right)^{c} \nu_{R}-\frac{1}{2} m_{L}\left(\bar{\nu}_{L}\right)^{c} \nu_{L}-m_{D} \bar{\nu}_{R} \nu_{L}+\text { h.c. } \\
& =-\frac{1}{2}\left(\left(\bar{\nu}_{L}\right)^{c}, \bar{\nu}_{R}\right)\left(\begin{array}{cc}
m_{L} & m_{D} \\
m_{D} & m_{R}^{*}
\end{array}\right)\binom{\nu_{L}}{\left(\nu_{R}\right)^{c}}+\text { h.c. } \\
& =-\frac{1}{2} m_{s}\left(\bar{\nu}_{s}\right)^{c} \nu_{s}-\frac{1}{2} m_{a}\left(\bar{\nu}_{a}\right)^{c} \nu_{a}
\end{aligned}
$$

$$
m_{R}, m_{L}: \text { Majorana masses }
$$

$$
m_{D}: \text { Dirac mass }
$$

$$
m_{s} \gg m_{a}
$$

Only the neutrino with tiny masse remains in effective low energy theory

If one of the mass eigenvalues gets heavier, the other one becomes lighter, and vice versa.

three generation model (e, μ, τ)

6×6 mass matrix

$$
M_{\nu}=\left(\begin{array}{cccccc}
0 & 0 & 0 & m_{D e 1} & m_{D e 2} & m_{D e 3} \\
0 & 0 & 0 & m_{D \mu 1} & m_{D \mu 2} & m_{D \mu 3} \\
0 & 0 & 0 & m_{D \tau 1} & m_{D \tau 2} & m_{D \tau 3} \\
m_{D e 1} & m_{D \mu 1} & m_{D \tau 1} & M_{1} & 0 & 0 \\
m_{D e 2} & m_{D \mu 2} & m_{D \tau 2} & 0 & M_{2} & 0 \\
m_{D e 3} & m_{D \mu 3} & m_{D \tau 3} & 0 & 0 & M_{3}
\end{array}\right)
$$

$$
\begin{array}{rlr}
\mathcal{L}_{m} & =-\frac{1}{2}\left(\left(\overline{\nu_{L}}\right)^{c}, \overline{\nu_{R}}\right)\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & m_{R}^{*}
\end{array}\right)\binom{\nu_{L}}{\left(\nu_{R}\right)^{c}}+h . c . & \text { We define the effective mass } \\
& =-\frac{1}{2}\left(\left(\overline{\nu_{L}}\right)^{c}, \overline{\nu_{R}}\right) U^{*} U^{t}\left(\begin{array}{cc}
0 & m_{D}^{t} \\
m_{D} & m_{R}^{*}
\end{array}\right) U U^{\dagger}\binom{\nu_{L}}{\left(\nu_{R}\right)^{c}}+h . c . & m_{e f f} \equiv-m_{D}\left(m_{R}^{*}\right)^{-1} m_{D}^{t} \\
& \simeq-\frac{1}{2}\left(-i\left(\overline{\nu_{L}}\right)^{c}, \overline{\nu_{R}}\right)\left(\begin{array}{cc}
-m_{e f f} & m_{R}^{*} \\
0 & m_{R}
\end{array}\right)\binom{-i \nu_{L}}{\left(\nu_{R}\right)^{c}}+h . c . & =-m_{D} \frac{1}{M_{R}} m_{D}^{t}
\end{array}
$$

$$
=-\frac{1}{2}\left\{\left(\overline{\nu_{L}}\right)^{c} m_{e f f} \nu_{L}+\overline{\nu_{R}} m_{R}^{*}\left(\nu_{R}\right)^{c}\right\}+h . c .
$$

$V^{P M N S} m_{e f f}\left(V^{P M N S}\right)^{t}=\left(\begin{array}{ccc}m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3}\end{array}\right)$
m_{i} : mass eigenvalues

Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix) diagonalizes $m_{e f f}$.
PMNS matrix describes the flavor mixing between weak-basis and mass-basis.

$$
V^{P M N S}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)
$$

A conventional parametrization for MNS matrix $V^{P M N S}$ is

$$
V^{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{13}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

where $s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$

- $\theta_{12}, \theta_{23}, \theta_{13}$ are mixing angles.
- δ is a Dirac CP phase, α_{21} and α_{31} are Majorana phases.

Parameters and notations in this model

We define $m_{D i}(i=1,2,3)$ to be the magnitude of each column vector of the 3 by 3 Dirac mass matrix m_{D}.
\boldsymbol{u}_{i} are the normalized column vectors of m_{D}.
$m_{D}=\left(m_{D 1} \boldsymbol{u}_{1}, m_{D 2} \boldsymbol{u}_{2}, m_{D 3} \boldsymbol{u}_{3}\right) \Rightarrow U \equiv\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)=\left(\begin{array}{lll}u_{e 1} & u_{e 2} & u_{e 3} \\ u_{\mu 1} & u_{\mu 2} & u_{\mu 3} \\ u_{\tau 1} & u_{\tau 2} & u_{\tau 3}\end{array}\right)$

$$
\text { such that }\left|\boldsymbol{u}_{i}\right|=1
$$

Defining mass scales X_{i} written in terms of $m_{D i}$ and the Majorana mass M_{i}.

$$
X_{i} \equiv \frac{m_{D i}^{2}}{M_{i}}
$$

U is not unitary

The effective mass matrix $m_{e f f}$ is expressed as

$$
m_{e f f} \equiv-m_{D} \frac{1}{M_{R}} m_{D}^{t}=-U X U^{t}
$$

In order to find the mass eigenvalues and the PMNS mixing matrix, we have to solve the characteristic equation (solutions λ are mass squares).

$$
\begin{aligned}
& \text { the characteristic equation } \\
& \operatorname{det}\left(m_{e f f} m_{e f f}^{\dagger}-\lambda\right)=0
\end{aligned}
$$

This equation is identical to three independent algebraic equations of mass squares and seesaw parameters (elements of U and X).

$$
\begin{aligned}
& {\left[=16 J \sin \left(\frac{\Delta m n_{12}^{2} t}{2 E} t\right) \sin \left(\frac{\Delta m n_{3}}{2 E} t\right) \sin \left(\frac{\Delta m \xi_{1}}{2 E} t\right)\right.} \\
& \Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2} \\
& \text { defining a new symbol } \\
& A_{i j} \equiv u_{i}^{\dagger} u_{j}
\end{aligned}
$$

$\Delta=I m\left\{\left(m_{\text {eff }} m_{\text {eff }}^{\dagger}\right)\right.$ ep $\left(m_{\text {ef }} f m_{\text {ef }}^{\dagger} \mu\right)_{\mu r}\left(m_{\text {eff }} m_{\text {eff }}^{\dagger}\right)$ re $\}$

CP asymmetry in neutrino sector

CP asymmetry is proportional to J written with mixing angles and CP phase.

$$
\begin{aligned}
& \text { Jarlskog parameter } \\
& \text { (in terms of mixing angles } \\
& \text { and } \delta \text { CP phase) }
\end{aligned} \quad \mathrm{J} \equiv s_{12} s_{23} s_{13} c_{12} c_{23} c_{13}^{2} \sin \delta
$$

J can be expressed in terms of $m_{e f f}$ and mass eigenvalues.

$$
\mathrm{J}=\frac{\operatorname{Im}\left\{\left(m_{e f f} m_{e f f}^{\dagger}\right)_{e \mu}\left(m_{e f f} m_{e f f}^{\dagger}\right)_{\mu \tau}\left(m_{e f f} m_{e f f}^{\dagger}\right)_{\tau e}\right\}}{\Delta m_{12}^{2} \Delta m_{23}^{2} \Delta m_{31}^{2}}
$$

We define Δ as the product of J and mass squared differences.

$$
\begin{aligned}
\Delta & \equiv J \Delta m_{12}^{2} \Delta m_{23}^{2} \Delta m_{31}^{2} \\
& =\operatorname{Im}\left\{\left(m_{e f f} m_{e f f}^{\dagger}\right)_{e \mu}\left(m_{e f f} m_{e f f}^{\dagger}\right)_{\mu \tau}\left(m_{e f f} m_{e f f}^{\dagger}\right)_{\tau e}\right\}
\end{aligned}
$$

$$
\text { For } A^{C P} \neq 0, \quad \Delta \neq 0
$$

Expressing it in terms of U and X, it will be complicated.

The most general form of Δ in three generations model in terms of seesaw parameters U and X.

$$
\begin{aligned}
& m_{e f f}=-\left(\begin{array}{ccc}
X_{1} \sin ^{2} \theta_{1}+X_{2} \sin ^{2} \theta_{2} e^{2 i \phi_{1}}+X_{3} e^{2 i \phi_{2}} & X_{2} \sin \theta_{2} \cos \theta_{2} & X_{1} \sin \theta_{1} \cos \theta_{1} \\
X_{2} \sin \theta_{2} \cos \theta_{2} & X_{2} \cos ^{2} \theta_{2} & 0 \\
X_{1} \sin \theta_{1} \cos \theta_{1} & 0 & X_{1} \cos ^{2} \theta_{1}
\end{array}\right) \\
& \left(\begin{array}{ccc}
0 & \cos \theta_{2} & 0 \\
\sin \theta_{1} & \sin \theta_{2} e^{i_{1} \phi_{1}} & e^{i \phi_{2}} \\
\cos \theta_{1} & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \phi_{1}} & e^{i \phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right) \\
& U=\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \phi_{1}} & e^{i \phi_{2}} \\
\operatorname{O}_{1} & \cos \theta_{2} & O
\end{array}\right) \\
& \text { PUQ } \\
& Q \times Q^{T} \\
& m_{e f f}=-P\left\{U\left(Q \times Q^{T}\right) U^{T}\right\} P^{T} \\
& P^{T} V_{P M N S} \\
& \square=\left(\frac{C 1}{a}\right. \\
& \text { xeformax }
\end{aligned}
$$

- notation
p, q, r denote 1 , 2 , or 3.
$\sum_{\{p, q, r\}}$ means the sum of all 6 patterns of substitution among p, q, r.
$p \neq q \neq r$.
e, μ, τ are each flavor.
$\sum_{\{e, \mu, \tau\}}$ means the sum of 3 patterns of periodic substitution for (e, μ, τ).

Four zero texture model of Dirac mass matrix

To reduce the number of parameters, we replace some elements of the Dirac mass matrix with 0 .

$$
\begin{aligned}
U=\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \Rightarrow & \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
* & * & *
\end{array}\right)
\end{aligned}\left(\begin{array}{lll}
* & * & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right)
$$

The configuration of the four zero texture has ${ }_{9} C_{4}=126$ patterns.

Classification of four zero textures

$$
{ }_{9} C_{4}=126 \text { patterns. }
$$

U
Type । $\quad\left(\begin{array}{lll}* & * & * \\ * & 0 & 0 \\ 0 & * & 0\end{array}\right)$
There is only one row component all in which the
elements are not zero, and rank $U=3$. (18 patterns)
Type II $\left(\begin{array}{lll}* & * & 0 \\ & 0 & \\)\end{array}\right.$ There is only one column component all in which the $\left(\begin{array}{lll}* & * & 0 \\ * & 0 & * \\ * & 0 & 0\end{array}\right)$ elements are not zero, and rank $U=3$.
(18 patterns)

Type III $\left(\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ 0 & * & *\end{array}\right)$
The numbers of non-zero elements on any row and column components are 1 or 2 , and rank $U=3$. (36 patterns)

Type IV $\left(\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ * & * & 0\end{array}\right)$
There is only one column component all in which the elements are zero.
(18 patterns)

Type V $\left(\begin{array}{lll}* & * & * \\ * & * & 0 \\ 0 & 0 & 0\end{array}\right)$
There is only one row component all in which the elements are zero.
(18 patterns)
Type VI $\left(\begin{array}{lll}* & * & * \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right)$
There is one row component and one column component all in which the elements are not zero.
(9 patterns)
Type VII $\left(\begin{array}{lll}* & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right)$
There are one row and column components in which two elements are zero, and the common element on the both of such row and column components is not zero. (9 patterns)

Assumption

- The lightest neutrino mass is also non-zero.

$$
m_{1} \neq 0 \quad\left(m_{3} \neq 0\right)
$$

- Three masses are not degenerated.

$$
m_{1}<m_{2} \ll m_{3} \quad \text { or } \quad m_{3} \ll m_{1}<m_{2}
$$

- CP symmetry is violated in the leptonic sector.

$$
\Delta \neq 0
$$

We adopt such textures satisfying the assumptions.

We suppose the CP asymmetry in neutrino sector and three massive neutrinos.

Type I
$\left(\begin{array}{lll}* & * & * \\ * & 0 & 0 \\ 0 & * & 0\end{array}\right)$
There is only one row component all in which the elements are not zero, and rank $U=3$. (18 patterns)

$$
\Delta \neq 0
$$

Type II $\left(\begin{array}{lll}* & * & 0 \\ * & 0 & * \\ * & 0 & 0\end{array}\right)$

There is only one column component all in which the elements are not zero, and $\operatorname{rank} U=3$.
(18 patterns)
We adopt first three types.
Type III) $\left(\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ 0 & * & *\end{array}\right)$
The numbers of non-zero elements on any row and column components are 1 or 2 , and $\operatorname{rank} U=3$. (36 patterns)

Type IV $\left(\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ * & * & 0\end{array}\right)$
There is only one column component all in which the elements are zero.
(18 patterns)

Type IV causes one massless neutrino automatically.

Type $V\left(\begin{array}{lll}* & * & * \\ * & * & 0 \\ 0 & 0 & 0\end{array}\right)$
Type VI $\left(\begin{array}{lll}* & * & * \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right)$ all in which the elements are not zero.
There is only one row component all in which the elements are zero.
(18 patterns)

Type VII $\left(\begin{array}{lll}* & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right)$
There are one row and column components in which two elements are zero, and the common element on the both of such row and column components is not zero. (9 patterns)

Parametrization of four zero texture model

$$
\mathrm{U}=\left(\begin{array}{ccc}
u_{e 1} & u_{e 2} & u_{e 3} \\
0 & u_{\mu 2} & 0 \\
u_{\tau 1} & 0 & 0
\end{array}\right) \quad \text { Parameterization } \quad \mathrm{U}=\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \Phi_{1}} & e^{i \Phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right)
$$

4 parameters $\theta_{1}, \theta_{2}, \Phi_{1}, \Phi_{2}$
in total 7 parameters $\quad X_{1}, X_{2}, X_{3}, \theta_{1}, \theta_{2}, \Phi_{1}, \Phi_{2}$

$$
m_{e f f}=-\left(\begin{array}{ccc}
X_{1} u_{e 1}^{2}+X_{2} u_{e 2}^{2}+X_{3} u_{e 3}^{2} & X_{2} u_{e 2} u_{\mu 2} & X_{1} u_{e 1} u_{\tau 1} \\
X_{2} u_{e 2} u_{\mu 2} & X_{2} u_{\mu 2}^{2} & 0 \\
X_{1} u_{e 1} u_{\tau 1} & 0 & X_{1} u_{\tau 1}^{2}
\end{array}\right)
$$

Δ in this case

$$
\Delta_{m_{e f f}}=-\left(\begin{array}{ccc}
X_{2} \sin ^{2} \theta_{1}+X_{1} \sin ^{2} \theta_{2} e^{2 i \phi_{1}}+X_{3} e^{2 i \phi_{2}} & X_{1} \sin \theta_{2} \cos \theta_{2} & X_{2} \sin \theta_{1} \cos \theta_{1} \\
X_{1} \sin \theta_{2} \cos \theta_{2} & X_{1} \cos ^{2} \theta_{2} & X_{2} \cos ^{2} \theta_{1} \\
X_{2} \sin \theta_{1} \cos \theta_{1} & 0 & x_{1}
\end{array}\right)
$$

Numerical analysis

$$
\text { A texture in Type I, for example } \quad U=\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \Phi_{1}} & e^{i \Phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right)
$$

Allocating parameters randomly model angles in $U ; \theta_{1}, \theta_{2} \quad$ from $-\pi$ to π model phases in $U ; \Phi_{1}, \Phi_{1} \quad$ from $-\pi$ to π the lightest neutrino mass ; $m_{1}\left(m_{3}\right)$ from 0 to $0.046[\mathrm{eV}]$

	Best-fit	3σ
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	7.30	$6.39-7.97$
$\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right]$	2.50	$2.37-2.63$

Reconstructing the $m_{\text {eff }}$ and solving the algebraic equations

$$
\operatorname{det}\left(m_{e f f} m_{e f f}^{\dagger}-\lambda\right)=0,
$$

we obtain X_{1}, X_{2} and X_{3}.

Giving the values to parameters $\left(\theta_{1}, \theta_{2}, \Phi_{1}, \Phi_{2}, m_{1}, X_{1}, X_{2}, X_{3}\right)$, We determine the $m_{e f f}$.

The $m_{\text {eff }}$ produces flavor mixing angles $\left(\theta_{12}, \theta_{23}\right.$, and $\left.\theta_{13}\right)$, the Dirac CP phase δ, and Majorana phases $\left(\alpha_{21}, \alpha_{31}\right)$.

If all three mixing angles $\left(\theta_{12}, \theta_{23}\right.$, and $\left.\theta_{13}\right)$ are within 3σ of the experimentally measured values, we collect the set of parameters as a possible model.

	Best-fit	3σ
$\sin ^{2} \theta_{12}$	0.297	$0.250-0.357$
$\sin ^{2} \theta_{23}$	0.437	$0.379-0.616$
$\sin ^{2} \theta_{13}$	0.0214	$0.0185-0.0246$

Results

- Each solved X_{i} is smaller than $0.5[\mathrm{eV}]$.

After assuming the heavy right handed neutrino masses M_{i}, we can determine the Dirac mass matrix m_{D} from the solutions X_{i} and the other parameters $\theta_{1}, \theta_{2}, \Phi_{1}, \Phi_{2}$.

- Some models do not reproduce the correct mixing angles (normal hierarchical case).
- There are some correlations among the parameters, and physical quantities.
- In normal hierarchical case, any texture which produces 0 on $\mu-\tau$ element (and also $\tau-\mu$ element) of $m_{e f f}$, does not explain the experimental results.

Textures, which makes $m_{e f f}=\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ 0 & * & *\end{array}\right)$, are consistent with experiments.

$$
m_{e f f}=-U X U^{t}
$$

For example, $\mathrm{U}=\left(\begin{array}{lll}* & 0 & 0 \\ * & * & * \\ 0 & * & 0\end{array}\right),\left(\begin{array}{lll}* & 0 & 0 \\ * & * & * \\ 0 & 0 & *\end{array}\right),\left(\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ 0 & * & *\end{array}\right),\left(\begin{array}{lll}0 & * & * \\ * & * & 0 \\ * & 0 & 0\end{array}\right) \ldots \ldots$.
These 18 textures are ruled out.

While, In inverted hierarchical case, all textures are possible to reproduce the experimental results.

- A correlation between parameters (Normal)

Holding up two specific textures in type III as examples,

$$
U=\left(\begin{array}{ccc}
0 & \cos \theta_{2} e^{i \Phi_{1}} & 1 \\
\sin \theta_{1} & 0 & 0 \\
\cos \theta_{1} & \sin \theta_{2} e^{i \Phi_{2}} & 0
\end{array}\right)
$$

There is no particularly features for Φ_{1}, while Φ_{2} is restricted in the specific range.

- The correlation between m_{1} and $\left|m_{e e}\right|$ (for two textures as above)

x axis : the lightest neutrino mass
y axis : the absolute value of the e-e element of $m_{e f f}$

The correlation between m_{1} and $\left|m_{e e}\right|$ is analytically comprehensible for both two examples.

From the experimental results of the neutrinoless double beta decay, for example, it gives a prediction for the mass of the lightest neutrino mass.

- Correlations among CP phase and Majorana phases (inverted)

$$
U=\left(\begin{array}{ccc}
\sin \theta_{1} & 0 & 0 \\
\cos \theta_{1} & \sin \theta_{2} e^{i \Phi_{1}} & 0 \\
0 & \cos \theta_{2} e^{i \Phi_{2}} & 1
\end{array}\right)
$$

α_{31} is not determined and it does not have correlation with α_{21} nor δ.
While α_{21} and δ appear in the limited range.

The sign of δ and the sign of α_{21} depend on each other.

In some cases of the model, the CP phase δ is outputted around $-\frac{\pi}{2}$ or $\frac{\pi}{2}$.

Summary

- In three generation seesaw model, we reduced the number of model parameters as possible,

$$
U=\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \Rightarrow\left(\begin{array}{lll}
* & * & * \\
0 & * & 0 \\
* & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \Phi_{1}} & e^{i \Phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right)
$$

- We classify them and picked up the textures under the condition that the lightest neutrino mass is non-zero and CP is violated.
- There are some correlations among model parameters and physical quantities.
- This analysis makes some predictions for the phases δ, α_{21}, and α_{31} and also for relations among physical quantities.

Future works

- To give some explanation on the numerical results with the analytical method.
- To apply this model for other physical phenomena, such as neutrinoless double beta decay and leptogenesis.

Buck up

Textures in Type I
There are 18 different textures (patterns of configuration)
They are related on each other by replacing the column or row components.

$$
\begin{aligned}
& \left(\begin{array}{lll}
* & * & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right),\left(\begin{array}{lll}
* & * & * \\
* & 0 & 0 \\
0 & 0 & *
\end{array}\right),\left(\begin{array}{lll}
* & * & * \\
0 & * & 0 \\
* & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
* & * & * \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right),\left(\begin{array}{lll}
* & * & * \\
0 & 0 & * \\
* & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
* & * & * \\
0 & 0 & * \\
0 & * & 0
\end{array}\right), \\
& \left(\begin{array}{lll}
* & 0 & 0 \\
* & * & * \\
0 & * & 0
\end{array}\right),\left(\begin{array}{lll}
* & 0 & 0 \\
* & * & * \\
0 & 0 & *
\end{array}\right),\left(\begin{array}{lll}
0 & * & 0 \\
* & * & * \\
* & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & * & 0 \\
* & * & * \\
0 & 0 & *
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & * \\
* & * & * \\
* & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & * \\
* & * & * \\
0 & * & 0
\end{array}\right), \\
& \left(\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
* & * & *
\end{array}\right),\left(\begin{array}{lll}
* & 0 & 0 \\
0 & 0 & * \\
* & * & *
\end{array}\right),\left(\begin{array}{lll}
0 & * & 0 \\
* & 0 & 0 \\
* & * & *
\end{array}\right),\left(\begin{array}{lll}
0 & * & 0 \\
0 & 0 & * \\
* & * & *
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & * \\
* & 0 & 0 \\
* & * & *
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & * \\
0 & * & 0 \\
* & * & *
\end{array}\right),
\end{aligned}
$$

Textures in the same Type are related to each other by exchanging the column and row components in U.

$$
U_{b}=P U_{a} Q
$$

$$
P, Q=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Any criterial texture U_{a}

$$
\begin{gathered}
U \\
X=\left(\begin{array}{ccc}
X_{1} & 0 & 0 \\
0 & X_{2} & 0 \\
0 & 0 & X_{3}
\end{array}\right) \\
m_{\text {eff }}=-U X U^{T} \\
V_{P M N S}
\end{gathered}
$$

Another texture in the same type $U_{b}=P U_{a} Q$
$P U Q$
$Q X Q^{T}$
$m_{\text {eff }}=-P\left\{U\left(Q X Q^{T}\right) U^{T}\right\} P^{T}$
$P^{T} V_{P M N S}$

A texture in Type I

$$
U=\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \phi_{1}} & e^{i \phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right) \quad m_{e f f}=-\left(\begin{array}{ccc}
X_{1} \sin ^{2} \theta_{1}+X_{2} \sin ^{2} \theta_{2} e^{2 i \phi_{1}}+X_{3} e^{2 i \phi_{2}} & X_{2} \sin \theta_{2} \cos \theta_{2} & X_{1} \sin \theta_{1} \cos \theta_{1} \\
X_{2} \sin \theta_{2} \cos \theta_{2} & X_{2} \cos ^{2} \theta_{2} & 0 \\
X_{1} \sin \theta_{1} \cos \theta_{1} & 0 & X_{1} \cos ^{2} \theta_{1}
\end{array}\right)
$$

Another textures in Type I (exchanging the first and second row components)

$$
\left(\begin{array}{ccc}
0 & \cos \theta_{2} & 0 \\
\sin \theta_{1} & \sin \theta_{2} e^{i \phi_{1}} & e^{i \phi_{2}} \\
\cos \theta_{1} & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sin \theta_{1} & \sin \theta_{2} e^{i \phi_{1}} & e^{i \phi_{2}} \\
0 & \cos \theta_{2} & 0 \\
\cos \theta_{1} & 0 & 0
\end{array}\right)
$$

$$
m_{\text {eff }}=-\left(\begin{array}{ccc}
X_{2} \cos ^{2} \theta_{2} & X_{2} \sin \theta_{2} \cos \theta_{2} & 0 \\
X_{2} \sin \theta_{2} \cos \theta_{2} & X_{1} \sin ^{2} \theta_{1}+X_{2} \sin ^{2} \theta_{2} e^{2 i \phi_{1}}+X_{3} e^{2 i \phi_{2}} & X_{1} \sin \theta_{1} \cos \theta_{1} \\
0 & X_{1} \sin \theta_{1} \cos \theta_{1} & X_{1} \cos ^{2} \theta_{1}
\end{array}\right)
$$

Another textures in Type I (exchanging the first and second column components)

$$
\begin{array}{r}
\left.\left(\begin{array}{ccc}
\sin \theta_{2} e^{i \phi_{1}} & \sin \theta_{1} & e^{i \phi_{2}} \\
\cos \theta_{2} & 0 & 0 \\
0 & \cos \theta_{1} & 0
\end{array}\right)=\left(\begin{array}{c}
\sin \theta_{1} \\
0 \\
\cos \theta_{1}
\end{array}\right) \begin{array}{c}
\sin \theta_{2} e^{i \phi_{1}} \\
\cos \theta_{2} \\
0
\end{array}\right)\left(\begin{array}{lll}
e^{i \phi_{2}} \\
0 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
m_{e f f}=-\left(\begin{array}{ccc}
X_{2} \sin ^{2} \theta_{1}+X_{1} \sin ^{2} \theta_{2} e^{2 i \phi_{1}}+X_{3} e^{2 i \phi_{2}} & X_{1} \sin \theta_{2} \cos \theta_{2} & X_{2} \sin \theta_{1} \cos \theta_{1} \\
X_{1} \sin \theta_{2} \cos \theta_{2} & X_{1} \cos ^{2} \theta_{2} & 0 \\
X_{2} \sin \theta_{1} \cos \theta_{1} & 0 & X_{2} \cos ^{2} \theta_{1}
\end{array}\right)
\end{array}
$$

Application for leptogenesis

The lepton number asymmetry $\varepsilon_{i}^{k}(k=1,2,3 i=e, \mu, \tau)$ is related to the difference of the partial decay width of heavy right handed neutrino.

$$
\varepsilon_{i}^{k}=\frac{\Gamma\left(\nu_{R}^{k} \longrightarrow l_{i}^{-} \phi^{+}\right)-\Gamma\left(\nu_{R}^{k} \longrightarrow l_{i}^{+} \phi^{-}\right)}{\Gamma\left(\nu_{R}^{k} \longrightarrow l_{i}^{-} \phi^{+}\right)+\Gamma\left(\nu_{R}^{k} \longrightarrow l_{i}^{+} \phi^{-}\right)}\left|v_{\mathrm{R}}^{\mathrm{k}} \longrightarrow \phi_{\phi^{+}}^{l_{i}^{-}}\right|^{2}-\mid v_{\mathrm{R}}^{\mathrm{k}}
$$

Electron number asymmetry $(i=e)$,

$$
\begin{aligned}
& \text { lectron number asymmetry }(i=e), \\
& \qquad \begin{aligned}
& \varepsilon_{e}^{k}=\frac{v^{2}}{16 \pi} \sum_{k^{\prime} \neq k}\left\{I\left(x_{k^{\prime} k}\right) \frac{\operatorname{Im}\left(\left(m_{D}^{\dagger} m_{D}\right)_{k k^{\prime}}\left(m_{D}^{*}\right)_{e k}\left(m_{D}\right)_{e k^{\prime}}\right)}{\left|\left(m_{D}\right)_{e k}\right|^{2}}\right. \\
&\left.+\frac{1}{1-x_{k^{\prime} k}} \frac{\operatorname{Im}\left(\left(m_{D}^{\dagger} m_{D}\right)_{k^{\prime} k}\left(m_{D}^{*}\right)_{e k}\left(m_{D}\right)_{e k^{\prime}}\right)}{\left|\left(m_{D}\right)_{e k}\right|^{2}}\right\} m_{D}=\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
m_{D e 1} & m_{D e 2} & m_{D e 3} \\
m_{D \mu 1} & m_{D \mu 2} & m_{D \mu 3} \\
m_{D \tau 1} & m_{D \tau 2} & m_{D \tau 3}
\end{array}\right) \\
& x_{k k^{\prime}}=\frac{M_{k^{\prime}}^{2}}{M_{k}^{2}}
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

T.Endoh, T.Morozumi, Z.Xiong '2004

In order to $\varepsilon_{e}^{k} \neq 0$, at least two of the matrix elements of ($m_{D e 1}, m_{D e 2}, m_{D e 3}$) must be non-zero.

For example, in the case of $m_{D e 1}=\left(\begin{array}{ccc}m_{D e 1} & m_{D e 2} & m_{D e 3} \\ m_{D \mu 1} & 0 & 0 \\ 0 & m_{D \mathrm{t} 2} & 0\end{array}\right)$,
total number asymmetry is identical to the electron number asymmetry.

$$
\sum_{i=e, \mu, \tau} \varepsilon_{i}^{k}=\varepsilon_{e}^{k}
$$

ε_{μ}^{k} and ε_{τ}^{k} do not contribute to the total number asymmetry.

Textures in Type I have such feature.

