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Part I

Periodic functions and periods



Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period ω of the function f is a constant such that for all z:

f (z+ω) = f (z)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),

• a simple lattice, Λ = {nω | n ∈ Z},

• a double lattice, Λ = {n1ω1+n2ω2 | n1,n2 ∈ Z}.



Examples of periodic functions

• Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi.

• Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(

1

(z+ω)2
− 1

ω2

)

, Λ = {n1ω1+n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.



Inverse functions

The corresponding inverse functions are in general multivalued functions.

• For the exponential function x = exp(z) the inverse function is the logarithm

z = ln(x) .

• For Weierstrass’s elliptic function x =℘(z) the inverse function is an elliptic integral

z =

∞∫

x

dt
√

4t3−g2t −g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.



Periods as integrals over algebraic functions

In both examples the periods can be expressed as integrals involving only algebraic

functions.

• Period of the exponential function:

2πi = 2i

1∫

−1

dt√
1− t2

.

• Periods of Weierstrass’s ℘-function: Assume that g2 and g3 are two given algebraic

numbers. Then

ω1 = 2

t2∫

t1

dt
√

4t3−g2t −g3

, ω2 = 2

t2∫

t3

dt
√

4t3−g2t −g3

,

where t1, t2 and t3 are the roots of the cubic equation 4t3−g2t −g3 = 0.



Numerical periods

Kontsevich and Zagier suggested the following generalisation:

A numerical period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients, over

domains in R
n given by polynomial inequalities with rational coefficients.

Remarks:

• One can replace “rational” with “algebraic”.

• The set of all periods is countable.

• Example: ln2 is a numerical period.

ln2 =

2∫

1

dt

t
.



Part II

No elliptic curves

(Introduction to Feynman integrals)



Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:

p1

p2 p3

p4

Next external particles with momenta p1, ..., pNext.

Momentum conservation: p1+ ...+ pNext = 0.



Feynman diagrams

We may compute the scattering amplitude within perturbation theory:

p1

p2 p3

p4

= + + ...







O
(
g2
)

+ + + ...







O
(
g4
)

+ + + ...







O
(
g6
)



Feynman integrals

p1

p2 p3

p4

q1 q4 q7

q2 q5

q3 q6

• Dimensional regularisation:

– Work in D space-time dimensions.

– Set D = 4−2ε.

• Consider a graph G with

– Next external legs

– n internal edges

– l loops (= first Betti number)

• To each internal edge e j associate

– a momentum q j (a D-dimensional

vector)

– a mass m j



Feynman integrals

p1

p2 p3

p4

q1 =
k1 + p2

q4 =
k1 + k2

q7 =
k2 + p3

q2 = k1 q5 = k2

q3 =
k1 + p1 + p2

q6 =
k2 + p3 + p4

• Choose an orientation for each internal

edge

• Choose l independent loop momenta

k1, ..., kl.

• Impose momentum conservation at

each vertex.

• This gives

qi =
l

∑
j=1

λi j k j +
Next

∑
j=1

σi j p j,

λi j,σi j ∈ {−1,0,1}.



Feynman rules

Each part in a Feynman graph corresponds to a mathematical expression.

In the simplest version:

• Edge: 1

q2−m2

• Vertex: 1

• External line: 1

• For each internal momentum not constrained by momentum conservation∫
dDk

(2π)D



Feynman integrals

Associate to a Feynman graph G with Next external lines, n internal lines and l loops

the set of Feynman integrals

Iν1ν2...νn =
(
µ2
)ν−lD/2

∫
dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1
(
q2

j −m2
j

)ν j
,

with ν j ∈ Z and ν = ν1+ ...+νn.

The arbitrary scale µ makes the Feynman integral dimensionless. We may choose µ2

to be given as an expression of pi · p j and m2
j .



Feynman integrals

• Iν1ν2...νn is a function of D and the kinematic variables pi · p j and m2
j .

• How many independent kinematic variables are there?

– 1
2
Next (Next−1) invariants pi · p j,

– n internal masses m2
j .

• Iν1ν2...νn depends only on ratios of kinematic variables. Set

NB =
1

2
Next (Next−1)+n−1

• kinematic base manifold: M = P
NB (C)

• Iν1ν2...νn is a function on C×P
NB (C) with D ∈ C and x ∈ P

NB (C).



Pinching of propagators

If for some exponent we have ν j = 0, the corresponding propagator is absent and the

topology simplifies:

1

2

3

4

5

6

7
ν4=0
=⇒ 1

2

3

5

6

7



Integration by parts

Within dimensional regularisation we have for any loop momentum ki and v ∈
{p1, ..., pNext,k1, ...,kl}

∫
dDk1

(2π)D
...

dDkl

(2π)D

∂

∂k
µ
i

vµ
n

∏
j=1

1
(
q2

j −m2
j

)ν j
= 0.

Working out the derivatives leads to relations among integrals with different sets of

indices (ν1, ...,νn).

This allows us to express most of the integrals in terms of a few master integrals.

Tkachov ’81, Chetyrkin ’81



Laporta’s algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large

linear system of equations.

This system has a block-triangular structure, originating from subtopologies.

Order the integrals by complexity (more propagators ⇒ more difficult)

Solve the system bottom-up, re-using the results for the already solved sectors.

Laporta ’01



Master integrals

Let us denote the number of master integrals by Nmaster.

The integrands of the master integrals span the cohomology group

dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1
(
q2

j −m2
j

)ν j
mod (exact forms)

Denote by F the vector space spanned by the master integrals.

Clearly, dimF = Nmaster.

This defines the fibre F .



Differential equations

Let xk be a kinematic variable. Let Ii ∈ {I1, ..., INmaster} be a master integral. Carrying

out the derivative

∂

∂xk

Ii

under the integral sign and using integration-by-parts identities allows us to express

the derivative as a linear combination of the master integrals.

∂

∂xk

Ii =
Nmaster

∑
j=1

ai jI j

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)



Differential equations

Let us formalise this:

~I = (I1, ..., INmaster) , set of master integrals,

~x = (x1, ...,xNB
) , set of kinematic variables the master integrals depend on.

We obtain a system of differential equations of Fuchsian type

d~I +A~I = 0,

where A is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi.

The matrix-valued one-form A satisfies the integrability condition

dA+A∧A = 0 (flat Gauß-Manin connection).

Computation of Feynman integrals reduced to solving differential equations!



The ε-form of the differential equation

If we change the basis of the master integrals ~J =U~I, the differential equation becomes

(d +A′)~J = 0, A′ =UAU−1 +UdU−1

Suppose one finds a transformation matrix U , such that

A′ = ε∑
j

C j d ln p j(~x),

where

- ε appears only as prefactor,

- C j are matrices with constant entries,

- p j(~x) are polynomials in the external variables,

then the system of differential equations is easily solved in terms of multiple

polylogarithms.

Henn ’13



Transformation to the ε-form

We may

• perform a rational / algebraic transformation on the kinematic variables

(x1, ...,xNB
) → (x′1, ...,x

′
NB
),

often done to absorb square roots.

• change the basis of the master integrals

~I → U~I,

where U is rational in the kinematic variables

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee ’14; Meyer ’16; Prausa ’17; Gituliar, Magerya

’17; Lee, Pomeransky ’17;



Multiple polylogarithms

Definition based on nested sums:

Lim1,m2,...,mk
(x1,x2, ...,xk) =

∞

∑
n1>n2>...>nk>0

x
n1
1

n
m1
1

· x
n2
2

n
m2
2

· ... · x
nk
k

n
mk
k

Definition based on iterated integrals:

G(z1, ...,zk;y) =

y∫

0

dt1

t1 − z1

t1∫

0

dt2

t2 − z2

...

tk−1∫

0

dtk

tk − zk

Conversion:

Lim1,...,mk
(x1, ...,xk) = (−1)kGm1,...,mk

(
1

x1

,
1

x1x2

, ...,
1

x1...xk

;1

)

Short hand notation:

Gm1,...,mk
(z1, ...,zk;y) = G(0, ...,0

︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸
mk−1

,zk;y)



Example

Let us consider a simple example: One integral I in one variable x with boundary

condition I(0) = 1. Consider the differential equation

(d +A) I = 0, A = −ε d ln(x−1) .

Note that

d ln(x−1) =
dx

x−1

and

I(x) = 1+ εG(1;x)+ ε2G(1,1;x)+ ε3G(1,1,1;x)+ ...



Iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path, write for

the pull-back of ω j to the interval [0,1]

f j (λ)dλ = γ∗ω j.

The iterated integral is defined by (Chen ’77)

Iγ (ω1, ...,ωk;λ) =

λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Example 1: Multiple polylogarithms (Goncharov ’98)

ω j =
dλ

λ− z j

.

Example 2: Iterated integrals of modular forms (Brown ’14): f j(τ) a modular form,

ω j = 2πi f j (τ) dτ.



Part III

One elliptic curve

(Feynman integrals beyond multiple polylogarithms)



Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!

p2 p2

p2

m2

p2

m2



The Picard-Fuchs operator

Let I be one of the master integrals {I1, ..., INmaster}. Choose a path γ : [0,1]→ M and

study the integral I as a function of the path parameter λ.

Instead of a system of Nmaster first-order differential equations

(d +A)~I = 0,

we may equivalently study a single differential equation of order Nmaster

Nmaster

∑
j=0

p j (λ)
d j

dλ j
I = 0.

We may work modulo sub-topologies and ε-corrections:

L =
r

∑
j=0

p j (λ)
d j

dλ j
: L I = 0 mod (sub-topologies, ε-corrections)



Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

L =

(

ar(λ)
d

dλ
+br(λ)

)

...

(

a2(λ)
d

dλ
+b2(λ)

)(

a1(λ)
d

dλ
+b1(λ)

)

Iterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

ψ j(λ) = exp



−
λ∫

0

dκ
b j(κ)

a j(κ)



 .

Full solution given by iterated integrals

C1ψ1(λ)+C2ψ1(λ)

λ∫

0

dλ1

ψ2(λ1)

a1(λ1)ψ1(λ1)
+C3ψ1(λ)

λ∫

0

dλ1

ψ2(λ1)

a1(λ1)ψ1(λ1)

λ1∫

0

dλ2

ψ3(λ2)

a2(λ2)ψ2(λ2)
+ ...

Multiple polylogarithms are of this form.



Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

r

∑
j=0

p j(λ)
d j

dλ j

does not factor into linear factors.

The next more complicate case:

The differential operator contains one irreducible second-order differential operator

a j(λ)
d2

dλ2
+b j(λ)

d

dλ
+ c j(λ)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

[

k
(
1− k2

) d2

dk2
+
(
1−3k2

) d

dk
− k

]

f (k) = 0

is irreducible.

The solutions of the differential equation are K(k) and K(
√

1− k2), where K(k) is the

complete elliptic integral of the first kind:

K(k) =

1∫

0

dx
√

(1− x2)(1− k2x2)
.



An example from physics: The two-loop sunrise integral

Sν1ν2ν3
(D,x) =

1

2

3

Picard-Fuchs operator for S111(2,x):

L = x(x−1) (x−9)
d2

dx2
+
(
3x2−20x+9

) d

dx
+(x−3)

(Broadhurst, Fleischer, Tarasov ’93)

Irreducible second-order differential operator.

Picard-Fuchs operator for the periods of a family of elliptic curves.



The elliptic curve

How to get the elliptic curve?

• From the Feynman graph polynomial:

−x1x2x3x+(x1 + x2+ x3)(x1x2+ x2x3 + x3x1) = 0

• From the maximal cut:

v2− (u− x)(u− x+4)
(
u2+2u+1−4x

)
= 0

Baikov ’96; Lee ’10; Kosower, Larsen, ’11; Caron-Huot, Larsen, ’12; Frellesvig, Papadopoulos, ’17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, ’17

The periods ψ1, ψ2 of the elliptic curve are solutions of the homogeneous differential

equation.

Adams, Bogner, S.W., ’13; Primo, Tancredi, ’16

Set τ =
ψ2

ψ1

, q = e2iπτ.



Bases of lattices

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as (ψ2,ψ1).
Convention: Normalise (ψ2,ψ1)→ (τ,1) where τ = ψ2/ψ1.

1

τ τ′

Change of basis:

(
ψ′

2

ψ′
1

)

=

(
a b

c d

)(
ψ2

ψ1

)

,

Transformation should be invertible:

(
a b

c d

)

∈ SL(2,Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d



The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or

a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ1/π from the master integrals
in the sunrise sector one obtains an ε-form:

I1 = 4ε2S110 (2−2ε,x) , I2 =−ε2 π

ψ1

S111 (2−2ε,x) , I3 =
1

ε

1

2πi

d

dτ
I2 +

1

24

(
3x2 −10x−9

)ψ2
1

π2
I2.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

d

dτ
~I = ε A(τ)~I,

where A(τ) is an ε-independent 3×3-matrix whose entries are modular forms.



The ε-form of the differential equation for the sunrise

The matrix A(τ) is given by

A(τ) =





0 0 0

0 − f2(τ) 1
1
4

f3(τ) f4(τ) − f2(τ)



 ,

where f2, f3 and f4 are modular forms of Γ1(6) of modular weight 2, 3 and 4,

respectively.

I1, I2 and I3 are expressed as iterated integrals of modular forms to all orders in ε.

Adams, S.W., ’17, ’18



Feynman integrals evaluating to iterated integrals of modular

forms

This applies to a wider class of Feynman integrals:

p2 p2

p2

m2

p2

m2



Congruence subgroups

Apart from SL2(2,Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(
a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =

{(
a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}

Γ(N) =

{(
a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}

Modular forms for congruence subgroups: Require “nice” transformation properties

only for subgroup Γ (plus holomorphicity on H and at the cusps).



Part IV

Several elliptic curves

(An example from top-pair production)



Kinematics

Iν1ν2ν3ν4ν5ν6ν7

(

D,
s

m2
,

t

m2

)

=
(
m2
)

7

∑
j=1

ν j−D
∫

dDk1

(2π)D

dDk2

(2π)D

7

∏
j=1

1

P
ν j

j

,

p1

p2 p3

p4

1

2

3
4

5

6
7

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2,

s = (p1+ p2)
2, t = (p2+ p3)

2.



Picard-Fuchs operator of elliptic curves

• Sunrise integral: An elliptic curve can be obtained either from

– Feynman graph polynomial

– maximal cut

The periods ψ1, ψ2 are the solutions of the homogeneous differential equations.

Adams, Bogner, S.W., ’13, ’14

• In general: The maximal cuts are solutions of the homogeneous differential

equations.

Primo, Tancredi, ’16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.



Maximal cuts

Maximal cut: For a Feynman integral

Iν1ν2...νn =
(
µ2
)ν−lD/2

∫
dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1

P
ν j

j

take the n-fold residue at

P1 = ...= Pn = 0

of the integrand and integrate over the remaining (lD−n) variables along a contour C .



Maximal cuts

Sunrise :

MaxCutC I1001001 (2−2ε) =

um2

π2

∫

C

dP

(P− t)
1
2 (P− t +4m2)

1
2 (P2+2m2P−4m2t +m4)

1
2

+O (ε) .

Double box :

MaxCutC I1111111 (4−2ε) =

um6

4π4s2

∫

C

dP

(P− t)
1
2 (P− t +4m2)

1
2

(

P2+2m2P−4m2t +m4− 4m2(m2−t)
2

s

)1
2

+O (ε) .



Three elliptic curves

E(a) : w2 = (z− t)
(
z− t +4m2

)(
z2+2m2z−4m2t +m4

)

E(b) : w2 = (z− t)
(
z− t +4m2

)

(

z2+2m2z−4m2t +m4− 4m2
(
m2− t

)2

s

)

E(c) : w2 = (z− t)
(
z− t +4m2

)

(

z2+
2m2 (s+4t)

(s−4m2)
z+

sm2
(
m2−4t

)
−4m2t2

s−4m2

)



Remarks

• E(a) gives rise to iterated integrals of modular forms of Γ1(6).

• For s → ∞ the curves E(b) and E(c) degenerate to E(a).

• If we would have only one curve, we expect that the result can be written in elliptic

polylogarithms.

• We have three elliptic curves.



Results

The differential equation for the master integrals can be brought into the form

d~I = εA~I,

where A is independent of ε.

The Laurent expansion in ε of all master integrals can be computed systematically to

all orders in ε in terms of iterated integrals.

The solution

- reduces to multiple polylogarithms for t = m2 and

- reduces to iterated integrals of modular forms of Γ1(6) for s = ∞.

Adams, Chaubey, S.W., ’18



Conclusions

• Loop integrals with masses important for top, W/Z- and H-physics.

• May involve elliptic sectors from two loops onwards.

• There is a class of Feynman integrals evaluating to iterated integrals of modular

forms.

• The planar double box integral relavant to tt̄-production with a closed top loop

depends on two variables and involves several elliptic sub-sectors. More than one

elliptic curve occurs. Results expressed in terms of Chen’s iterated integrals.

• We may expect more results in the near future.


