Assessing the Viability of $\boldsymbol{A}_{4}, \boldsymbol{S}_{4}$ and \boldsymbol{A}_{5} Flavour Symmetries for Description of Neutrino Mixing

Arsenii V. Titov

Institute for Particle Physics Phenomenology
Durham University, UK

FLASY 2018: $7^{\text {th }}$ Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology

University of Basel, Switzerland
5 July 2018

Outline

- 3-neutrino mixing
- Discrete symmetry approach to flavour
- Neutrino mixing sum rules
- Groups A_{4}, S_{4} and A_{5}
- Viability of A_{4}, S_{4} and A_{5} flavour symmetries
- Conclusions

3-neutrino mixing

$\mathcal{L}_{\mathrm{CC}}=-\frac{g}{\sqrt{2}} \sum_{\ell=e, \mu, \tau} \overline{\ell_{L}}(x) \gamma_{\alpha} \nu_{\ell L}(x) W^{\alpha \dagger}(x)+$ h.c.. $\begin{aligned} & \text { charged current } \\ & \text { weak interactions }\end{aligned}$
$\nu_{\ell L}(x)=\sum_{j=1}^{3} U_{\ell j} \nu_{j L}(x) \quad \begin{aligned} & U \text { is the Pontecorvo-Maki-Nakagawa-Sakata } \\ & \text { (PMNS) neutrino mixing matrix (} 3 \times 3 \text {, unitary })\end{aligned}$

The standard parametrisation:
$U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{i \frac{c_{21}}{2}} & 0 \\ 0 & 0 & e^{i \frac{\alpha_{31}}{2}}\end{array}\right)$
$c_{i j} \equiv \cos \theta_{i j}, \quad s_{i j} \equiv \sin \theta_{i j}$

3-neutrino mixing

$\mathcal{L}_{\mathrm{CC}}=-\frac{g}{\sqrt{2}} \sum_{\ell=e, \mu, \tau} \overline{\ell_{L}}(x) \gamma_{\alpha} \nu_{\ell L}(x) W^{\alpha \dagger}(x)+$ h.c. $\quad \begin{aligned} & \text { charged current } \\ & \text { weak interactions }\end{aligned}$
$\nu_{\ell L}(x)=\sum_{j=1}^{3} U_{\ell j} \nu_{j L}(x) \begin{aligned} & U \text { is the Pontecorvo-Maki-Nakagawa-Sakata } \\ & \text { (PMNS) neutrino mixing matrix (} 3 \times 3 \text {, unitary) }\end{aligned}$

The standard parametrisation:
$U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i \frac{\alpha_{31}}{2}}\end{array}\right)$
θ_{23}
atmospheric
mixing angle

$$
\begin{gathered}
\begin{array}{c}
\theta_{13} \\
\text { reactor } \\
\text { mixing angle }
\end{array} \\
\delta \\
\text { Dirac phase }
\end{gathered}
$$

θ_{12}
solar
mixing angle
α_{21}, α_{31}
Majorana phases
(only if neutrinos are Majorana)

3-neutrino mixing

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

Leptons:

$$
\begin{array}{lc}
\theta_{23} \approx 47^{\circ} & \theta_{13} \approx 8.5^{\circ} \\
& \delta \approx 234^{\circ}\left(278^{\circ}\right) ?
\end{array}
$$

$$
\theta_{12} \approx 33.6^{\circ}
$$

$$
\alpha_{21}, \alpha_{31}
$$

?

NuFIT 3.2 (January 2018), www.nu-fit.org

3-neutrino mixing

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

Leptons:

$$
\begin{aligned}
& \theta_{23} \approx 47^{\circ} \quad \theta_{13} \approx 8.5^{\circ} \\
& \delta \approx 234^{\circ}\left(278^{\circ}\right) ?
\end{aligned}
$$

$$
\theta_{12} \approx 33.6^{\circ}
$$

$$
\alpha_{21}, \alpha_{31}
$$

$$
?
$$

NuFIT 3.2 (January 2018), www.nu-fit.org

Quarks:

$$
\begin{aligned}
\theta_{23}^{q} \approx 2.4^{\circ} \quad \theta_{13}^{q} & \approx 0.21^{\circ} \quad \theta_{12}^{q} \approx 13^{\circ} \\
\delta^{q} & \approx 66^{\circ}
\end{aligned}
$$

No Majorana phases (Dirac particles)

Utfit (Summer 2016), www.utfit.org

3-neutrino mixing

Parameter	Best fit	3σ range
$\sin ^{2} \theta_{12}$	0.307	$0.272-0.346$
$\sin ^{2} \theta_{23}(\mathrm{NO})$	0.538	$0.418-0.613$
$\sin ^{2} \theta_{23}(\mathrm{IO})$	0.554	$0.435-0.616$
$\sin ^{2} \theta_{13}(\mathrm{NO})$	0.02206	$0.01981-0.02436$
$\sin ^{2} \theta_{13}(\mathrm{IO})$	0.02227	$0.02006-0.02452$
$\delta\left[^{\circ}\right](\mathrm{NO})$	234	$144-374$
$\delta\left[^{\circ}\right](\mathrm{IO})$	278	$192-354$

NuFIT 3.2 (January 2018), www.nu-fit.org

Best fit	3σ range
0.304	$0.265-0.346$
0.551	$0.430-0.602$
0.557	$0.444-0.603$
0.0214	$0.0190-0.0239$
0.0218	$0.0195-0.0243$
238	$149-358$
274	$193-346$
Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)	

$\mathrm{NO}=$ normal ordering of the neutrino mass spectrum: $m_{1}<m_{2}<m_{3}$
IO = inverted ordering of the neutrino mass spectrum: $m_{3}<m_{1}<m_{2}$

3-neutrino mixing

Parameter	Best fit	3σ range
$\sin ^{2} \theta_{12}$	0.307	$0.272-0.346$
$\sin ^{2} \theta_{23}$ (NO)	0.538	$0.418-0.613$
$\sin ^{2} \theta_{23}$ (IO)	0.554	$0.435-0.616$
$\sin ^{2} \theta_{13}(\mathrm{NO})$	0.02206	$0.01981-0.02436$
$\sin ^{2} \theta_{13}(\mathrm{IO})$	0.02227	$0.02006-0.02452$
$\delta\left[^{\circ}\right](\mathrm{NO})$	234	$144-374$
$\delta\left[^{\circ}\right](\mathrm{IO})$	278	$192-354$

NuFIT 3.2 (January 2018), www.nu-fit.org

Best fit	3σ range
0.304	$0.265-0.346$
0.551	$0.430-0.602$
0.557	$0.444-0.603$
0.0214	$0.0190-0.0239$
0.0218	$0.0195-0.0243$
238	$149-358$
274	$193-346$
Capozzi, Lisi, Marrone, Palazzo	
arXiv:1804.09678 (April 2018)	

- Preference for the second octant
- Maximal mixing $\left(\sin ^{2} \theta_{23}=0.5\right)$ is compatible with the global data at $1 \sigma(2 \sigma)$ for $\mathrm{NO}(\mathrm{IO})$

3-neutrino mixing

Parameter	Best fit	3σ range
$\sin ^{2} \theta_{12}$	0.307	$0.272-0.346$
$\sin ^{2} \theta_{23}$ (NO)	0.538	$0.418-0.613$
$\sin ^{2} \theta_{23}$ (IO)	0.554	$0.435-0.616$
$\sin ^{2} \theta_{13}(\mathrm{NO})$	0.02206	$0.01981-0.02436$
$\sin ^{2} \theta_{13}(\mathrm{IO})$	0.02227	$0.02006-0.02452$
$\delta\left[^{\circ}\right](\mathrm{NO})$	234	$144-374$
$\delta\left[^{\circ}\right](\mathrm{IO})$	278	$192-354$

NuFIT 3.2 (January 2018), www.nu-fit.org

Best fit	3σ range
0.304	$0.265-0.346$
0.551	$0.430-0.602$
0.557	$0.444-0.603$
0.0214	$0.0190-0.0239$
0.0218	$0.0195-0.0243$
238	$149-358$
274	$193-346$
Capozzi, Lisi, Marrone, Palazzo	
arXiv:1804.09678 (April 2018)	

- Nearly maximal CP violation: $\delta \sim 270^{\circ}$
- CP-conserving value $\delta=180^{\circ}$ is disfavoured at $\sim 2 \sigma(3 \sigma)$ for NO (IO) and $\delta=0^{\circ}$ is disfavoured at $\sim 3 \sigma$
- Significant part of the interval $0^{\circ}-180^{\circ}$ is disfavoured at $>3 \sigma$

3-neutrino mixing

Parameter	Best fit	3σ range		Best fit	3 ran
$\sin ^{2} \theta_{12}$	0.307	${ }^{0.272-0.346}$	$\sim 1 / 3$	0.304	$0.265-0.34$
$\sin ^{2} \theta_{23}(\mathrm{NO})$	0.538	${ }^{0.418-0.613}$		0.551	$0.430-0.6$
$\sin ^{2} \theta_{23}($ IO)	0.554	0.435-0.616		0.557	0.444
$\sin ^{2} \theta_{13}(\mathrm{NO})$	${ }^{0.02206}$	$0.01981-0.02436$		0.021	$0.0190-0.0239$
$\sin ^{2} \theta_{13}(10)$	0.02227	0.02006-0.02452		0.021	$0.0195-0.0243$
	234 278	$144-374$ $192-354$	~ 270	274	$149-358$ $193 \text { - } 346$
				Capozzi, Lisi, Marrone, Palazz arXiv:1804.09678 (April 2018)	
Is there any symmetry behind the observed pattern of neutrino mixing?					

Lepton masses and mixing

Charged lepton mass term:

$$
\overline{\ell_{L}} M_{e} \ell_{R}+\text { h.c., } \quad \ell=(e, \mu, \tau)^{T}
$$

Neutrino Majorana mass term (if neutrinos are Majorana particles):

$$
\overline{\left(\nu_{L}\right)^{c}} M_{\nu} \nu_{L}+\text { h.c. }, \quad \nu_{L}=\left(\nu_{e L}, \nu_{\mu L}, \nu_{\tau L}\right)^{T}, \quad\left(\nu_{\ell L}\right)^{c}=C{\overline{\nu_{\ell L}}}^{T}
$$

Neutrino Dirac mass term (if right-handed neutrinos exist):

$$
\overline{\nu_{R}} M_{\nu}^{\mathrm{D}} \nu_{L}+\text { h.c. }, \quad \nu_{R}=\left(\nu_{1 R}, \nu_{2 R}, \nu_{3 R}\right)^{T}
$$

Lepton masses and mixing originate from the mass matrices:

$$
\begin{aligned}
& U_{e}^{\dagger} M_{e} V_{e}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \\
& U_{\nu}^{T} M_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
\end{aligned}
$$

The diagonalising matrices are 3×3 unitary matrices The PMNS matrix:

$$
U=U_{e}^{\dagger} U_{\nu}
$$

Discrete symmetry approach to flavour

(Lepton) flavour symmetry \leftrightarrow non-Abelian discrete (finite) group G_{f}
A theory at high energies is invariant under

$$
\varphi(x) \xrightarrow{G_{f}} \rho_{\mathbf{r}}(g) \varphi(x), \quad g \in G_{f}
$$

$\rho_{\mathbf{r}}(g)$ is the unitary representation matrix for g in the irrep \mathbf{r} Usually $\mathbf{r}=\mathbf{3}$ for the left-handed charged lepton and neutrino fields

Residual symmetries

$$
\nu_{L}(x) \xrightarrow{G_{\nu}} \rho_{\mathbf{3}}\left(g_{\nu}\right) \nu_{L}(x), \quad g_{\nu} \in G_{\nu}
$$

$$
\rho_{\mathbf{3}}\left(g_{e}\right)^{\dagger} M_{e} M_{e}^{\dagger} \rho_{\mathbf{3}}\left(g_{e}\right)=M_{e} M_{e}^{\dagger}
$$

$$
\rho_{\mathbf{3}}\left(g_{\nu}\right)^{T} M_{\nu} \rho_{\mathbf{3}}\left(g_{\nu}\right)=M_{\nu}
$$

$$
U_{e}^{\dagger} M_{e} M_{e}^{\dagger} U_{e}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right)
$$

$$
U_{\nu}^{T} M_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

$$
U_{e}^{\dagger} \rho_{\mathbf{3}}\left(g_{e}\right) U_{e}=\rho_{\mathbf{3}}\left(g_{e}\right)^{\text {diag }}
$$

$$
U_{\nu}^{\dagger} \rho_{\mathbf{3}}\left(g_{\nu}\right) U_{\nu}=\rho_{\mathbf{3}}\left(g_{\nu}\right)^{\text {diag }}
$$

Discrete symmetry approach to flavour

- G_{e} and G_{v} are both $>Z_{2} \Rightarrow U$ is fixed
(up to Majorana phases and permutations of rows and columns)
Example: tri-bimaximal (TBM) mixing from the S_{4} group

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{array}\right) \quad \begin{array}{ll}
\sin ^{2} \theta_{12}=1 / 3 & \theta_{12} \approx 35^{\circ} \\
\sin ^{2} \theta_{23}=1 / 2 & \theta_{23}=45^{\circ} \\
\sin ^{2} \theta_{13}=0 & \theta_{13}=0^{\circ}
\end{array}
$$

- G_{e}, G_{v} or both $=Z_{2} \Rightarrow U$ contains free parameters (angles and phases)

$$
\rho_{\mathbf{3}}\left(g_{e(\nu)}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad g_{e(\nu)}^{2}=E \quad E \text { is the identity of } G_{f}
$$

This freedom leads to correlations between the mixing angles and/or the mixing angles and the Dirac phase, which are called neutrino mixing sum rules

Neutrino mixing sum rules

(A) $G_{e}=Z_{2}$ and $G_{\nu}=Z_{k}, k>2$ or $Z_{m} \times Z_{n}, m, n \geq 2 \quad$ Girardi, Petcov, Stuart, AVT

$$
U=U_{i j}\left(\theta_{i j}^{e}, \delta_{i j}^{e}\right) U^{\circ}\left(\theta_{12}^{\circ}, \theta_{13}^{\circ}, \theta_{23}^{\circ}, \delta_{k l}^{\circ}\right) Q_{0}
$$

Free complex rotation in the i-j plane

Contains 2 free phases contributing to the Majorana phases

- Case A1: $(i j)=(12)$

$$
\sin ^{2} \theta_{23}=1-\frac{\cos ^{2} \theta_{13}^{\circ} \cos ^{2} \theta_{23}^{\circ}}{1-\sin ^{2} \theta_{13}}
$$

$$
\cos \delta=\frac{\cos ^{2} \theta_{13}\left(\sin ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{12}\right)+\cos ^{2} \theta_{13}^{\circ} \cos ^{2} \theta_{23}^{\circ}\left(\cos ^{2} \theta_{12}-\sin ^{2} \theta_{12} \sin ^{2} \theta_{13}\right)}{\sin 2 \theta_{12} \sin \theta_{13}\left|\cos \theta_{13}^{\circ} \cos \theta_{23}^{\circ}\right|\left(\cos ^{2} \theta_{13}-\cos ^{2} \theta_{13}^{\circ} \cos ^{2} \theta_{23}^{\circ}\right)^{\frac{1}{2}}}
$$

- Case A2: $(i j)=(13)$

Analogous sum rules for $\sin ^{2} \theta_{23}$ and $\cos \delta$

- Case A3: $(i j)=(23)$

$$
\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ} \quad \sin ^{2} \theta_{12}=\sin ^{2} \theta_{12}^{\circ}
$$

Neutrino mixing sum rules

(B) $G_{e}=Z_{k}, k>2$ or $Z_{m} \times Z_{n}, m, n \geq 2$ and $G_{\nu}=Z_{2} \quad$ Girardi, Petcov, Stuart, AVT

- Case B1: $(i j)=(13)$

$$
\sin ^{2} \theta_{12}=\frac{\sin ^{2} \theta_{12}^{\circ}}{1-\sin ^{2} \theta_{13}}
$$

$\cos \delta=-\frac{\cos ^{2} \theta_{13}\left(\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{23}\right)+\sin ^{2} \theta_{12}^{\circ}\left(\cos ^{2} \theta_{23}-\sin ^{2} \theta_{13} \sin ^{2} \theta_{23}\right)}{\sin 2 \theta_{23} \sin \theta_{13}\left|\sin \theta_{12}^{\circ}\right|\left(\cos ^{2} \theta_{13}-\sin ^{2} \theta_{12}^{\circ}\right)^{\frac{1}{2}}}$

- Case B2: $(i j)=(23)$

Analogous sum rules for $\sin ^{2} \theta_{12}$ and $\cos \delta$

- Case B3: $(i j)=(12)$

$$
\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ} \quad \sin ^{2} \theta_{23}=\sin ^{2} \theta_{23}^{\circ}
$$

Neutrino mixing sum rules

(C) $G_{e}=Z_{2}$ and $G_{\nu}=Z_{2}$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

$$
\begin{aligned}
& U=U_{i j}\left(\theta_{i j}^{e}, \delta_{i j}^{e}\right) U^{\circ}\left(\theta_{12}^{\circ}, \theta_{13}^{\circ}, \theta_{23}^{\circ}, \delta_{k l}^{\circ}\right) U_{r s}\left(\theta_{r s}^{\nu}, \delta_{r s}^{\nu}\right) Q_{0} \\
& \begin{array}{l}
\text { lex rotation free phases } \\
\text { ane }
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
U^{\circ}=\left(U_{e}^{\circ}\right)^{\dagger} U_{\nu}^{\circ} \\
\text { is fixed by symmetries }
\end{array} \\
\text { contributing to } \\
\text { the Majorana } \\
\text { phases }
\end{array} \\
& \begin{array}{l}
\text { Free complex rotation } \\
\text { in the r-s plane }
\end{array}
\end{aligned}
$$

- C1: $(i j, r s)=(12,13)$
- C3: $(i j, r s)=(12,23)$
- C4: $(i j, r s)=(13,23)$
- C8: $(i j, r s)=(13,13)$
- C5: $(i j, r s)=(23,13)\}$
-C9: $(i j, r s)=(23,23)\}$
- C2: $(i j, r s)=(13,12)\}$
- C7: $(i j, r s)=(12,12)\}$
- C6: $(i j, r s)=(23,12)$
sum rules for $\cos \delta$
sum rules for $\sin ^{2} \theta_{12}$
sum rules for $\sin ^{2} \theta_{23}$

$$
\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ}
$$

Groups A_{4}, S_{4} and A_{5}

A_{4} is the group of even permutations on 4 objects \cong the group of rotational symmetries of a regular tetrahedron (12 elements)

$$
S^{2}=T^{3}=(S T)^{3}=E
$$

S_{4} is the group of permutations on 4 objects \cong the group of rotational symmetries of a cube (24 elements)

$$
\begin{aligned}
S^{2} & =T^{3}=U^{2}=(S T)^{3} \\
& =(S U)^{2}=(T U)^{2}=(S T U)^{4}=E
\end{aligned}
$$

A_{5} is the group of even permutations on 5 objects \cong the group of rotational symmetries of a regular icosahedron (60 elements)

$$
S^{2}=T^{5}=(S T)^{3}=E
$$

Figures are adapted from Ishimori et al., PTPS 183 (2010) 1

Groups A_{4}, S_{4} and A_{5}

Abelian subgroups

- A_{4} : $3 Z_{2}, \quad 4 Z_{3}, \quad 1 K_{4} \cong Z_{2} \times Z_{2}$ (Klein)
- S_{4} : $9 Z_{2}, \quad 4 Z_{3}, \quad 3 Z_{4}, \quad 4 Z_{2} \times Z_{2}$
- $A_{5}: 15 Z_{2}, 10 Z_{3}, \quad 5 Z_{2} \times Z_{2}, \quad 6 Z_{5}$

For each pair of the residual symmetries $\left(G_{e}, G_{v}\right)$

$$
\begin{gathered}
\left(U_{e}^{\circ}\right)^{\dagger} \rho_{\mathbf{3}}\left(g_{e}\right) U_{e}^{\circ}=\rho_{\mathbf{3}}\left(g_{e}\right)^{\text {diag }}\left(U_{\nu}^{\circ}\right)^{\dagger} \rho_{\mathbf{3}}\left(g_{\nu}\right) U_{\nu}^{\circ}=\rho_{\mathbf{3}}\left(g_{\nu}\right)^{\text {diag }} \\
U^{\circ}=\left(U_{e}^{\circ}\right)^{\dagger} U_{\nu}^{\circ}
\end{gathered}
$$

Suitable parametrisation of $U^{0} \Rightarrow$ values of the fixed parameters $\sin ^{2} \theta_{i j}^{0}$

Results for A_{4}, S_{4} and \boldsymbol{A}_{5}

- A_{4} : only 1 phenomenologically viable case Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1 using NuFIT 3.2 (January 2018) data for NO Petcov, AVT, PRD 97 (2018) 115045

$\left(G_{e}, G_{\nu}\right)$	Case	$\sin ^{2} \theta_{i j}^{\circ}$	$\cos \delta$	$\sin ^{2} \theta_{i j}$
$\left(Z_{3}, Z_{2}\right)$	B1	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(1 / 3,1 / 2)$	-0.353	$\sin ^{2} \theta_{12}=0.341$

- $S_{4}: 6$ more phenomenologically viable cases

$\left(G_{e}, G_{\nu}\right)$	Case	$\sin ^{2} \theta_{i j}^{\circ}$	$\cos \delta$	$\sin ^{2} \theta_{i j}$
$\left(Z_{3}, Z_{2}\right)$	B1	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(1 / 3,1 / 2)$	-0.353	$\sin ^{2} \theta_{12}=0.341$
	$\mathrm{B} 2 \mathrm{~S}_{4}$	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{13}^{\circ}\right)=(1 / 6,1 / 5)$	0.167	$\sin ^{2} \theta_{12}=0.318$
$\left(Z_{2}, Z_{2}\right)$	C1	$\sin ^{2} \theta_{23}^{\circ}=1 / 4$	-1^{*}	not fixed
	$\mathrm{C} 2 \mathrm{~S}_{4}$	$\sin ^{2} \theta_{23}^{\circ}=1 / 2$	not fixed	$\sin ^{2} \theta_{23}=0.511$
	C3	$\sin ^{2} \theta_{13}^{\circ}=1 / 4$	-1^{*}	not fixed
	$\mathrm{C} 7 \mathrm{~S}_{4}$	$\sin ^{2} \theta_{23}^{\circ}=1 / 2$	not fixed	$\sin ^{2} \theta_{23}=0.489$
	C8	$\sin ^{2} \theta_{23}^{\circ}=3 / 4$	$1 *$	not fixed

- $A_{5}: 7$ more phenomenologically viable cases

Cases predicting $\sin ^{2} \theta_{12}:$ present

Future: $\sin ^{2} \theta_{12}^{\text {true }}=0.307$ (current best fit value)

$$
\sigma\left(\sin ^{2} \theta_{12}\right)=0.007 \times \sin ^{2} \theta_{12}^{\text {true }} \text { (medium-baseline JUNO experiment) }
$$

Cases predicting $\sin ^{2} \theta_{23}$: present

Petcov, AVT, PRD 97 (2018) 115045

Future: $\sin ^{2} \theta_{23}^{\text {true }}=0.538(0.554)$ for $\mathrm{NO}(\mathrm{IO})$ (current best fit value)

$$
\sigma\left(\sin ^{2} \theta_{23}\right)=0.03 \times \sin ^{2} \theta_{23}^{\text {true }} \text { (long-baseline T2HK and DUNE) }
$$

Cases predicting $\cos \delta$: present

Petcov, AVT, PRD 97 (2018) 115045

Future 1: $\delta^{\text {true }}=234^{\circ}\left(278^{\circ}\right)$ for $\mathrm{NO}(\mathrm{IO})$ (current b.f.v.), $\sigma(\delta)=10^{\circ}$
Future 2: $\delta^{\text {true }}=270^{\circ}, \quad \sigma(\delta)=10^{\circ}$

Cases predicting cos δ : present

Petcov, AVT, PRD 97 (2018) 115045

Future 1: $\delta^{\text {true }}=234^{\circ}\left(278^{\circ}\right)$ for $\mathrm{NO}(\mathrm{IO})$ (current b.f.v.), $\sigma(\delta)=10^{\circ}$
Future 2: $\delta^{\text {true }}=270^{\circ}, \quad \sigma(\delta)=10^{\circ}$

Cases predicting $\sin ^{2} \theta_{23}$: future

Petcov, AVT, PRD 97 (2018) 115045

- current best fit values of $s_{12}^{2}, s_{13}^{2}, s_{23}^{2}$
- 0.7% on s_{12}^{2} (JUNO), 3% on s_{13}^{2} (Daya Bay), 3% on s_{23}^{2} (T2HK/DUNE)
- no experimental information on δ

Cases predicting $\cos \delta$: future

Petcov, AVT, PRD 97 (2018) 115045

- current best fit values of $s_{12}^{2}, s_{13}^{2}, s_{23}^{2}$
- 0.7% on s_{12}^{2} (JUNO), 3% on s_{13}^{2} (Daya Bay), 3% on s_{23}^{2} (T2HK/DUNE)
- no experimental information on δ

Cases predicting $\cos \delta$: future

Petcov, AVT, PRD 97 (2018) 115045

- current best fit values of $s_{12}^{2}, s_{13}^{2}, s_{23}^{2}$
- 0.7% on s_{12}^{2} (JUNO), 3% on s_{13}^{2} (Daya Bay), 3% on s_{23}^{2} (T2HK/DUNE)
- no experimental information on δ

Conclusions

* A_{4}, S_{4} and A_{5} discrete flavour symmetries broken down to non-trivial residual symmetries in such a way that at least one of them is a Z_{2} represent a viable possibility
* 14 cases in total are compatible at 3σ with the present global neutrino oscillation data
* 6 cases survive the prospective constraints on the neutrino mixing angles
* The number of viable cases is likely to be further reduced by a high precision measurement of δ

Backup slides

Summary of sum rules for $\sin ^{2} \boldsymbol{\theta}_{i j}$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Parametrisation of the PMNS matrix U	Sum rule for $\sin ^{2} \theta_{i}$
A1	$U_{12}\left(\theta_{12}^{e}, \delta_{12}^{e}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) R_{13}\left(\theta_{13}^{\circ}\right) Q_{0}$	$\sin ^{2} \theta_{23}=\frac{\sin ^{2} \theta_{13}^{\circ}-\sin ^{2} \theta_{13}+\cos ^{2} \theta_{13}^{\circ} \sin ^{2} \theta_{23}^{\circ}}{1-\sin ^{2} \theta_{13}}$
A2	$U_{13}\left(\theta_{13}^{e}, \delta_{13}^{e}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) Q_{0}$	$\sin ^{2} \theta_{23}=\frac{\sin ^{2} \theta_{23}^{\circ}}{1-\sin ^{2} \theta_{13}}$
A3	$U_{23}\left(\theta_{23}^{e}, \delta_{23}^{e}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) R_{13}\left(\theta_{13}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) Q_{0}$	$\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ}, \sin ^{2} \theta_{12}=\sin ^{2} \theta_{12}^{\circ}$
B1	$R_{23}\left(\theta_{23}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) U_{13}\left(\theta_{13}^{\nu}, \delta_{13}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{12}=\frac{\sin ^{2} \theta_{12}^{\circ}}{1-\sin ^{2} \theta_{13}}$
B2	$R_{13}\left(\theta_{13}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) U_{23}\left(\theta_{23}^{\nu}, \delta_{23}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{12}=\frac{\cos ^{2} \theta_{13}-\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{13}^{\circ}}{1-\sin ^{2} \theta_{13}}$
B3	$R_{23}\left(\theta_{23}^{\circ}\right) R_{13}\left(\theta_{13}^{\circ}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) U_{12}\left(\theta_{12}^{\nu}, \delta_{12}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ}, \sin ^{2} \theta_{23}=\sin ^{2} \theta_{23}^{\circ}$

(A) $G_{e}=Z_{2}$ and $G_{\nu}=Z_{n}, n>2$ or $Z_{n} \times Z_{m}, n, m \geq 2$
(B) $G_{e}=Z_{n}, n>2$ or $Z_{n} \times Z_{m}, n, m \geq 2$ and $G_{\nu}=Z_{2}$

Summary of sum rules for $\cos \delta$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Sum rule for $\cos \delta$
A1	$\frac{\cos ^{2} \theta_{13}\left(\sin ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{12}\right)+\cos ^{2} \theta_{13}^{\circ} \cos ^{2} \theta_{23}^{\circ}\left(\cos ^{2} \theta_{12}-\sin ^{2} \theta_{12} \sin ^{2} \theta_{13}\right)}{\sin 2 \theta_{12} \sin \theta_{13}\left\|\cos \theta_{13}^{\circ} \cos _{23}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\cos ^{2} \theta_{13}^{\circ} \cos ^{2} \theta_{23}^{\circ}\right)^{\frac{1}{2}}}$
A2	$-\frac{\cos ^{2} \theta_{13}\left(\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{12}\right)+\sin ^{2} \theta_{23}^{\circ}\left(\cos ^{2} \theta_{12}-\sin ^{2} \theta_{12} \sin ^{2} \theta_{13}\right)}{\sin 2 \theta_{12} \sin \theta_{13}\left\|\sin \theta_{23}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\sin ^{2} \theta_{23}^{\circ}\right)^{\frac{1}{2}}}$
A3	$\pm \cos \hat{\delta}_{23}$
B1	$-\frac{\cos ^{2} \theta_{13}\left(\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{23}\right)+\sin ^{2} \theta_{12}^{\circ}\left(\cos ^{2} \theta_{23}-\sin ^{2} \theta_{13} \sin ^{2} \theta_{23}\right)}{\sin 2 \theta_{23} \sin \theta_{13}\left\|\sin \theta_{12}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\sin ^{2} \theta_{12}^{\circ}\right)^{\frac{1}{2}}}$
B2	$\frac{\cos ^{2} \theta_{13}\left(\sin ^{2} \theta_{12}^{\circ}-\cos ^{2} \theta_{23}\right)+\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{13}^{\circ}\left(\cos ^{2} \theta_{23}-\sin ^{2} \theta_{13} \sin ^{2} \theta_{23}\right)}{\sin 2 \theta_{23} \sin \theta_{13}\left\|\cos \theta_{12}^{\circ} \cos \theta_{13}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\cos ^{2} \theta_{12}^{\circ} \cos ^{2} \theta_{13}^{\circ}\right)^{\frac{1}{2}}}$
B3	$\pm \cos \hat{\delta}_{12}$

(A) $G_{e}=Z_{2}$ and $G_{\nu}=Z_{n}, n>2$ or $Z_{n} \times Z_{m}, n, m \geq 2$
(B) $G_{e}=Z_{n}, n>2$ or $Z_{n} \times Z_{m}, n, m \geq 2$ and $G_{\nu}=Z_{2}$

Summary of sum rules for $\sin ^{2} \boldsymbol{\theta}_{i j}$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Parametrisation of the PMNS matrix U	Sum rule for $\sin ^{2} \theta_{i j}$
C 1	$U_{12}\left(\theta_{12}^{e}, \delta_{12}^{e}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) U_{13}\left(\theta_{13}^{\nu}, \delta_{13}^{\nu}\right) Q_{0}$	not fixed
C 2	$U_{13}\left(\theta_{13}^{e}, \delta_{13}^{e}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) U_{12}\left(\theta_{12}^{\nu}, \delta_{12}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{23}=\frac{\sin ^{2} \theta_{23}^{\circ}}{1-\sin ^{2} \theta_{13}}$
C 3	$U_{12}\left(\theta_{12}^{e}, \delta_{12}^{e}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) R_{13}\left(\theta_{13}^{\circ}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) U_{23}\left(\theta_{23}^{\nu}, \delta_{23}^{\nu}\right) Q_{0}$	not fixed
C 4	$U_{13}\left(\theta_{13}^{e}, \delta_{13}^{e}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) U_{23}\left(\theta_{23}^{\nu}, \delta_{23}^{\nu}\right) Q_{0}$	not fixed
C 5	$U_{23}\left(\theta_{23}^{e}, \delta_{23}^{e}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) U_{13}\left(\theta_{13}^{\nu}, \delta_{13}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{12}=\frac{\sin ^{2} \theta_{12}^{\circ}}{1-\sin ^{2} \theta_{13}}$
C 6	$U_{23}\left(\theta_{23}^{e}, \delta_{23}^{e}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) R_{13}\left(\theta_{13}^{\circ}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) U_{12}\left(\theta_{12}^{\nu}, \delta_{12}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{13}=\sin ^{2} \theta_{13}^{\circ}$
C 7	$U_{12}\left(\theta_{12}^{e}, \delta_{12}^{e}\right) U_{12}\left(\theta_{12}^{\circ}, \delta_{12}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) U_{12}\left(\tilde{\theta}_{12}^{\circ}, \tilde{\delta}_{12}^{\circ}\right) U_{12}\left(\theta_{12}^{\nu}, \delta_{12}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{23}=\frac{\sin ^{2} \theta_{23}^{\circ}-\sin ^{2} \theta_{13}}{1-\sin ^{2} \theta_{13}}$
C 8	$U_{13}\left(\theta_{13}^{e}, \delta_{13}^{e}\right) U_{13}\left(\theta_{13}^{\circ}, \delta_{13}^{\circ}\right) R_{23}\left(\theta_{23}^{\circ}\right) U_{13}\left(\tilde{\theta}_{13}^{\circ}, \tilde{\delta}_{13}^{\circ}\right) U_{13}\left(\theta_{13}^{\nu}, \delta_{13}^{\nu}\right) Q_{0}$	not fixed
C 9	$U_{23}\left(\theta_{23}^{e}, \delta_{23}^{e}\right) U_{23}\left(\theta_{23}^{\circ}, \delta_{23}^{\circ}\right) R_{12}\left(\theta_{12}^{\circ}\right) U_{23}\left(\tilde{\theta}_{23}^{\circ}, \tilde{\delta}_{23}^{\circ}\right) U_{23}\left(\theta_{23}^{\nu}, \delta_{23}^{\nu}\right) Q_{0}$	$\sin ^{2} \theta_{12}=\frac{\sin ^{2} \theta_{12}^{\circ}-\sin ^{2} \theta_{13}}{1-\sin ^{2} \theta_{13}}$

(C) $G_{e}=Z_{2}$ and $G_{\nu}=Z_{2}$

Summary of sum rules for $\cos \delta$

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1

Case	Sum rule for $\cos \delta$
C1	$\underline{\sin ^{2} \theta_{23}^{\circ}-\cos ^{2} \theta_{12} \sin ^{2} \theta_{23}-\cos ^{2} \theta_{23} \sin ^{2} \theta_{12} \sin ^{2} \theta_{13}}$
	$\sin \theta_{13} \sin 2 \theta_{23} \sin \theta_{12} \cos \theta_{12}$
C2	$\underline{\cos ^{2} \theta_{13}\left(\cos ^{2} \theta_{23}^{\circ} \sin ^{2} \hat{\theta}_{12}^{\nu}-\sin ^{2} \theta_{12}\right)+\sin ^{2} \theta_{23}^{\circ}\left(\sin ^{2} \theta_{12}-\cos ^{2} \theta_{12} \sin ^{2} \theta_{13}\right)}$
	$\sin 2 \theta_{12} \sin \theta_{13}\left\|\sin \theta_{23}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\sin ^{2} \theta_{23}^{\circ}\right)^{\frac{1}{2}}$
C3	$\underline{\sin ^{2} \theta_{12} \sin ^{2} \theta_{23}-\sin ^{2} \theta_{13}^{\circ}+\cos ^{2} \theta_{12} \cos ^{2} \theta_{23} \sin ^{2} \theta_{13}}$
	$\sin \theta_{13} \sin 2 \theta_{23} \sin \theta_{12} \cos \theta_{12}$
C4	$\underline{\sin ^{2} \theta_{12}^{\circ}-\cos ^{2} \theta_{23} \sin ^{2} \theta_{12}-\cos ^{2} \theta_{12} \sin ^{2} \theta_{13} \sin ^{2} \theta_{23}}$
	$\sin \theta_{13} \sin 2 \theta_{23} \sin \theta_{12} \cos \theta_{12}$
C5	$\underline{\cos ^{2} \theta_{13}\left(\cos ^{2} \theta_{12}^{\circ} \sin ^{2} \hat{\theta}_{23}^{e}-\sin ^{2} \theta_{23}\right)+\sin ^{2} \theta_{12}^{\circ}\left(\sin ^{2} \theta_{23}-\cos ^{2} \theta_{23} \sin ^{2} \theta_{13}\right)}$
	$\sin 2 \theta_{23} \sin \theta_{13}\left\|\sin \theta_{12}^{\circ}\right\|\left(\cos ^{2} \theta_{13}-\sin ^{2} \theta_{12}^{\circ}\right)^{\frac{1}{2}}$
C6	$\pm \cos \hat{\delta}$
C7	$\underline{\sin ^{2} \theta_{13}\left(\cos ^{2} \theta_{12} \cos ^{2} \theta_{23}^{\circ}-\sin ^{2} \theta_{12}\right)+\sin ^{2} \theta_{23}^{\circ}\left(\sin ^{2} \theta_{12}-\cos ^{2} \theta_{13} \sin ^{2} \hat{\theta}_{12}^{\nu}\right)}$
	$\sin 2 \theta_{12} \sin \theta_{13}\left\|\cos \theta_{23}^{\circ}\right\|\left(\sin ^{2} \theta_{23}^{\circ}-\sin ^{2} \theta_{13}\right)^{\frac{1}{2}}$
C8	$\underline{\cos ^{2} \theta_{12} \cos ^{2} \theta_{23}-\cos ^{2} \theta_{23}^{\circ}+\sin ^{2} \theta_{12} \sin ^{2} \theta_{23} \sin ^{2} \theta_{13}}$
	$\sin \theta_{13} \sin 2 \theta_{23} \sin \theta_{12} \cos \theta_{12}$
C9	$\underline{\sin ^{2} \theta_{13}\left(\cos ^{2} \theta_{23} \cos ^{2} \theta_{12}^{\circ}-\sin ^{2} \theta_{23}\right)+\sin ^{2} \theta_{12}^{\circ}\left(\sin ^{2} \theta_{23}-\cos ^{2} \theta_{13} \sin ^{2} \hat{\theta}_{23}^{e}\right)}$
	$\sin 2 \theta_{23} \sin \theta_{13}\left\|\cos \theta_{12}^{\circ}\right\|\left(\sin ^{2} \theta_{12}^{\circ}-\sin ^{2} \theta_{13}\right)^{\frac{1}{2}}$

Results for \boldsymbol{A}_{5}

Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1
Using NuFIT 3.2 (January 2018) data for NO

$\left(G_{e}, G_{\nu}\right)$	Case	$\sin ^{2} \theta_{i j}^{\circ}$	$\cos \delta$	$\sin ^{2} \theta_{i j}$
$\left(Z_{2}, Z_{3}\right)$	$\mathrm{A} 1 \mathrm{~A}_{5}$	$\left(\sin ^{2} \theta_{13}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(0.226,0.436)$	0.727	$\sin ^{2} \theta_{23}=0.554$
	$\mathrm{~A} 2 \mathrm{~A}_{5}$	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(0.226,0.436)$	-0.727	$\sin ^{2} \theta_{23}=0.446$
$\left(Z_{3}, Z_{2}\right)$	B 1	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(1 / 3,1 / 2)$	-0.353	$\sin ^{2} \theta_{12}=0.341$
$\left(Z_{5}, Z_{2}\right)$	${\mathrm{B} 1 \mathrm{~A}_{5}}$	$\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{23}^{\circ}\right)=(0.276,1 / 2)$	-0.405	$\sin ^{2} \theta_{12}=0.283$
$\left(Z_{2} \times Z_{2}, Z_{2}\right)$	${\mathrm{B} 2 \mathrm{~A}_{5}}\left(\sin ^{2} \theta_{12}^{\circ}, \sin ^{2} \theta_{13}^{\circ}\right)=(0.095,0.276)$	-0.936	$\sin ^{2} \theta_{12}=0.331$	
	C 1	$\sin ^{2} \theta_{23}^{\circ}=1 / 4$	-1^{*}	not fixed
	$\mathrm{C} 3 \mathrm{~A}_{5}$	$\sin ^{2} \theta_{13}^{\circ}=0.095$	1^{*}	not fixed
	C 3	$\sin ^{2} \theta_{13}^{\circ}=1 / 4$	-1^{*}	not fixed
$\left(Z_{2}, Z_{2}\right)$	$\mathrm{C} 4 \mathrm{~A}_{5}$	$\sin ^{2} \theta_{12}^{\circ}=0.095$	1^{*}	not fixed
	C 8	$\sin ^{2} \theta_{23}^{\circ}=3 / 4$	not fixed	$\sin \theta_{12}=0.331$
$\mathrm{C} 9 \mathrm{~A}_{5}$	$\sin ^{2} \theta_{12}^{\circ}=0.345$			

Details of statistical analysis

Total χ^{2} function (present): $\chi^{2}(\vec{x})=\sum_{i=1}^{4} \chi_{i}^{2}\left(x_{i}\right)$
$\vec{x}=\left(\sin ^{2} \theta_{12}, \sin ^{2} \theta_{13}, \sin ^{2} \theta_{23}, \delta\right)$
χ_{i}^{2} are the 1 -dimensional projections from a global analysis
Total χ^{2} function (future): $\chi_{\text {future }}^{2}(\vec{y})=\sum_{i=1}^{3} \frac{\left(y_{i}-\bar{y}_{i}\right)^{2}}{\sigma_{y_{i}}^{2}}$
$\vec{y}=\left(\sin ^{2} \theta_{12}, \sin ^{2} \theta_{13}, \sin ^{2} \theta_{23}\right), \bar{y}_{i}$ are the potential best fit values $\sigma_{y_{i}}$ are the prospective 1σ uncertainties

Minimisation of total χ^{2} for a fixed value of $\alpha\left(\alpha=\sin ^{2} \theta_{12}, \sin ^{2} \theta_{23}\right.$ or $\cos \delta$):

$$
\chi^{2}(\alpha)=\min \left[\chi^{2}(\vec{x}) \left\lvert\, \begin{array}{|cc|}
\substack{\text { sum rules } \\
\alpha=\text { const }}
\end{array}\right.\right]
$$

Likelihood:

$$
L(\alpha)=\exp \left(-\frac{\chi^{2}(\alpha)}{2}\right)
$$

