Elliptic curves with a plural "s"

Stefan Weinzierl
Institut für Physik, Universität Mainz

I.: Periodic functions and periods

II: No elliptic curves
III: One elliptic curve
IV: Several elliptic curves

Part I

Periodic functions and periods

Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.
A period ω of the function f is a constant such that for all z :

$$
f(z+\omega)=f(z)
$$

The set of all periods of f forms a lattice, which is either

- trivial (i.e. the lattice consists of $\omega=0$ only),
- a simple lattice, $\Lambda=\{n \omega \mid n \in \mathbb{Z}\}$,
- a double lattice, $\Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$.

Examples of periodic functions

- Singly periodic function: Exponential function

$$
\exp (z)
$$

$\exp (z)$ is periodic with peridod $\omega=2 \pi i$.

- Doubly periodic function: Weierstrass's \wp-function

$$
\begin{array}{ll}
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right), \quad & \Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\} \\
& \operatorname{Im}\left(\omega_{2} / \omega_{1}\right) \neq 0 .
\end{array}
$$

$\wp(z)$ is periodic with periods ω_{1} and ω_{2}.

Inverse functions

The corresponding inverse functions are in general multivalued functions.

- For the $\operatorname{exponential}$ function $x=\exp (z)$ the inverse function is the logarithm

$$
z=\ln (x)
$$

- For Weierstrass's elliptic function $x=\wp(z)$ the inverse function is an elliptic integral

$$
z=\int_{x}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}, \quad g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}, \quad g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Periods as integrals over algebraic functions

In both examples the periods can be expressed as integrals involving only algebraic functions.

- Period of the exponential function:

$$
2 \pi i=2 i \int_{-1}^{1} \frac{d t}{\sqrt{1-t^{2}}}
$$

- Periods of Weierstrass's \wp-function: Assume that g_{2} and g_{3} are two given algebraic numbers. Then

$$
\omega_{1}=2 \int_{t_{1}}^{t_{2}} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}, \quad \omega_{2}=2 \int_{t_{3}}^{t_{2}} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}
$$

where t_{1}, t_{2} and t_{3} are the roots of the cubic equation $4 t^{3}-g_{2} t-g_{3}=0$.

Numerical periods

Kontsevich and Zagier suggested the following generalisation:
A numerical period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients, over domains in \mathbb{R}^{n} given by polynomial inequalities with rational coefficients.

Remarks:

- One can replace "rational" with "algebraic".
- The set of all periods is countable.
- Example: $\ln 2$ is a numerical period.

$$
\ln 2=\int_{1}^{2} \frac{d t}{t}
$$

Part II

No elliptic curves

(Introduction to Feynman integrals)

Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:

$N_{\text {ext }}$ external particles with momenta $p_{1}, \ldots, p_{N_{\text {ext }}}$.
Momentum conservation: $p_{1}+\ldots+p_{N_{\text {ext }}}=0$.

Feynman diagrams

We may compute the scattering amplitude within perturbation theory:

Feynman integrals

- Dimensional regularisation:
- Work in D space-time dimensions.
- Set $D=4-2 \varepsilon$.
- Consider a graph G with
- $N_{\text {ext }}$ external legs
- n internal edges
- l loops (= first Betti number)
- To each internal edge e_{j} associate
- a momentum q_{j} (a D-dimensional vector)
- a mass m_{j}

Feynman integrals

- Choose an orientation for each internal edge
- Choose l independent loop momenta k_{1}, \ldots, k_{l}.
- Impose momentum conservation at each vertex.
- This gives

$$
\begin{aligned}
q_{i}= & \sum_{j=1}^{l} \lambda_{i j} k_{j}+\sum_{j=1}^{N_{\text {ext }}} \sigma_{i j} p_{j}, \\
& \lambda_{i j}, \sigma_{i j} \in\{-1,0,1\}
\end{aligned}
$$

Feynman rules

Each part in a Feynman graph corresponds to a mathematical expression. In the simplest version:

- Edge:

$$
\frac{1}{q^{2}-m^{2}}
$$

- Vertex: 1
- External line:

1

- For each internal momentum not constrained by momentum conservation

$$
\int \frac{d^{D} k}{(2 \pi)^{D}}
$$

Feynman integrals

Associate to a Feynman graph G with $N_{\text {ext }}$ external lines, n internal lines and l loops the set of Feynman integrals

$$
I_{v_{1} v_{2} \ldots v_{n}}=\left(\mu^{2}\right)^{v-l D / 2} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \cdots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \prod_{j=1}^{n} \frac{1}{\left(q_{j}^{2}-m_{j}^{2}\right)^{v_{j}}},
$$

with $v_{j} \in \mathbb{Z}$ and $v=v_{1}+\ldots+v_{n}$.
The arbitrary scale μ makes the Feynman integral dimensionless. We may choose μ^{2} to be given as an expression of $p_{i} \cdot p_{j}$ and m_{j}^{2}.

Feynman integrals

- $I_{v_{1} v_{2} \ldots v_{n}}$ is a function of D and the kinematic variables $p_{i} \cdot p_{j}$ and m_{j}^{2}.
- How many independent kinematic variables are there?
$-\frac{1}{2} N_{\text {ext }}\left(N_{\text {ext }}-1\right)$ invariants $p_{i} \cdot p_{j}$,
- n internal masses m_{j}^{2}.
- $I_{v_{1} v_{2} \ldots v_{n}}$ depends only on ratios of kinematic variables. Set

$$
N_{B}=\frac{1}{2} N_{\mathrm{ext}}\left(N_{\mathrm{ext}}-1\right)+n-1
$$

- kinematic base manifold: $M=\mathbb{P}^{N_{B}}(\mathbb{C})$
- $I_{\mathrm{v}_{1} v_{2} \ldots v_{n}}$ is a function on $\mathbb{C} \times \mathbb{P}^{N_{B}}(\mathbb{C})$ with $D \in \mathbb{C}$ and $x \in \mathbb{P}^{N_{B}}(\mathbb{C})$.

Pinching of propagators

If for some exponent we have $\mathrm{v}_{j}=0$, the corresponding propagator is absent and the topology simplifies:

Integration by parts

Within dimensional regularisation we have for any loop momentum k_{i} and $v \in$ $\left\{p_{1}, \ldots, p_{N_{\text {ext }}}, k_{1}, \ldots, k_{l}\right\}$

Working out the derivatives leads to relations among integrals with different sets of indices $\left(v_{1}, \ldots, v_{n}\right)$.

This allows us to express most of the integrals in terms of a few master integrals.

Laporta's algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large linear system of equations.

This system has a block-triangular structure, originating from subtopologies.
Order the integrals by complexity (more propagators \Rightarrow more difficult)
Solve the system bottom-up, re-using the results for the already solved sectors.

Master integrals

Let us denote the number of master integrals by $N_{\text {master }}$.
The integrands of the master integrals span the cohomology group

$$
\frac{d^{D} k_{1}}{(2 \pi)^{D} \cdots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \prod_{j=1}^{n} \frac{1}{\left(q_{j}^{2}-m_{j}^{2}\right)^{v_{j}}} \quad \bmod (\text { exact forms }) ~}
$$

Denote by F the vector space spanned by the master integrals. Clearly, $\operatorname{dim} F=N_{\text {master }}$.

This defines the fibre F.

Differential equations

Let x_{k} be a kinematic variable. Let $I_{i} \in\left\{I_{1}, \ldots, I_{N_{\text {master }}}\right\}$ be a master integral. Carrying out the derivative

$$
\frac{\partial}{\partial x_{k}} I_{i}
$$

under the integral sign and using integration-by-parts identities allows us to express the derivative as a linear combination of the master integrals.

$$
\frac{\partial}{\partial x_{k}} I_{i}=\sum_{j=1}^{N_{\text {master }}} a_{i j} I_{j}
$$

(Kotikov '90, Remiddi '97, Gehrmann and Remiddi '99)

Differential equations

Let us formalise this:

$$
\begin{array}{ll}
\vec{I}=\left(I_{1}, \ldots, I_{N_{\text {master }}}\right), & \text { set of master integrals, } \\
\vec{x}=\left(x_{1}, \ldots, x_{N_{B}}\right), & \text { set of kinematic variables the master integrals depend on. }
\end{array}
$$

We obtain a system of differential equations of Fuchsian type

$$
d \vec{I}+A \vec{I}=0
$$

where A is a matrix-valued one-form

$$
A=\sum_{i=1}^{N_{B}} A_{i} d x_{i} .
$$

The matrix-valued one-form A satisfies the integrability condition

$$
d A+A \wedge A=0 \quad \text { (flat Gauß-Manin connection). }
$$

Computation of Feynman integrals reduced to solving differential equations!

The ε-form of the differential equation

If we change the basis of the master integrals $\vec{J}=U \vec{I}$, the differential equation becomes

$$
\left(d+A^{\prime}\right) \vec{J}=0, \quad A^{\prime}=U A U^{-1}+U d U^{-1}
$$

Suppose one finds a transformation matrix U, such that

$$
A^{\prime}=\varepsilon \sum_{j} C_{j} d \ln p_{j}(\vec{x})
$$

where

- ε appears only as prefactor,
- $\quad C_{j}$ are matrices with constant entries,
- $p_{j}(\vec{x})$ are polynomials in the external variables,
then the system of differential equations is easily solved in terms of multiple polylogarithms.

Transformation to the ε-form

We may

- perform a rational / algebraic transformation on the kinematic variables

$$
\left(x_{1}, \ldots, x_{N_{B}}\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{N_{B}}^{\prime}\right)
$$

often done to absorb square roots.

- change the basis of the master integrals

$$
\vec{I} \rightarrow U \vec{I},
$$

where U is rational in the kinematic variables

Henn '13; Gehrmann, von Manteuffel, Tancredi, Weihs '14; Argeri et al. '14; Lee '14; Meyer '16; Prausa '17; Gituliar, Magerya '17; Lee, Pomeransky '17;

Multiple polylogarithms

Definition based on nested sums:

$$
\mathrm{Li}_{m_{1}, m_{2}, \ldots, m_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{n_{1}>n_{2}>\ldots>n_{k}>0}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \cdot \frac{x_{2}^{n_{2}}}{n_{2}^{m_{2}}} \cdot \ldots \cdot \frac{x_{k}^{n_{k}}}{m_{k}^{m_{k}}}
$$

Definition based on iterated integrals:

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)=\int_{0}^{y} \frac{d t_{1}}{t_{1}-z_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-z_{2}} \ldots \int_{0}^{t_{k-1}} \frac{d t_{k}}{t_{k}-z_{k}}
$$

Conversion:

$$
\mathrm{Li}_{m_{1}, \ldots, m_{k}}\left(x_{1}, \ldots, x_{k}\right)=(-1)^{k} G_{m_{1}, \ldots, m_{k}}\left(\frac{1}{x_{1}}, \frac{1}{x_{1} x_{2}}, \ldots, \frac{1}{x_{1} \ldots x_{k}} ; 1\right)
$$

Short hand notation:

$$
G_{m_{1}, \ldots, m_{k}}\left(z_{1}, \ldots, z_{k} ; y\right)=G(\underbrace{0, \ldots, 0}_{m_{1}-1}, z_{1}, \ldots, z_{k-1}, \underbrace{0 \ldots, 0}_{m_{k}-1}, z_{k} ; y)
$$

Example

Let us consider a simple example: One integral I in one variable x with boundary condition $I(0)=1$. Consider the differential equation

$$
(d+A) I=0, \quad A=-\varepsilon d \ln (x-1) .
$$

Note that

$$
d \ln (x-1)=\frac{d x}{x-1}
$$

and

$$
I(x)=1+\varepsilon G(1 ; x)+\varepsilon^{2} G(1,1 ; x)+\varepsilon^{3} G(1,1,1 ; x)+\ldots
$$

Iterated integrals

For $\omega_{1}, \ldots, \omega_{k}$ differential 1-forms on a manifold M and $\gamma:[0,1] \rightarrow M$ a path, write for the pull-back of ω_{j} to the interval $[0,1]$

$$
f_{j}(\lambda) d \lambda=\gamma^{*} \omega_{j} .
$$

The iterated integral is defined by (Chen '77)

$$
I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k-1}} d \lambda_{k} f_{k}\left(\lambda_{k}\right)
$$

Example 1: Multiple polylogarithms (Goncharov '98)

$$
\omega_{j}=\frac{d \lambda}{\lambda-z_{j}} .
$$

Example 2: Iterated integrals of modular forms (Brown '14): $f_{j}(\tau)$ a modular form,

$$
\omega_{j}=2 \pi i f_{j}(\tau) d \tau
$$

Part III

One elliptic curve

(Feynman integrals beyond multiple polylogarithms)

Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!

The Picard-Fuchs operator

Let I be one of the master integrals $\left\{I_{1}, \ldots, I_{N_{\text {master }}}\right\}$. Choose a path $\gamma:[0,1] \rightarrow M$ and study the integral I as a function of the path parameter λ.

Instead of a system of $N_{\text {master }}$ first-order differential equations

$$
(d+A) \vec{I}=0
$$

we may equivalently study a single differential equation of order $N_{\text {master }}$

$$
\sum_{j=0}^{N_{\mathrm{master}}} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}} I=0
$$

We may work modulo sub-topologies and ε-corrections:

$$
L=\sum_{j=0}^{r} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}}: \quad L I=0 \quad \bmod \text { (sub-topologies, } \varepsilon \text {-corrections) }
$$

Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

$$
L=\left(a_{r}(\lambda) \frac{d}{d \lambda}+b_{r}(\lambda)\right) \ldots\left(a_{2}(\lambda) \frac{d}{d \lambda}+b_{2}(\lambda)\right)\left(a_{1}(\lambda) \frac{d}{d \lambda}+b_{1}(\lambda)\right)
$$

Iterated first-order differential equation.
Denote homogeneous solution of the j-th factor by

$$
\psi_{j}(\lambda)=\exp \left(-\int_{0}^{\lambda} d \kappa \frac{b_{j}(\kappa)}{a_{j}(\kappa)}\right) .
$$

Full solution given by iterated integrals
$C_{1} \psi_{1}(\lambda)+C_{2} \psi_{1}(\lambda) \int_{0}^{\lambda} d \lambda_{1} \frac{\psi_{2}\left(\lambda_{1}\right)}{a_{1}\left(\lambda_{1}\right) \psi_{1}\left(\lambda_{1}\right)}+C_{3} \psi_{1}(\lambda) \int_{0}^{\lambda} d \lambda_{1} \frac{\psi_{2}\left(\lambda_{1}\right)}{a_{1}\left(\lambda_{1}\right) \psi_{1}\left(\lambda_{1}\right)} \int_{0}^{\lambda_{1}} d \lambda_{2} \frac{\psi_{3}\left(\lambda_{2}\right)}{a_{2}\left(\lambda_{2}\right) \psi_{2}\left(\lambda_{2}\right)}+\ldots$
Multiple polylogarithms are of this form.

Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

$$
\sum_{j=0}^{r} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}}
$$

does not factor into linear factors.
The next more complicate case:
The differential operator contains one irreducible second-order differential operator

$$
a_{j}(\lambda) \frac{d^{2}}{d \lambda^{2}}+b_{j}(\lambda) \frac{d}{d \lambda}+c_{j}(\lambda)
$$

An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

$$
\left[k\left(1-k^{2}\right) \frac{d^{2}}{d k^{2}}+\left(1-3 k^{2}\right) \frac{d}{d k}-k\right] f(k)=0
$$

is irreducible.
The solutions of the differential equation are $K(k)$ and $K\left(\sqrt{1-k^{2}}\right)$, where $K(k)$ is the complete elliptic integral of the first kind:

$$
K(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

An example from physics: The two-loop sunrise integral

Picard-Fuchs operator for $S_{111}(2, x)$:

$$
L=x(x-1)(x-9) \frac{d^{2}}{d x^{2}}+\left(3 x^{2}-20 x+9\right) \frac{d}{d x}+(x-3)
$$

(Broadhurst, Fleischer, Tarasov '93)
Irreducible second-order differential operator.
Picard-Fuchs operator for the periods of a family of elliptic curves.

The elliptic curve

How to get the elliptic curve?

- From the Feynman graph polynomial:

$$
-x_{1} x_{2} x_{3} x+\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)=0
$$

- From the maximal cut:

$$
v^{2}-(u-x)(u-x+4)\left(u^{2}+2 u+1-4 x\right)=0
$$

Baikov '96; Lee '10; Kosower, Larsen, '11; Caron-Huot, Larsen, '12; Frellesvig, Papadopoulos, '17; Bosma, Sogaard, Zhang, '17; Harley, Moriello, Schabinger, '17

The periods ψ_{1}, ψ_{2} of the elliptic curve are solutions of the homogeneous differential equation.
Adams, Bogner, S.W., '13; Primo, Tancredi, '16

$$
\text { Set } \quad \tau=\frac{\psi_{2}}{\psi_{1}}, \quad q=e^{2 i \pi \tau}
$$

Bases of lattices

The periods ψ_{1} and ψ_{2} generate a lattice. Any other basis as good as $\left(\psi_{2}, \psi_{1}\right)$. Convention: Normalise $\left(\psi_{2}, \psi_{1}\right) \rightarrow(\tau, 1)$ where $\tau=\psi_{2} / \psi_{1}$.

Change of basis: $\quad\binom{\psi_{2}^{\prime}}{\psi_{1}^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\psi_{2}}{\psi_{1}}$,
Transformation should be invertible: $\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$,

$$
\text { In terms of } \tau \text { and } \tau^{\prime}: \quad \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ_{1} / π from the master integrals in the sunrise sector one obtains an ε-form:
$I_{1}=4 \varepsilon^{2} S_{110}(2-2 \varepsilon, x), \quad I_{2}=-\varepsilon^{2} \frac{\pi}{\psi_{1}} S_{111}(2-2 \varepsilon, x), \quad I_{3}=\frac{1}{\varepsilon} \frac{1}{2 \pi i} \frac{d}{d \tau} I_{2}+\frac{1}{24}\left(3 x^{2}-10 x-9\right) \frac{\psi_{1}^{2}}{\pi^{2}} I_{2}$.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

$$
\frac{d}{d \tau} \vec{I}=\varepsilon A(\tau) \vec{I}
$$

where $A(\tau)$ is an ε-independent 3×3-matrix whose entries are modular forms.

The ε-form of the differential equation for the sunrise

The matrix $A(\tau)$ is given by

$$
A(\tau)=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -f_{2}(\tau) & 1 \\
\frac{1}{4} f_{3}(\tau) & f_{4}(\tau) & -f_{2}(\tau)
\end{array}\right),
$$

where f_{2}, f_{3} and f_{4} are modular forms of $\Gamma_{1}(6)$ of modular weight 2,3 and 4 , respectively.
I_{1}, I_{2} and I_{3} are expressed as iterated integrals of modular forms to all orders in ε.

Feynman integrals evaluating to iterated integrals of modular forms

This applies to a wider class of Feynman integrals:

Congruence subgroups

Apart from $\mathrm{SL}_{2}(2, \mathbb{Z})$ we may also look at congruence subgroups, for example

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a, d \equiv 1 \bmod N, c \equiv 0 \bmod N\right\} \\
& \Gamma(N)
\end{aligned}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a, d \equiv 1 \bmod N, b, c \equiv 0 \bmod N\right\} .
$$

Modular forms for congruence subgroups: Require "nice" transformation properties only for subgroup Γ (plus holomorphicity on \mathbb{H} and at the cusps).

Part IV

Several elliptic curves

(An example from top-pair production)

Kinematics

$$
I_{v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}}\left(D, \frac{s}{m^{2}}, \frac{t}{m^{2}}\right)=\left(m^{2}\right)^{\sum_{j=1}^{7} v_{j}-D} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \frac{d^{D} k_{2}}{(2 \pi)^{D}} \prod_{j=1}^{7} \frac{1}{P_{j}^{v_{j}}},
$$

$$
\begin{array}{cl}
p_{1}^{2}=p_{2}^{2}=0, & p_{3}^{2}=p_{4}^{2}=m^{2} \\
s=\left(p_{1}+p_{2}\right)^{2}, & t=\left(p_{2}+p_{3}\right)^{2}
\end{array}
$$

Picard-Fuchs operator of elliptic curves

- Sunrise integral: An elliptic curve can be obtained either from
- Feynman graph polynomial
- maximal cut

The periods ψ_{1}, ψ_{2} are the solutions of the homogeneous differential equations.

Adams, Bogner, S.W., '13, '14

- In general: The maximal cuts are solutions of the homogeneous differential equations.

Primo, Tancredi, '16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.

Maximal cuts

Maximal cut: For a Feynman integral

$$
I_{v_{1} v_{2} \ldots v_{n}}=\left(\mu^{2}\right)^{v-l D / 2} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \ldots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \prod_{j=1}^{n} \frac{1}{P_{j}^{v_{j}}}
$$

take the n-fold residue at

$$
P_{1}=\ldots=P_{n}=0
$$

of the integrand and integrate over the remaining $(l D-n)$ variables along a contour \mathcal{C}.

Maximal cuts

Sunrise :
$\operatorname{MaxCut}_{C} I_{1001001}(2-2 \varepsilon)=$

$$
\frac{u m^{2}}{\pi^{2}} \int_{C} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}\right)^{\frac{1}{2}}}+O(\varepsilon) .
$$

Double box :
$\operatorname{MaxCut}_{C} I_{1111111}(4-2 \varepsilon)=$

$$
\frac{u m^{6}}{4 \pi^{4} s^{2}} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}}+O(\varepsilon)
$$

Three elliptic curves

$$
\begin{aligned}
& E^{(a)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+2 m^{2} z-4 m^{2} t+m^{4}\right) \\
& E^{(b)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+2 m^{2} z-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right) \\
& E^{(c)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+\frac{2 m^{2}(s+4 t)}{\left(s-4 m^{2}\right)} z+\frac{s m^{2}\left(m^{2}-4 t\right)-4 m^{2} t^{2}}{s-4 m^{2}}\right)
\end{aligned}
$$

Remarks

- $E^{(a)}$ gives rise to iterated integrals of modular forms of $\Gamma_{1}(6)$.
- For $s \rightarrow \infty$ the curves $E^{(b)}$ and $E^{(c)}$ degenerate to $E^{(a)}$.
- If we would have only one curve, we expect that the result can be written in elliptic polylogarithms.
- We have three elliptic curves.

Results

The differential equation for the master integrals can be brought into the form

$$
d \vec{l}=\varepsilon A \vec{l},
$$

where A is independent of ε.
The Laurent expansion in ε of all master integrals can be computed systematically to all orders in ε in terms of iterated integrals.

The solution

- reduces to multiple polylogarithms for $t=m^{2}$ and
- reduces to iterated integrals of modular forms of $\Gamma_{1}(6)$ for $s=\infty$.

Conclusions

- Loop integrals with masses important for top, W / Z - and H-physics.
- May involve elliptic sectors from two loops onwards.
- There is a class of Feynman integrals evaluating to iterated integrals of modular forms.
- The planar double box integral relavant to $t \bar{t}$-production with a closed top loop depends on two variables and involves several elliptic sub-sectors. More than one elliptic curve occurs. Results expressed in terms of Chen's iterated integrals.
- We may expect more results in the near future.

