

Assessing the Viability of A₄, S₄ and A₅ Flavour Symmetries for Description of Neutrino Mixing

Arsenii V. Titov

Institute for Particle Physics Phenomenology Durham University, UK

FLASY 2018: 7th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology University of Basel, Switzerland 5 July 2018

Outline

- 3-neutrino mixing
- Discrete symmetry approach to flavour
- Neutrino mixing sum rules
- Groups A_4 , S_4 and A_5
- Viability of A_4 , S_4 and A_5 flavour symmetries
- Conclusions

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\ell_L}(x) \gamma_{\alpha} \nu_{\ell L}(x) W^{\alpha \dagger}(x) + \text{h.c.} \quad \text{charged current weak interactions}$$

$$\nu_{\ell L}(x) = \sum_{j=1}^3 U_{\ell j} \nu_{j L}(x) \quad U \text{ is the Pontecorvo-Maki-Nakagawa-Sakata} \quad (\text{PMNS}) \text{ neutrino mixing matrix (3 × 3, unitary)}$$

The standard parametrisation:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

 $c_{ij} \equiv \cos \theta_{ij} , \quad s_{ij} \equiv \sin \theta_{ij}$

Arsenii Titov (IPPP, Durham)

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\ell_L}(x) \gamma_{\alpha} \nu_{\ell L}(x) W^{\alpha\dagger}(x) + \text{h.c.} \quad \text{charged current weak interactions}$$
$$\nu_{\ell L}(x) = \sum_{j=1}^3 U_{\ell j} \nu_{j L}(x) \quad U \text{ is the Pontecorvo-Maki-Nakagawa-Sakata} \quad (\text{PMNS}) \text{ neutrino mixing matrix (3 × 3, unitary)}$$

The standard parametrisation:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$
$$\frac{\theta_{23}}{\theta_{13}} \\ \frac{d_{13}}{reactor} \\ mixing angle \end{pmatrix} \begin{pmatrix} \theta_{13} \\ reactor \\ mixing angle \end{pmatrix} \begin{pmatrix} \theta_{12} \\ solar \\ mixing angle \end{pmatrix} \begin{pmatrix} \alpha_{21}, \alpha_{31} \\ Majorana \\ phases \end{pmatrix}$$
(only if neutrinos are Majorana)

Arsenii Titov (IPPP, Durham)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Leptons:
$$\theta_{23} \approx 47^{\circ} \qquad \theta_{13} \approx 8.5^{\circ} \\ \delta \approx 234^{\circ} (278^{\circ}) ?$$

NuFIT 3.2 (January 2018), www.nu-fit.org
$$\mathbf{N} = \mathbf{N} =$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{21}}{2}} \end{pmatrix}$$
Leptons:

$$\theta_{23} \approx 47^{\circ} \qquad \theta_{13} \approx 8.5^{\circ} \\ \delta \approx 234^{\circ} (278^{\circ}) ?$$
NuFIT 3.2 (January 2018), www.nu-fit.org
Quarks:

$$\theta_{23}^{q} \approx 2.4^{\circ} \qquad \theta_{13}^{q} \approx 0.21^{\circ} \\ \delta^{q} \approx 66^{\circ} \end{pmatrix} \qquad \theta_{12}^{q} \approx 13^{\circ}$$
No Majorana phases (Dirac particles)
Utfit (Summer 2016), www.utfit.org

Parameter	Best fit	3σ range	Best fit	3σ range
$\sin^2 heta_{12}$	0.307	0.272 - 0.346	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \\ \sin^2 \theta_{23} (\text{IO})$	$\begin{array}{c} 0.538 \\ 0.554 \end{array}$	0.418 - 0.613 0.435 - 0.616	$\begin{array}{c} 0.551 \\ 0.557 \end{array}$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	$egin{array}{r} 0.01981 - 0.02436 \ 0.02006 - 0.02452 \end{array}$	$0.0214 \\ 0.0218$	0.0190 - 0.0239 0.0195 - 0.0243
$ \delta \begin{bmatrix} \circ \\ 0 \end{bmatrix} (\text{NO}) \delta \begin{bmatrix} \circ \\ 0 \end{bmatrix} (\text{IO}) $	$\begin{array}{c} 234\\ 278\end{array}$	144 - 374 192 - 354	$\frac{238}{274}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

NO = normal ordering of the neutrino mass spectrum: $m_1 < m_2 < m_3$

IO = *inverted ordering* of the neutrino mass spectrum: $m_3 < m_1 < m_2$

Parameter	Best fit	3σ range	Best fit	3σ range
$\sin^2 heta_{12}$	0.307	0.272 - 0.346	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \\ \sin^2 \theta_{23} (\text{IO})$	$\begin{pmatrix} 0.538 \\ 0.554 \end{pmatrix}$	0.418 - 0.613 0.435 - 0.616	$0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	$egin{array}{r} 0.01981 - 0.02436 \ 0.02006 - 0.02452 \end{array}$	$0.0214\\0.0218$	0.0190 - 0.0239 0.0195 - 0.0243
$ \delta [\circ] (NO) \delta [\circ] (IO) $	$\begin{array}{c} 234\\ 278\end{array}$	144 - 374 192 - 354	$\begin{array}{c} 238\\ 274 \end{array}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

- Preference for the second octant
- *Maximal mixing* $(\sin^2 \theta_{23} = 0.5)$ is compatible with the global data at 1σ (2σ) for NO (IO)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter	Best fit	3σ range		Best fit	3σ range
$ \sin^{2} \theta_{23} (IO) = 0.554 = 0.435 - 0.616 = 0.557 = 0.444 - 0.603 \\ \sin^{2} \theta_{13} (NO) = 0.02206 = 0.01981 - 0.02436 = 0.0214 = 0.0190 - 0.023 \\ \sin^{2} \theta_{13} (IO) = 0.02227 = 0.02006 - 0.02452 = 0.0218 = 0.0195 - 0.023 \\ \delta [^{\circ}] (NO) = 234 = 144 - 374 = 238 = 149 - 358 $	$\sin^2 \theta_{12}$	0.307	0.272 - 0.346		0.304	0.265 - 0.346
$\sin^2 \theta_{13} (IO) \qquad 0.02227 \qquad 0.02006 - 0.02452 \qquad 0.0218 \qquad 0.0195 - 0.028 \\ \delta [^{\circ}] (NO) \qquad 234 \qquad 144 - 374 \qquad 238 \qquad 149 - 358 \\ \end{array}$						0.430 - 0.602 0.444 - 0.603
	()					0.0190 - 0.0239 0.0195 - 0.0243
	$ \begin{array}{c} \delta \ [^{\circ}] \ (\text{NO}) \\ \delta \ [^{\circ}] \ (\text{IO}) \end{array} \right) $	234 278	144 - 374 192 - 354	(238 274	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

- Nearly maximal CP violation: $\delta \sim 270^{\circ}$
- CP-conserving value $\delta = 180^{\circ}$ is disfavoured at $\sim 2\sigma$ (3 σ) for NO (IO) and $\delta = 0^{\circ}$ is disfavoured at $\sim 3\sigma$
- Significant part of the interval $0^{\circ} 180^{\circ}$ is disfavoured at $> 3\sigma$

Parameter	Best fit	3σ range		Best fit	3σ range
$\sin^2 heta_{12}$	0.307	0.272 - 0.346	~ 1/3	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \\ \sin^2 \theta_{23} (\text{IO})$	$0.538 \\ 0.554$	0.418 - 0.613 0.435 - 0.616	~ 1/2	$0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	0.01981 - 0.02436 0.02006 - 0.02452	~ 0	$0.0214 \\ 0.0218$	0.0190 - 0.0239 0.0195 - 0.0243
$ \delta \begin{bmatrix} \circ \\ 0 \end{bmatrix} (\text{NO}) $	$\begin{array}{c} 234 \\ 278 \end{array}$	144 - 374 192 - 354	~ 270	$\begin{array}{c} 238\\ 274 \end{array}$	$149 - 358 \\ 193 - 346$

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

Is there any symmetry behind the observed pattern of neutrino mixing?

Charged lepton mass term:

$$\overline{\ell_L} M_e \ell_R + \text{h.c.}, \quad \ell = (e, \mu, \tau)^T$$

Neutrino Majorana mass term (if neutrinos are Majorana particles):

$$\overline{(\nu_L)^c} M_{\nu} \nu_L + \text{h.c.}, \quad \nu_L = (\nu_{eL}, \nu_{\mu L}, \nu_{\tau L})^T, \quad (\nu_{\ell L})^c = C \overline{\nu_{\ell L}}^T$$

Neutrino Dirac mass term (if right-handed neutrinos exist):

$$\overline{\nu_R} M_{\nu}^{\rm D} \nu_L + \text{h.c.}, \quad \nu_R = (\nu_{1R}, \nu_{2R}, \nu_{3R})^T$$

Lepton masses and mixing originate from the mass matrices:

$$U_e^{\dagger} M_e V_e = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$$

$$U_{\nu}^T M_{\nu} U_{\nu} = \text{diag}(m_1, m_2, m_3)$$

The diagonalising matrices are 3×3 unitary matrices The PMNS matrix:

$$U = U_e^{\dagger} U_{\nu}$$

Arsenii Titov (IPPP, Durham)

Discrete symmetry approach to flavour

(Lepton) flavour symmetry \leftrightarrow non-Abelian discrete (finite) group G_f

A theory at high energies is invariant under

$$\varphi(x) \xrightarrow{G_f} \rho_{\mathbf{r}}(g) \varphi(x), \quad g \in G_f$$

 $\rho_{\mathbf{r}}(g)$ is the unitary representation matrix for g in the irrep \mathbf{r} Usually $\mathbf{r} = \mathbf{3}$ for the left-handed charged lepton and neutrino fields

$$\begin{array}{c|c} G_{f} \\ \hline G_{g} \\ \hline \\ \text{Residual symmetries} \\ \hline \\ \ell_{L}(x) \xrightarrow{G_{e}} \rho_{\mathbf{3}}(g_{e}) \ell_{L}(x), & g_{e} \in G_{e} \\ \hline \\ \ell_{L}(x) \xrightarrow{G_{e}} \rho_{\mathbf{3}}(g_{e}) \ell_{L}(x), & g_{e} \in G_{e} \\ \hline \\ \rho_{\mathbf{3}}(g_{e})^{\dagger} M_{e} M_{e}^{\dagger} \rho_{\mathbf{3}}(g_{e}) = M_{e} M_{e}^{\dagger} \\ \hline \\ \rho_{\mathbf{3}}(g_{\nu})^{T} M_{\nu} \rho_{\mathbf{3}}(g_{\nu}) = M_{\nu} \\ \hline \\ U_{e}^{\dagger} M_{e} M_{e}^{\dagger} U_{e} = \operatorname{diag}(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}) \\ U_{\nu}^{\dagger} M_{\nu} U_{\nu} = \operatorname{diag}(m_{1}, m_{2}, m_{3}) \\ U_{e}^{\dagger} \rho_{\mathbf{3}}(g_{e}) U_{e} = \rho_{\mathbf{3}}(g_{e})^{\operatorname{diag}} \\ \end{array}$$

Arsenii Titov (IPPP, Durham)

Discrete symmetry approach to flavour

 G_e and G_ν are both > Z₂ ⇒ U is fixed (up to Majorana phases and permutations of rows and columns)
 Example: tri-bimaximal (TBM) mixing from the S₄ group

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix} \qquad \begin{aligned} \sin^2 \theta_{12} &= 1/3 & \theta_{12} \approx 35^\circ \\ \sin^2 \theta_{23} &= 1/2 & \theta_{23} = 45^\circ \\ \sin^2 \theta_{13} &= 0 & \theta_{13} = 0^\circ \end{aligned}$$

• G_e , G_v or both = $Z_2 \Rightarrow U$ contains free parameters (angles and phases)

$$\rho_{\mathbf{3}}\left(g_{e(\nu)}\right) = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix} \qquad g_{e(\nu)}^2 = E \qquad E \text{ is the identity of } G_f$$

This freedom leads to correlations between the mixing angles and/or the mixing angles and the Dirac phase, which are called neutrino mixing sum rules

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

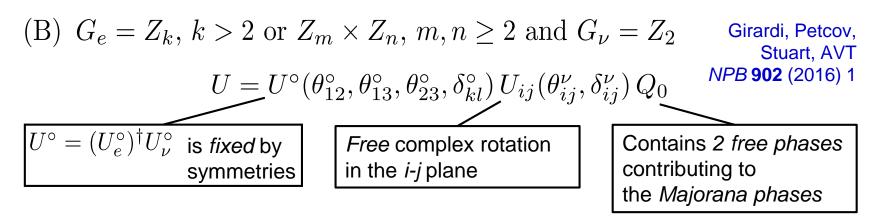
(A)
$$G_e = Z_2$$
 and $G_\nu = Z_k$, $k > 2$ or $Z_m \times Z_n$, $m, n \ge 2$
 $U = U_{ij}(\theta_{ij}^e, \delta_{ij}^e) U^{\circ}(\theta_{12}^\circ, \theta_{13}^\circ, \theta_{23}^\circ, \delta_{kl}^\circ) Q_0$

Free complex rotation
in the *i-j* plane
 $U^{\circ} = (U_e^{\circ})^{\dagger} U_{\nu}^{\circ}$ is fixed by
symmetries
Contains 2 free phases
contributing to
the Majorana phases

• Case A1: (*ij*) = (12)

$$\sin^2 \theta_{23} = 1 - \frac{\cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ}{1 - \sin^2 \theta_{13}}$$

$$\cos \delta = \frac{\cos^2 \theta_{13} (\sin^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} |\cos \theta_{13}^\circ \cos \theta_{23}^\circ| (\cos^2 \theta_{13} - \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ)^{\frac{1}{2}}}$$


• Case **A2**: (*ij*) = (13)

Analogous sum rules for $\sin^2 \theta_{23}$ and $\cos \delta$

• Case A3: (ij) = (23) $\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}$ $\sin^2 \theta_{12} = \sin^2 \theta_{12}^{\circ}$

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

• Case B1: (*ij*) = (13)

$$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^{\circ}}{1 - \sin^2 \theta_{13}}$$

$$\cos \delta = -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^{\circ} \cos^2 \theta_{23}^{\circ} - \cos^2 \theta_{23}) + \sin^2 \theta_{12}^{\circ} (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} |\sin \theta_{12}^{\circ}| (\cos^2 \theta_{13} - \sin^2 \theta_{12}^{\circ})^{\frac{1}{2}}}$$

• Case **B2**: (*ij*) = (23)

Analogous sum rules for $\sin^2 \theta_{12}$ and $\cos \delta$

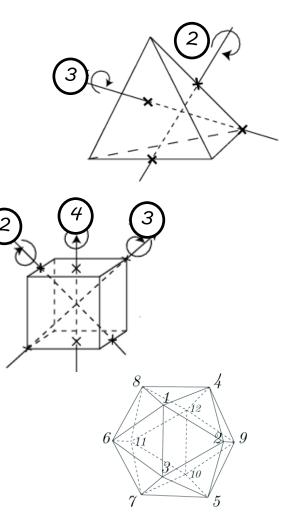
• Case B3: (*ij*) = (12) $\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}$ $\sin^2 \theta_{23} = \sin^2 \theta_{23}^{\circ}$

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

(C)
$$G_e = Z_2$$
 and $G_\nu = Z_2$ Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1
 $U = U_{ij}(\theta_{ij}^e, \delta_{ij}^e) U^{\circ}(\theta_{12}^{\circ}, \theta_{13}^{\circ}, \theta_{23}^{\circ}, \delta_{kl}^{\circ}) U_{rs}(\theta_{rs}^\nu, \delta_{rs}^\nu) Q_0$ 2 free phases contributing to the Majorana phases
Free complex rotation in the *i*-*j* plane $U^{\circ} = (U_e^{\circ})^{\dagger} U_{\nu}^{\circ}$ Free complex rotation in the *r*-s plane phases
• C1: (*ij*, *rs*) = (12,13)
• C3: (*ij*, *rs*) = (12,23)
• C4: (*ij*, *rs*) = (13,23)
• C8: (*ij*, *rs*) = (13,13) sum rules for $\cos \delta$
• C5: (*ij*, *rs*) = (23,13)
• C9: (*ij*, *rs*) = (23,12) sum rules for $\sin^2 \theta_{12}$
• C2: (*ij*, *rs*) = (12,12) sum rules for $\sin^2 \theta_{13}$
• C6: (*ij*, *rs*) = (23,12) $\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}$
Arsenii Titov (IPPP, Durham) FLASY 2018, Basel, 5 July 2018 16

 A_4 is the group of even permutations on 4 objects \cong the group of rotational symmetries of a regular tetrahedron (12 elements)


$$S^2 = T^3 = (ST)^3 = E$$

 S_4 is the group of permutations on 4 objects \cong the group of rotational symmetries of a cube (24 elements)

$$S^{2} = T^{3} = U^{2} = (ST)^{3}$$

= $(SU)^{2} = (TU)^{2} = (STU)^{4} = E$

 A_5 is the group of even permutations on 5 objects \cong the group of rotational symmetries of a regular icosahedron (60 elements)

$$S^2 = T^5 = (ST)^3 = E$$

Figures are adapted from Ishimori et al., PTPS 183 (2010) 1

Abelian subgroups

- A_4 : 3 Z_2 , 4 Z_3 , 1 $K_4 \cong Z_2 \times Z_2$ (Klein)
- S_4 : 9 Z_2 , 4 Z_3 , 3 Z_4 , 4 $Z_2 \times Z_2$
- A_5 : 15 Z_2 , 10 Z_3 , 5 $Z_2 \times Z_2$, 6 Z_5

For each pair of the residual symmetries (G_e, G_v)

$$(U_e^{\circ})^{\dagger} \rho_{\mathbf{3}}(g_e) U_e^{\circ} = \rho_{\mathbf{3}}(g_e)^{\text{diag}} \qquad (U_{\nu}^{\circ})^{\dagger} \rho_{\mathbf{3}}(g_{\nu}) U_{\nu}^{\circ} = \rho_{\mathbf{3}}(g_{\nu})^{\text{diag}}$$
$$U^{\circ} = (U_e^{\circ})^{\dagger} U_{\nu}^{\circ}$$

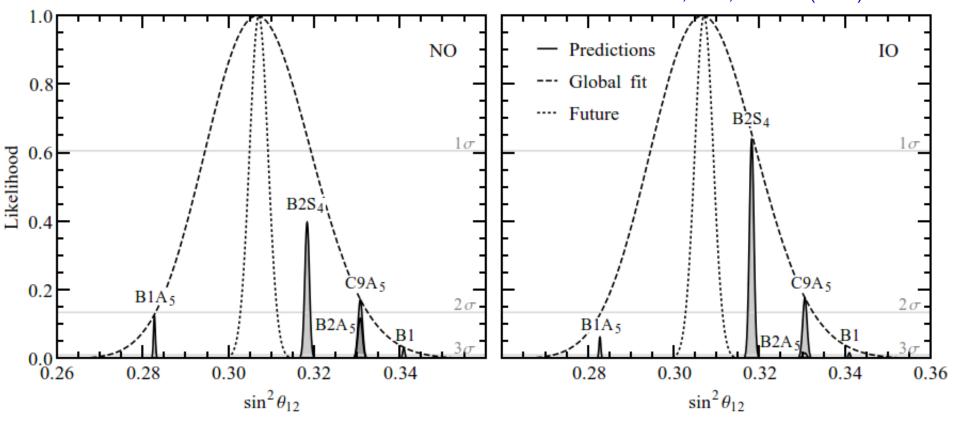
Suitable parametrisation of $U^{0} \Rightarrow$ values of the fixed parameters $\sin^{2} \theta_{ij}^{0}$

Arsenii Titov (IPPP, Durham)

 A₄: only 1 phenomenologically viable case Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1 using NuFIT 3.2 (January 2018) data for NO Petcov, AVT, PRD 97 (2018) 115045

(G_e, G_ν)	Case	$\sin^2 heta_{ij}^{\circ}$	$\cos\delta$	$\sin^2 heta_{ij}$
(Z_3, Z_2)	B1	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (1/3, 1/2)$	-0.353	$\sin^2 \theta_{12} = 0.341$

• S_4 : 6 more phenomenologically viable cases

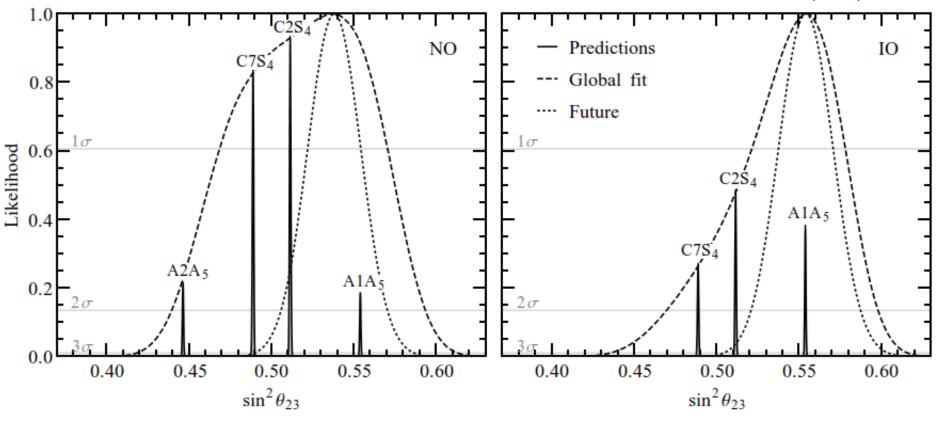

(G_e, G_ν)	Case	$\sin^2 heta_{ij}^{\circ}$	$\cos \delta$	$\sin^2 heta_{ij}$
(Z_3, Z_2)	$\begin{array}{c} B1\\ B2S_4 \end{array}$	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (1/3, 1/2)$ $(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{13}^{\circ}) = (1/6, 1/5)$	-0.353 0.167	$\sin^2 \theta_{12} = 0.341$ $\sin^2 \theta_{12} = 0.318$
(Z_2, Z_2)	C3	$ \sin^2 \theta_{23}^{\circ} = 1/4 \sin^2 \theta_{23}^{\circ} = 1/2 \sin^2 \theta_{13}^{\circ} = 1/4 \sin^2 \theta_{23}^{\circ} = 1/2 \sin^2 \theta_{23}^{\circ} = 3/4 $	-1^* not fixed -1^* not fixed 1^*	not fixed $\sin^2 \theta_{23} = 0.511$ not fixed $\sin^2 \theta_{23} = 0.489$ not fixed

• A_5 : 7 more phenomenologically viable cases

Arsenii Titov (IPPP, Durham)

Cases predicting $\sin^2 \theta_{12}$: present

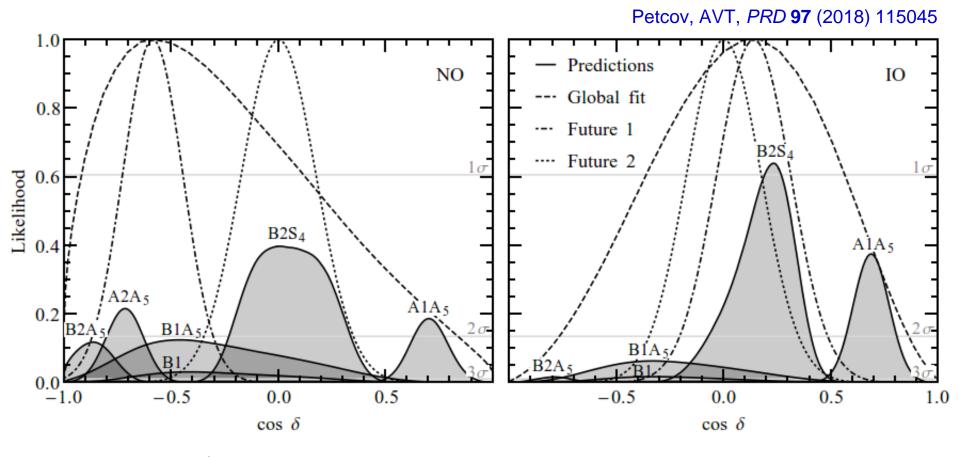
Petcov, AVT, PRD 97 (2018) 115045



Future: $\sin^2 \theta_{12}^{true} = 0.307$ (current best fit value) $\sigma(\sin^2 \theta_{12}) = 0.007 \times \sin^2 \theta_{12}^{true}$ (medium-baseline JUNO experiment)

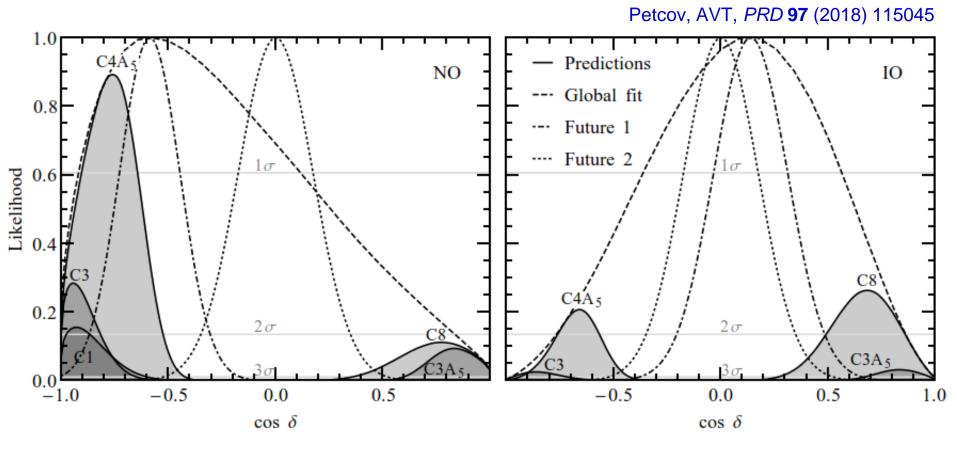
Arsenii Titov (IPPP, Durham)

Cases predicting $\sin^2 \theta_{23}$: present


Petcov, AVT, PRD 97 (2018) 115045

Future: $\sin^2 \theta_{23}^{\text{true}} = 0.538 \ (0.554)$ for NO (IO) (current best fit value) $\sigma(\sin^2 \theta_{23}) = 0.03 \times \sin^2 \theta_{23}^{\text{true}}$ (long-baseline T2HK and DUNE)

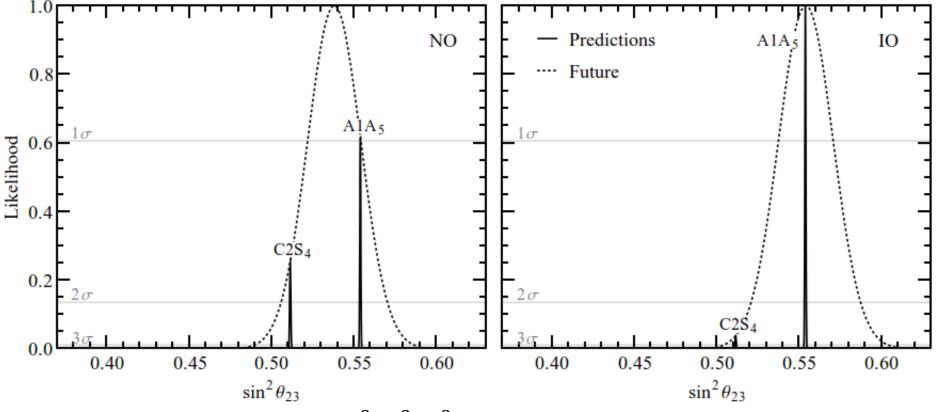
Arsenii Titov (IPPP, Durham)


Cases predicting $\cos \delta$: present

Future 1: $\delta^{\text{true}} = 234^{\circ} (278^{\circ})$ for NO (IO) (current b.f.v.), $\sigma(\delta) = 10^{\circ}$ Future 2: $\delta^{\text{true}} = 270^{\circ}$, $\sigma(\delta) = 10^{\circ}$

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: present

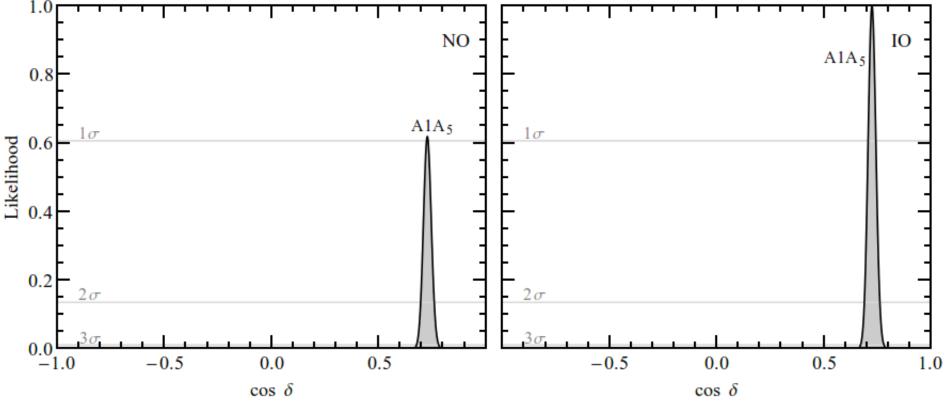


Future 1: $\delta^{\text{true}} = 234^{\circ} (278^{\circ})$ for NO (IO) (current b.f.v.), $\sigma(\delta) = 10^{\circ}$ Future 2: $\delta^{\text{true}} = 270^{\circ}$, $\sigma(\delta) = 10^{\circ}$

Arsenii Titov (IPPP, Durham)

Cases predicting $\sin^2 \theta_{23}$: future

Petcov, AVT, PRD 97 (2018) 115045

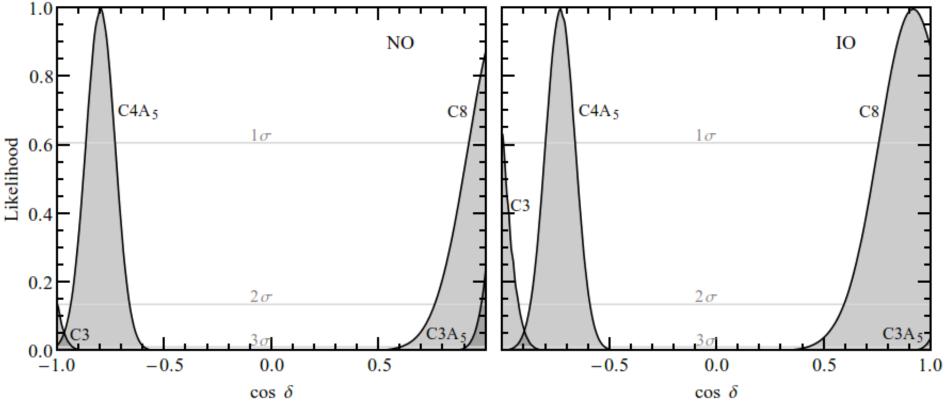

• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: future

Petcov, AVT, PRD 97 (2018) 115045


• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: future

Petcov, AVT, PRD 97 (2018) 115045

• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Conclusions

- ✤ A_4 , S_4 and A_5 discrete flavour symmetries broken down to non-trivial residual symmetries in such a way that at least one of them is a Z_2 represent a viable possibility
- ✤ 14 cases in total are compatible at 3σ with the present global neutrino oscillation data
- 6 cases survive the prospective constraints on the neutrino mixing angles
- The number of viable cases is likely to be further reduced by a high precision measurement of δ

Backup slides

Arsenii Titov (IPPP, Durham)

Summary of sum rules for $\sin^2 \theta_{ij}$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

	Parametrisation of the PMNS matrix U	Sum rule for $\sin^2 \theta_i$
A1	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{23}(\theta_{23}^\circ) R_{13}(\theta_{13}^\circ) Q_0$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{13}^{\circ} - \sin^2 \theta_{13} + \cos^2 \theta_{13}^{\circ} \sin^2 \theta_{23}^{\circ}}{1 - \sin^2 \theta_{13}}$
A2	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) R_{12}(\theta_{12}^\circ) Q_0$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{23}^{\circ}}{1 - \sin^2 \theta_{13}}$
A3	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{13}(\theta_{13}^\circ) R_{12}(\theta_{12}^\circ) Q_0$	$\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}, \sin^2 \theta_{12} = \sin^2 \theta_{12}^{\circ}$
B1	$R_{23}(\theta_{23}^{\circ}) R_{12}(\theta_{12}^{\circ}) U_{13}(\theta_{13}^{\circ}, \delta_{13}^{\circ}) U_{13}(\theta_{13}^{\nu}, \delta_{13}^{\nu}) Q_0$	$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^{\circ}}{1 - \sin^2 \theta_{13}}$
B2	$R_{13}(\theta_{13}^{\circ}) R_{12}(\theta_{12}^{\circ}) U_{23}(\theta_{23}^{\circ}, \delta_{23}^{\circ}) U_{23}(\theta_{23}^{\nu}, \delta_{23}^{\nu}) Q_0$	$\sin^2 \theta_{12} = \frac{\cos^2 \theta_{13} - \cos^2 \theta_{12}^{\circ} \cos^2 \theta_{13}^{\circ}}{1 - \sin^2 \theta_{13}}$
B3	$R_{23}(\theta_{23}^{\circ}) R_{13}(\theta_{13}^{\circ}) U_{12}(\theta_{12}^{\circ}, \delta_{12}^{\circ}) U_{12}(\theta_{12}^{\nu}, \delta_{12}^{\nu}) Q_0$	$\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}, \sin^2 \theta_{23} = \sin^2 \theta_{23}^{\circ}$

(A)
$$G_e = Z_2$$
 and $G_\nu = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$
(B) $G_e = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$ and $G_\nu = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for $\cos \delta$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

$$\begin{array}{ll} \text{Case} & \text{Sum rule for } \cos \delta \\ \text{A1} & \frac{\cos^2 \theta_{13} (\sin^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} | \cos \theta_{13}^\circ \cos \theta_{23}^\circ | (\cos^2 \theta_{13} - \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ)^{\frac{1}{2}}} \\ \text{A2} & -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \sin^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} | \sin \theta_{23}^\circ | (\cos^2 \theta_{13} - \sin^2 \theta_{23}^\circ)^{\frac{1}{2}}} \\ \text{A3} & \pm \cos \hat{\delta}_{23} \\ \text{B1} & -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ - \cos^2 \theta_{23}) + \sin^2 \theta_{12}^\circ (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} | \sin \theta_{12}^\circ | (\cos^2 \theta_{13} - \sin^2 \theta_{12}^\circ)^{\frac{1}{2}}} \\ \text{B2} & \frac{\cos^2 \theta_{13} (\sin^2 \theta_{12}^\circ - \cos^2 \theta_{23}) + \cos^2 \theta_{12}^\circ \cos^2 \theta_{13}^\circ (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} | \cos \theta_{12}^\circ \cos \theta_{13}^\circ | (\cos^2 \theta_{13} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{13}^\circ)^{\frac{1}{2}}} \\ \text{B3} & \pm \cos \hat{\delta}_{12} \end{array}$$

(A)
$$G_e = Z_2$$
 and $G_\nu = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$
(B) $G_e = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$ and $G_\nu = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for $\sin^2 \theta_{ij}$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Parametrisation of the PMNS matrix U	Sum rule for $\sin^2 \theta_{ij}$
C1	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{23}(\theta_{23}^\circ) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) U_{13}(\theta_{13}^\nu, \delta_{13}^\nu) Q_0$	not fixed
C2	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) U_{12}(\theta_{12}^\nu, \delta_{12}^\nu) Q_0$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{23}^{\circ}}{1 - \sin^2 \theta_{13}}$
C3	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{13}(\theta_{13}^\circ) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	not fixed
C4	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{12}(\theta_{12}^\circ) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	not fixed
C5	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{12}(\theta_{12}^\circ) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) U_{13}(\theta_{13}^\nu, \delta_{13}^\nu) Q_0$	$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^{\circ}}{1 - \sin^2 \theta_{13}}$
C6	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{13}(\theta_{13}^\circ) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) U_{12}(\theta_{12}^\nu, \delta_{12}^\nu) Q_0$	$\sin^2\theta_{13} = \sin^2\theta_{13}^\circ$
C7	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{23}(\theta_{23}^\circ) U_{12}(\tilde{\theta}_{12}^\circ, \tilde{\delta}_{12}^\circ) U_{12}(\theta_{12}^\nu, \delta_{12}^\nu) Q_0$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{23}^\circ - \sin^2 \theta_{13}}{1 - \sin^2 \theta_{13}}$
C8	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) U_{13}(\tilde{\theta}_{13}^\circ, \tilde{\delta}_{13}^\circ) U_{13}(\theta_{13}^\nu, \delta_{13}^\nu) Q_0$	not fixed
C9	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{12}(\theta_{12}^\circ) U_{23}(\tilde{\theta}_{23}^\circ, \tilde{\delta}_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^\circ - \sin^2 \theta_{13}}{1 - \sin^2 \theta_{13}}$

(C) $G_e = Z_2$ and $G_\nu = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for $\cos \delta$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Sum rule for $\cos \delta$
C1	$\frac{\sin^2 \theta_{23}^{\circ} - \cos^2 \theta_{12} \sin^2 \theta_{23} - \cos^2 \theta_{23} \sin^2 \theta_{12} \sin^2 \theta_{13}}{\sin \theta_{13} \sin 2\theta_{23} \sin \theta_{12} \cos \theta_{12}}$
C2	$\frac{\cos^2\theta_{13}(\cos^2\theta_{23}^\circ\sin^2\hat{\theta}_{12}^\nu - \sin^2\theta_{12}) + \sin^2\theta_{23}^\circ(\sin^2\theta_{12} - \cos^2\theta_{12}\sin^2\theta_{13})}{\sin 2\theta_{12}\sin\theta_{13} \sin\theta_{23}^\circ (\cos^2\theta_{13} - \sin^2\theta_{23}^\circ)^{\frac{1}{2}}}$
C3	$\frac{\sin^2 \theta_{12} \sin^2 \theta_{23} - \sin^2 \theta_{13}^\circ + \cos^2 \theta_{12} \cos^2 \theta_{23} \sin^2 \theta_{13}}{\sin \theta_{13} \sin 2\theta_{23} \sin \theta_{12} \cos \theta_{12}}$
C4	$\frac{\sin^2 \theta_{12}^{\circ} - \cos^2 \theta_{23} \sin^2 \theta_{12} - \cos^2 \theta_{12} \sin^2 \theta_{13} \sin^2 \theta_{23}}{\sin \theta_{13} \sin 2\theta_{23} \sin \theta_{12} \cos \theta_{12}}$
C5	$\frac{\cos^2\theta_{13}(\cos^2\theta_{12}^\circ\sin^2\hat{\theta}_{23}^e - \sin^2\theta_{23}) + \sin^2\theta_{12}^\circ(\sin^2\theta_{23} - \cos^2\theta_{23}\sin^2\theta_{13})}{\sin 2\theta_{23}\sin\theta_{13} \sin\theta_{12}^\circ (\cos^2\theta_{13} - \sin^2\theta_{12}^\circ)^{\frac{1}{2}}}$
C6	$\pm\cos\hat{\delta}$
C7	$\frac{\sin^2\theta_{13}(\cos^2\theta_{12}\cos^2\theta_{23}^\circ - \sin^2\theta_{12}) + \sin^2\theta_{23}^\circ(\sin^2\theta_{12} - \cos^2\theta_{13}\sin^2\hat{\theta}_{12}^\nu)}{\sin 2\theta_{12}\sin\theta_{13} \cos\theta_{23}^\circ (\sin^2\theta_{23}^\circ - \sin^2\theta_{13})^{\frac{1}{2}}}$
C8	$\frac{\cos^2 \theta_{12} \cos^2 \theta_{23} - \cos^2 \theta_{23}^\circ + \sin^2 \theta_{12} \sin^2 \theta_{23} \sin^2 \theta_{13}}{\sin \theta_{13} \sin 2\theta_{23} \sin \theta_{12} \cos \theta_{12}}$
C9	$\frac{\sin^2\theta_{13}(\cos^2\theta_{23}\cos^2\theta_{12}^\circ - \sin^2\theta_{23}) + \sin^2\theta_{12}^\circ(\sin^2\theta_{23} - \cos^2\theta_{13}\sin^2\hat{\theta}_{23}^e)}{\sin 2\theta_{23}\sin\theta_{13} \cos\theta_{12}^\circ (\sin^2\theta_{12}^\circ - \sin^2\theta_{13})^{\frac{1}{2}}}$

Arsenii Titov (IPPP, Durham)

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Using NuFIT 3.2 (January 2018) data for NO

Petcov, AVT, PRD 97 (2018) 115045

(G_e, G_ν)	Case	$\sin^2 heta_{ij}^{\circ}$	$\cos \delta$	$\sin^2 heta_{ij}$
(Z_2, Z_3)	$A1A_5$ $A2A_5$	$(\sin^2 \theta_{13}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (0.226, 0.436)$ $(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (0.226, 0.436)$	$0.727 \\ -0.727$	$\sin^2 \theta_{23} = 0.554$ $\sin^2 \theta_{23} = 0.446$
(Z_3, Z_2)	B1	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (1/3, 1/2)$	-0.353	$\sin^2 \theta_{12} = 0.341$
(Z_5, Z_2)	$B1A_5$	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (0.276, 1/2)$	-0.405	$\sin^2 \theta_{12} = 0.283$
$(Z_2 \times Z_2, Z_2)$	$B2A_5$	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{13}^{\circ}) = (0.095, 0.276)$	-0.936	$\sin^2 \theta_{12} = 0.331$
(Z_2, Z_2)	C1 C3A ₅ C3 C4A ₅ C8 C9A ₅	$\sin^{2} \theta_{23}^{\circ} = 1/4$ $\sin^{2} \theta_{13}^{\circ} = 0.095$ $\sin^{2} \theta_{13}^{\circ} = 1/4$ $\sin^{2} \theta_{12}^{\circ} = 0.095$ $\sin^{2} \theta_{23}^{\circ} = 3/4$ $\sin^{2} \theta_{12}^{\circ} = 0.345$	-1^{*} 1^{*} -1^{*} -0.799 1^{*} not fixed	not fixed not fixed not fixed not fixed not fixed $\sin^2 \theta_{12} = 0.331$

Arsenii Titov (IPPP, Durham)

Details of statistical analysis

Total
$$\chi^2$$
 function (present): $\chi^2(\vec{x}) = \sum_{i=1}^4 \chi_i^2(x_i)$
 $\vec{x} = (\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}, \delta)$

 χ_i^2 are the 1-dimensional projections from a global analysis

Total
$$\chi^2$$
 function (future): $\chi^2_{\text{future}}(\vec{y}) = \sum_{i=1}^3 \frac{(y_i - \overline{y}_i)^2}{\sigma^2_{y_i}}$

 $\vec{y} = (\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}), \ \overline{y}_i$ are the potential best fit values σ_{y_i} are the prospective 1σ uncertainties

Minimisation of total χ^2 for a fixed value of α ($\alpha = \sin^2 \theta_{12}, \sin^2 \theta_{23}$ or $\cos \delta$): $\chi^2(\alpha) = \min \left[\chi^2(\vec{x}) \Big|_{\substack{\text{sum rules} \\ \alpha = \text{ const}}} \right]$

Likelihood:

$$L(\alpha) = \exp\left(-\frac{\chi^2(\alpha)}{2}\right)$$

Arsenii Titov (IPPP, Durham)