Pathways to Dirac Neutrinos

Rahul Srivastava Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular CSIC-Universitat de Valencia Valencia, Spain

FLASY - 2018

通 と く ヨ と く ヨ と

2 Dirac Neutrinos

Implications of Dirac Neutrinos

4 Conclusions

伺 ト イヨト イヨト

1 Are Majorana Neutrinos Natural?

2 Dirac Neutrinos

Implications of Dirac Neutrinos

4 Conclusions

▲□ → ▲ 三 → ▲ 三 →

• Neutrinos: Old and Mysterious

• Even after 80+ years we know very little about them :

- Nature of neutrinos: Dirac or Majorana?
- Number of neutrino species: Sterile Neutrinos?
- Mass Hierarchy: Normal or Inverted?
- CP violation: $\delta_{CP} \neq 0$?
- Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
- Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- \bullet Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

 - .
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - •
 - ÷.,
 - •
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト

.

.

- Neutrinos: Old and Mysterious
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

• Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Neutrinos: Dirac or Majorana What Experiments Tell?

• Debate about neutrino nature: As old as neutrinos themselves

- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_v
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

A (1) × (2) × (3) ×

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- Debate about neutrino nature: As old as neutrinos themselves
- Discerning their nature from experiments: A difficult task
 - V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by powers of m_{ν}
- Still some potentially feasible processes:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana neutrinos

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

・ロト ・回ト ・ヨト ・ヨト

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- 人間 と くき とくき とうき

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence

• This begs the question: Why Majorana neutrinos are the favorite child of theorists?

• Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- 人間 と くき とくき とうき

- No experimental signature \Rightarrow Dirac/Majorana neutrinos equally likely
 - Expectation: Dirac and Majorana neutrinos considered equally in literature
 - Reality: Theorist predominantly consider/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - With possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- 小田 ト ・ 田 ト 一 田

Are Majorana Neutrinos Natural? Spacetime Symmetry: Transformation under Poincaré group

• Majorana neutrinos more natural: In what sense?

- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

・ 同 ト ・ ヨ ト ・ ヨ ト

Are Majorana Neutrinos Natural? Spacetime Symmetry: Transformation under Poincaré group

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

(人間) システン イラン

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

(人間) システン イラン

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

(人間) システン イラン

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

(1日) (日) (日)

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

(1日) (日) (日)

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars

• Spacetime symmetry: Not the only symmetry conserved in nature

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
 - All fermions should be Majorana and all scalars should be real scalars
- Spacetime symmetry: Not the only symmetry conserved in nature

・ 同 ト ・ ヨ ト ・ ヨ ト

• Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved

- Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
- Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number U(1)_L and Baryon number U(1)_B are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the U(1)_L breaking pattern

(4回) (4回) (4回)

Are Majorana Neutrinos Natural? Conserved Internal Symmetries

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - > Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the U(1)_L breaking pattern

・ 同 ト ・ ヨ ト ・ ヨ ト

Are Majorana Neutrinos Natural? Conserved Internal Symmetries

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number U(1)_L and Baryon number U(1)_B are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - > Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the U(1)_L breaking pattern

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos.
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

・ 同 ト ・ ヨ ト ・ ヨ ト

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

ヘロマ 人間マ ヘヨマ ヘヨマ

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

(1日) (日) (日)

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

(1日) (日) (日)

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Electromagnetism $U(1)_{EM}$ and Color $SU(3)_C$ Symmetries seem to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Take into account all conserved symmetries
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - In absence of any other hitherto unknown conserved symmetry: Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

• Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms

- Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
- Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

< 同 > < 三 > < 三 >

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

< 回 > < 三 > < 三 >

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - \bullet Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

< 回 > < 三 > < 三 >

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

A (1) × (2) × (3) ×

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa couplings of $\mathcal{O}(10^{-12})$ or less are needed
 - Not True: See Salvador's talk
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

伺 と く ヨ と く ヨ と

2 Dirac Neutrinos

Implications of Dirac Neutrinos

4 Conclusions

▲□ → ▲ 三 → ▲ 三 →

æ

• If $U(1)_L$ is conserved¹: Neutrinos are Dirac

- Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi i}{m}}$, where $\omega^m = 1$

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi i}{m}}$, where $\omega^m = 1$

¹While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L}$ $\stackrel{\frown}{=} \rightarrow \stackrel{\frown}{=} \rightarrow \stackrel{\frown}{$

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi i}{m}}$, where $\omega^m = 1$

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega=e^{\frac{2\pi l}{m}}$, where $\omega^m=1$

¹While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L}$ $\xrightarrow{\beta} \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega=e^{\frac{2\pi l}{m}}$, where $\omega^m=1$

¹While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L} = 0$ and $U(1)_{B-L} = 0$.

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega=e^{\frac{2\pi l}{m}}$, where $\omega^m=1$

¹While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L} = 0$.

- If $U(1)_L$ is conserved¹: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi l}{m}}$, where $\omega^m = 1$

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}
 - $U(1)_L \rightarrow Z_m \equiv Z_{2n+1}$ where $n \ge 1$ is a positive integer \Rightarrow Neutrinos are Dirac particles
 - $U(1)_L \rightarrow Z_m \equiv Z_{2n}$ where $n \ge 1$ is a positive integer \Rightarrow Neutrinos can be Dirac or Majorana
- If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification
 - $\nu \quad \not \sim \quad \omega^n$ under $Z_{2n} \Rightarrow$ Dirac neutrinos

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}
 - $U(1)_L \quad o \quad Z_m \equiv Z_{2n+1} \text{ where } n \ge 1 \text{ is a positive integer} \\ \Rightarrow \quad \text{Neutrinos are Dirac particles}$

 $U(1)_L \rightarrow Z_m \equiv Z_{2n}$ where $n \ge 1$ is a positive integer \Rightarrow Neutrinos can be Dirac or Majorana

• If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification

 $\nu \quad \not \sim \quad \omega^n$ under $Z_{2n} \Rightarrow$ Dirac neutrinos

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^2
 - $U(1)_L \rightarrow Z_m \equiv Z_{2n+1}$ where $n \ge 1$ is a positive integer \Rightarrow Neutrinos are Dirac particles
 - $U(1)_L \quad o \quad Z_m \equiv Z_{2n} ext{ where } n \ge 1 ext{ is a positive integer} \ \Rightarrow \quad ext{Neutrinos can be Dirac or Majorana}$
- If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification

 $\nu \quad \not \sim \quad \omega^n$ under $Z_{2n} \Rightarrow$ Dirac neutrinos

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^2
 - $egin{array}{rcl} U(1)_L & o & Z_m\equiv Z_{2n+1} \mbox{ where }n\geq 1 \mbox{ is a positive integer} \ & \Rightarrow & \mbox{ Neutrinos are Dirac particles} \end{array}$

$$U(1)_L \rightarrow Z_m \equiv Z_{2n}$$
 where $n \ge 1$ is a positive integer
 \Rightarrow Neutrinos can be Dirac or Majorana

• If $U(1)_L \to Z_{2n}$ subgroup: One can make a further broad classification

 $\nu \quad \nsim \quad \omega^n \text{ under } Z_{2n} \Rightarrow \text{ Dirac neutrinos}$

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}
 - $U(1)_L \quad o \quad Z_m \equiv Z_{2n+1} \text{ where } n \ge 1 \text{ is a positive integer} \\ \Rightarrow \quad \text{Neutrinos are Dirac particles}$

$$U(1)_L \rightarrow Z_m \equiv Z_{2n}$$
 where $n \ge 1$ is a positive integer
 \Rightarrow Neutrinos can be Dirac or Majorana

• If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification

 $\nu \not\sim \omega^n$ under $Z_{2n} \Rightarrow$ Dirac neutrinos

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}
 - $U(1)_L \quad o \quad Z_m \equiv Z_{2n+1} \text{ where } n \ge 1 \text{ is a positive integer} \\ \Rightarrow \quad \text{Neutrinos are Dirac particles}$

$$U(1)_L \rightarrow Z_m \equiv Z_{2n}$$
 where $n \ge 1$ is a positive integer
 \Rightarrow Neutrinos can be Dirac or Majorana

• If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification

$$\nu \quad \nsim \quad \omega^n \text{ under } Z_{2n} \Rightarrow \text{ Dirac neutrinos}$$

 $\nu \sim \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

²M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018) 302-305, arXiv:1711.06181 <

- $U(1)_L \rightarrow Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}
 - $U(1)_L \quad o \quad Z_m \equiv Z_{2n+1} \text{ where } n \ge 1 \text{ is a positive integer} \\ \Rightarrow \quad \text{Neutrinos are Dirac particles}$

$$U(1)_L \rightarrow Z_m \equiv Z_{2n}$$
 where $n \ge 1$ is a positive integer
 \Rightarrow Neutrinos can be Dirac or Majorana

• If $U(1)_L \rightarrow Z_{2n}$ subgroup: One can make a further broad classification

$$\nu \quad \nsim \quad \omega^n \text{ under } Z_{2n} \Rightarrow \text{ Dirac neutrinos}$$

 $\nu ~\sim~ \omega^n$ under $Z_{2n} \Rightarrow$ Majorana neutrinos

²M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018) 302-305, arXiv:1711.06181 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dirac Neutrinos: Mass Mechanisms

• For neutrinos to be Dirac particle:

- Right handed neutrinos (ν_R) should be added to Standard Model
- A conserved symmetry is required to protect "Diracness" of neutrinos
- Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.€.tahle: 1606.06528 € + < € + <

Dirac Neutrinos: Mass Mechanisms

• For neutrinos to be Dirac particle:

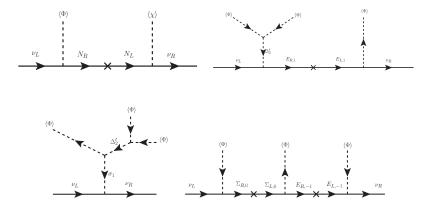
- Right handed neutrinos (ν_R) should be added to Standard Model
- A conserved symmetry is required to protect "Diracness" of neutrinos
- Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.€.table: 160@08528 € + < € + €

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.€.tahle: 1606.06528 ミ + < ミ + < E + <

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³


³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.**F.Izhle: 166@**08528 € ▶ **4** € ▶ **2**

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.**F.Izalle: 166@08528** ≥ ▶ ∢ ≥ ▶ 2

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.F.Valle: 1803/08528 ≧ → < ≧ →

æ

-

2 Dirac Neutrinos

Implications of Dirac Neutrinos

4 Conclusions

▲□ → ▲ 三 → ▲ 三 →

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

If $\zeta_1 = -\infty = 1$ under Z_i , then $\langle \zeta_i \rangle_i = -0$. .

If $\langle X_i \rangle \neq -0$, then $X_i \sim 1$ under Z_0

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🔹 🖬 🕨 🐇 🗗 🕨 🐇 🦉 V 🔇

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as $\omega; \ \omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

If $\mathcal{G}_{-} \not\sim -1$ under \mathcal{Z}_{4} , then $\langle \mathcal{G}_{1} \rangle = 0$. .

If $(X_j) \neq -0$, then $X_j \sim 1$ under Z_j

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🛛 🕻 🗆 🗸 🗇 🗸 🔁 🕨 👌 🛬 🖓 🔍

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

```
If \zeta_i \quad 
ot \sim -1 under Z_4, \, then \langle \zeta_i 
angle \,=\, 0 .
```

If $\langle X_i
angle = 0$, then $X_i \sim 1$ under Z_4

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🛛 🕻 🗆 🕨 🖉 🖉 🔍 🔇

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z_4 charge carrying scalar should get vev
 - Thus we have:

```
If \zeta_i \sim 1 under Z_4, then \langle \zeta_i \rangle = 0.
```

```
If \langle X_i \rangle \neq 0, then X_i \sim 1 under Z_4
```

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🔹 🗆 🔻 🗇 🖉 🔶 🖉 🖉 🖓 🔍

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos ν_{i,R} transform as ω; ω⁴ = 1
 - Preserved quarticity symmetry: No Z_4 charge carrying scalar should get vev
 - Thus we have:

```
If \zeta_i \sim 1 under Z_4, then \langle \zeta_i \rangle = 0.
```

If $\langle X_i \rangle \neq 0$, then $X_i \sim 1$ under Z_4

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🛛 🕻 🗆 🕨 🖉 🖉 🔍 🔇

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

If $\zeta_i \quad \not\sim \quad 1$ under Z_4 , then $\langle \zeta_i
angle \ = \ 0$.

If $\langle X_i \rangle \neq 0$, then $X_i \sim 1$ under Z_4

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 4 🗅 🕨 4 🖻 🕨 4 🖹 🕨 4 🖹 🖉 🖓 🔍

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos ν_{i,R} transform as ω; ω⁴ = 1
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

```
If \zeta_i \sim 1 under Z_4, then \langle \zeta_i \rangle = 0.
If \langle X_i \rangle \neq 0, then X_i \sim 1 under Z_4
```

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 4 🗅 🕨 4 🖻 🕨 4 🖹 🕨 🚊 🔊 🔍 🔿

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

```
If \zeta_i \sim 1 under Z_4, then \langle \zeta_i \rangle = 0.
```

If $\langle X_i \rangle \neq 0$, then $X_i \sim 1$ under Z_4

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🛛 🕻 🗆 🗸 🚍 🔸 🚖 🖉 🔍 🔇

- Symmetry ensuring Dirac nature of neutrinos: Can provide stability to the dark matter
 - Links Diracness and dark matter stability intimately⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Can arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry: Lepton doublets L_i and right handed neutrinos $\nu_{i,R}$ transform as ω ; $\omega^4 = 1$
 - Preserved quarticity symmetry: No Z₄ charge carrying scalar should get vev
 - Thus we have:

If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$.

If $\langle X_i \rangle \neq 0$, then $X_i \sim 1$ under Z_4

⁴ S.C.Chuliá, E.Ma, RS, J.W.F.Valle, Phys.Lett. B 767 (2017) 209-213, arXiv:1606.04543

S.C.Chuliá, RS, J.W.F.Valle, Phys.Lett. B 781 (2018) 122-128, arXiv:1802.05722 🔹 🗆 👌 🖉 ት 🖉 😓 💈 🥠 🔇

- Consider the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda}\,\overline{L}\otimes X\otimes Y\otimes \nu_R$
- The scalar fields $X, Y \sim 1$ under Z_4 to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $ar{\psi}_i\psi_j\zeta$ and $ar{\psi}_i^c\psi_j\zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

- (回) - (三) - (三)

- Consider the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\hbar}\,\overline{L}\otimes X\otimes Y\otimes \nu_R$
- The scalar fields $X, Y \sim 1$ under Z_4 to preserve the Diracness of neutrinos.

• Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_i \zeta$ and $\bar{\psi}_i^c \psi_i \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\mathsf{T}} X_j \zeta$
- Good candidate for stable dark matter

(人間) システン イラン

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

• The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.

• Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_j \zeta$ and $\bar{\psi}_i^c \psi_j \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_j \zeta$ and $\bar{\psi}_i^c \psi_j \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_i \zeta$ and $\bar{\psi}_i^c \psi_i \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

▲圖→ ▲ 国→ ▲ 国→

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $ar{\psi}_i\psi_j\zeta$ and $ar{\psi}_i^c\psi_j\zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

- 4 同 ト 4 日 ト - 4 日 ト - 日

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i\psi_j\zeta$ and $\bar{\psi}_i^c\psi_j\zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_j \zeta$ and $\bar{\psi}_i^c \psi_j \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

(本間) (本語) (本語) (二語)

 $\frac{1}{\Lambda} \overline{L} \otimes X \otimes Y \otimes \nu_R$

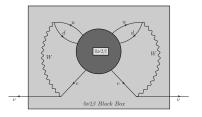
- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4

• Z_4 conservation: No vev for ζ i.e. $\langle \zeta \rangle = 0$.

- Its interactions with the other fields are severely restricted by Z_4 .
- Z₄ forbids:
 - Yukawa couplings $\bar{\psi}_i \psi_j \zeta$ and $\bar{\psi}_i^c \psi_j \zeta$ of ζ
 - Cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_j\zeta$
- Good candidate for stable dark matter

★週 → ★ 注 → ★ 注 → 一 注

• If $U(1)_L$ is completely broken or broken to Z_{2n} with $u\sim\omega^n$

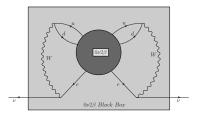

- Majorana neutrinos
- Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \rightarrow Z_4$: Quadruple Beta Decay ⁶

・四・・モン・モン・ ヨー

• If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$ • Majorana neutrinos

- Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \rightarrow Z_4$: Quadruple Beta Decay ⁶

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \to Z_4$: Quadruple Beta Decay

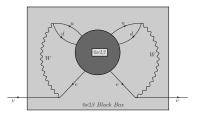


⁵J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

(人間) (人) (人) (人) (人) (人)

-

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \rightarrow Z_4$: Quadruple Beta Decay ⁶

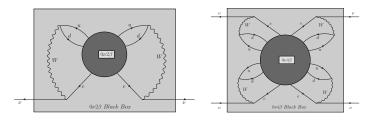

⁵J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

⁰ J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018)

302-305, arXiv:1711.06181

(1日) (日) (日)

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \rightarrow Z_4$: Quadruple Beta Decay ⁶


⁵J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

¹⁰ J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018)

302-305, arXiv:1711.06181

(1日) (日) (日)

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L \rightarrow Z_4$: Quadruple Beta Decay ⁶

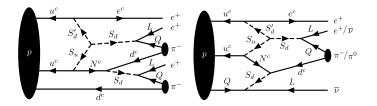
⁵J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

⁶J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018)

302-305, arXiv:1711.06181

- Normal Proton Decay: $P \rightarrow \pi^0 l^+$ or $P \rightarrow K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \rightarrow Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B = 1, \Delta L = 3$ modes such as $P \rightarrow e^+e^+e^+\pi^-\pi^-$ or $P \rightarrow e^+e^+\pi^-\pi^0\nu$ modes⁷

⁷ R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814 🔞 🖬 🕨 👍 🍋 👌 🧟 🕐 🔍

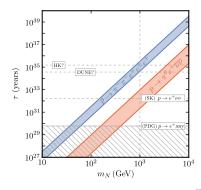

- Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \rightarrow Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B = 1, \Delta L = 3$ modes such as $P \rightarrow e^+e^+e^+\pi^-\pi^-$ or $P \rightarrow e^+e^+\pi^-\pi^0\nu$ modes⁷

⁷R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814 🔳 ト 🖌 🗇 ト 🤙 ト 👌 🛓 👘 🛓 🧐

- Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \rightarrow Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B = 1, \Delta L = 3$ modes such as $P \rightarrow e^+e^+e^+\pi^-\pi^-$ or $P \rightarrow e^+e^+\pi^-\pi^0\nu$ modes⁷

⁷R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814 🗵 🕨 🖌 🗗 🕨 🤘 🖉 🔍 🤅

- Normal Proton Decay: $P
 ightarrow \pi^0 I^+$ or $P
 ightarrow K^+ ar{
 u}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \rightarrow Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B = 1, \Delta L = 3$ modes such as $P \rightarrow e^+e^+e^+\pi^-\pi^-$ or $P \rightarrow e^+e^+\pi^-\pi^0\nu$ modes⁷



7 R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814 < 🗆 > < 🗇 > < 🖹 > < 🖹 > 🗦 🖉 🛇 🔍

- Such $\Delta B = 1, \Delta L = 3$ modes are induced by dim-10 or higher dimensional operators
- Owing to such high dimensionality of operators, the particles inducing Proton decay can be light and well within LHC range

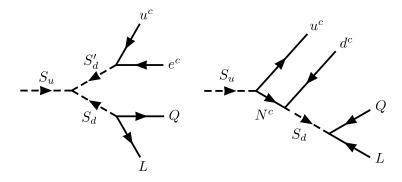
・ 同 ト ・ ヨ ト ・ ヨ ト …

- Such ΔB = 1, ΔL = 3 modes are induced by dim-10 or higher dimensional operators
- Owing to such high dimensionality of operators, the particles inducing Proton decay can be light and well within LHC range

()

• Can have pretty distinct signatures in colliders⁸

• Collider signatures of Z_4 and higher Z_n symmetries can also be probed⁹


⁸R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814

⁹R.M.Fonseca, M.Hirsch, arXiv:1804.10545

< 同 > < 三 > < 三 >

э

• Can have pretty distinct signatures in colliders⁸

• Collider signatures of Z₄ and higher Z_n symmetries can also be probed⁹

⁸R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814

⁹R.M.Fonseca, M.Hirsch, arXiv:1804.10545

1 Are Majorana Neutrinos Natural?

2 Dirac Neutrinos

Implications of Dirac Neutrinos

4 Conclusions

▲□ → ▲ 三 → ▲ 三 →

э

• There is still a lot to learn about neutrinos

- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

<回> < 注> < 注>

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

< 回 > < 三 > < 三 >

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank You

・ロ・ ・ 日・ ・ ヨ・ ・