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HIGGS PRODUCTION �2

PRECISION IS REQUIRED!

WTF???



HIGGS PRODUCTION �3

PRECISION IS REQUIRED!



FRAMEWORK FOR PRECISION QCD �4

NON-PERTURBATIVE 
~ SUB FEW %

▸ Predictions for the LHC require 
calculations of cross sections 

▸ Perturbative description of 
scattering of non-perturbative 
protons 

▸ Specify certain observables that 
we want to measure: total 
production rate, production rate 
as a function of transverse 
momentum, etc. 

FACTORIZATION



INTEGRALS FOR CROSS SECTIONS �5

▸ Quantum mechanics requires averaging 
over unobserved degrees of freedom 

▸ Integrate over the momenta of 
unmeasured particles 

▸ Two types of unresolved momentum 
integrals: 

▸ Loop integrals: Virtual particles, off-shell 
momenta 

▸ Phase-space integrals: Real particles, 
physical momentum constraints, on-shell 
momenta 



▸ Integrals require parametrization in unconstrained 
variables 

▸ Loop integrals: Feynman parametrization, unconstrained 
integrals over Feynman parameters 

▸ Phase space integrals: On-shell delta-functions introduce 
non-linear constraints: 

▸ No-generally applicable parametrization to remove non-
linear constraints

INTEGRALS FOR CROSS SECTIONS �6



▸ Can parametrize on-shell particles with energies and angles, 
but introduces non-linear gram determinant constraints 

▸ Remaining delta function introduces non-linear relation 
between all integration variables 

▸ Vanishes in the soft limit

PHASE SPACE PARAMETRIZATIONS �7

[Anastasiou, Duhr, FD, Mistlberger]



▸ Possible to find phase space parameterizations in specific cases, 
but usually algebraic 

▸ E.g. parametrization for 2 -> 3

PHASE SPACE PARAMETRIZATIONS �8

[Herzog]

[Herzog]



▸ Phase space integrals often not discussed in the 
amplitudes / multiloop community 

▸ Come with their own set of challenges 

▸ Phase space integrals can be elliptic too! 

▸ Phase space integrals are often done numerically

PHASE SPACE INTEGRALS �9
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HIGGS PRODUCTION �10
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HIGGS PRODUCTION IN GLUON FUSION �11

[Anastasiou, Duhr, FD, Furlan, Gehrmann, 
Herzog, Lazopoulos, Mistlberger; 
Mistlberger] 

▸ Goal: Analytic calculation of the 
N3LO gluon fusion cross section 

▸ Many possible infrared (soft and 
collinear) and ultraviolet 
divergences 

▸ Dimensional regularization used 
to render integrals finite 

▸ Requires analytic calculation 



▸ NLO computed in the early 90s

MASSIVE AMPLITUDES FOR HIGGS PRODUCTION �12

LO

NLO

[Djouadi, Spira, Zerwas] 



▸ NNLO corrections are not known in closed form 

▸ Two-loop Higgs+3-parton amplitudes involve elliptic topologies 

▸ Second order differential equation: 

▸ Solutions are integrals over products of complete elliptic 
integrals and polylogarithms

MASSIVE AMPLITUDES FOR HIGGS PRODUCTION �13

[Bonciani, Del Duca, Frellesvig, 
Henn, Moriello, Smirnov] 



QCD CORRECTIONS IN HEAVY-TOP APPROXIMATION �14

mt ! 1

✓ ✓ ✓ ✓
[Anastasiou, Duhr, FD, Furlan, Gehrmann, Herzog, 
Lazopoulos, Mistlberger; Mistlberger] 

▸ Many examples of elliptic integrals with internal masses 
known in the literature 

▸ Let’s consider integrals without integral masses: 

▸ Higgs production in heavy top approximation
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Triple virtual Double-virtual real

Real-virtual²

Double-real virtual Triple real

GLUON FUSION AT N3LO �16
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Triple virtual

TRIPLE VIRTUAL CORRECTIONS �17

[Gehrmann, Glover, Huber, Ikizlerli, Studerus] 

▸ Massless three-point function 

▸ No kinematic dependence 

▸ Loop integrals evaluate to zeta 
values



Double-virtual real

Real-virtual²

DOUBLE-VIRTUAL REAL CORRECTIONS �18

▸ Interference of two one-loop four 
point amplitudes and phase space 
integral over a two-loop four-point 
amplitude. 

▸ Combined phase space and loop 
integrals evaluate to HPLs with 
indices {0,1,-1}.

[Anastasiou, Duhr, FD, Herzog, Mistlberger] 



Double-real virtual

DOUBLE-REAL VIRTUAL CORRECTIONS �19

▸ Higgs+4-parton phase space 
integral over one-loop five-point 
amplitude 

▸ Direct integration unfeasible



Double-real virtual

DOUBLE-REAL VIRTUAL CORRECTIONS �20

▸ Differential equations in the Higgs 
mass in canonical form 

▸ Decoupled order-by-order in epsilon 

▸ Algebraic alphabet

▸ Differential equations solved in terms of Chen-iterated 
integrals in z 

▸ Practical evaluation: Expand Chen iterated integrals in 
around z=1 to arbitrary order

[Anastasiou, Duhr, FD, Herzog, Mistlberger; 
Mistlberger] 



Triple real

TRIPLE-REAL CORRECTIONS �21

▸ Higgs+5-parton phase space 
integral over tree amplitudes 

▸ Direct integration impossible in 
closed form

▸ Possible to derive differential equations for phase space 
integrals 

▸ Treat delta-functions as residues of propagators 

▸ Differential equation not in canonical form, but can be 
expanded around z=1 [Anastasiou, Duhr, FD, Herzog, Mistlberger; 

Mistlberger] 



Triple real

TRIPLE-REAL CORRECTIONS �22

▸ 550 master integrals for RRR 

▸ System of differential equations:

▸ Goal is to find a transformation such that [Mistlberger] 

▸ System can then be solved order-by-order in epsilon



Triple real

TRIPLE-REAL CORRECTIONS �23

▸ Main work in solving the system is finding the 
transformation T. 

▸ Algorithmic methods exist when T is rational in z and 
epsilon. 

▸ Some sub-systems are algebraic in z. 

▸ Necessary to find a transformation to rationalize before 
algorithm can be applied.

▸ Boundary constant       is 
determined by an expansion 
around z=1 (soft expansion).

[Barkatou, Pflügel; Moser; Lee]

[Mistlberger] 



AN ELLIPTIC OBSTRUCTION �24

▸ There is a 4x4 system that cannot be solved this way.

[Mistlberger] 



AN ELLIPTIC OBSTRUCTION �25

▸ There is a 4x4 system that cannot be solved this way. 

▸ For ep=0 the system becomes a coupled 2x2 system

[Mistlberger] 

▸ Finding a transformation that removes the ep=0 part of 
the system amounts to finding the homogeneous solution.



AN ELLIPTIC INTEGRAL SOLUTION �26

▸ Coupled 2x2 system can be transformed into a second 
order differential equation

▸ Differential equation was solved directly by Stefan 
Weinzierl in terms of complete elliptic integrals



AN ELLIPTIC INTEGRAL SOLUTION �27

▸ Alternative: The leading singularity of a Feynman integral 
has to satisfy the same homogeneous differential 
equation as the full Feynman integral 

▸ Compute leading singularity and normalize Feynman 
integral to have unit leading singularity 

▸ System of differential equations should decouple order 
by order in ep. 

▸ This normalization will not be algebraic.



AN ELLIPTIC INTEGRAL SOLUTION �28

▸ The Feynman integrals are dimension 3x4 - 4 = 8 

▸ It is only possible to take a codimension 7 residue

▸ The root in the denominator has four distinct roots 

▸ The leading singularity is elliptic



AN ELLIPTIC INTEGRAL SOLUTION �29

▸ The leading singularity can be computed in terms of 
complete elliptic integrals

▸ The coefficients can be determined by equating 
expansions but are complex and unwieldy.



AN ALTERNATIVE SOLUTION �30

▸ The only obstruction to solving the entire system is the need for a 
non-algebraic transformation to decouple the system in the ep=0 
limit. 

▸ The homogeneous solution of the 2x2 system is such a 
transformation. 

▸ By definition, the rotated system is decoupled order-by-order: 
[Mistlberger] 

▸ The price to pay is the introduction of integrals over the 
unknown functions   



AN ALTERNATIVE SOLUTION �31

▸ Such a solution is useless unless we can evaluate the functions      . 

▸ Use differential equations to obtain power series for the

[Mistlberger] 

▸ Plugging in the Ansatz yields difference equations for the coefficients



AN ALTERNATIVE SOLUTION �32

▸ The difference equations can be solved to any required 
order to obtain power series solutions for the DE.

[Mistlberger] 

Diffe
rential equation

Boundary condition▸ The boundary conditions for the 
b coefficients can be 
determined from the 
knowledge of the system at z=1. 

▸ Hard to compute the associator 
to determine the boundary 
values at z=0.



AN ALTERNATIVE SOLUTION �33

[Mistlberger] 

▸ Expansion around z=1 has a radius of convergence of 1 

▸ Expansion around z=0 has a radius of convergence of ~0.09 

▸ In the interval (0,0.09) the two expansions overlap. 

▸ Approximation of the associator can be obtained by 
matching both expansions at a point in the interval. 

▸ Possible to evaluate the functions        to arbitrary precision.
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SOLVING THE SYSTEM �34

▸ The system of differential equations is decoupled order-
by-order in epsilon. 

▸ We can evaluate the homogeneous solutions to arbitrary 
precision. 

▸   

▸ The system can now be solved order-by-order in terms of 
Chen iterated integrals.

[Mistlberger] 



SOLVING THE SYSTEM �35

▸ Chen iterated integrals can be shuffle regulated in the 
usual fashion 

▸   

▸ Letters that are divergent for z=0 are regulated as

[Mistlberger] 



SOLVING THE SYSTEM �36

▸ The iterated integrals are not pure 

▸ The iterated integrals fulfill more identities than just shuffle  

▸ The coefficients can be determined, by expanding the 
iterated integrals and prefactors to sufficiently high order in 
z and demanding that every power in z vanishes separately 

[Mistlberger] 



COMPUTING THE CROSS SECTION �37

▸ With this all ingredients are in place to cross section 

▸ Differential equations are solved in terms of Chen iterated 
integrals with algebraic and non-algebraic letters 

▸ Iterated integrals can be regulated and identities can be 
resolved by match power series 

▸ How do we numerically evaluate the result? 

▸ In principle each length-n iterated integral can be 
evaluated as an n-dimensional integral (with eg. Monte 
Carlo) 

▸ Not very fast, stable or efficient :( 



DERIVING SERIES EXPANSIONS �38

▸ More efficient to derive series expansions around several 
points 

▸ Critical points of the cross section: 

▸ Derive expansions around  

▸ Associated radii of convergence 

▸ Sufficient to cover the entire interval (0,1) 

▸ Allows for relative precision better than 
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�((1-z)50)�((1/2-z)200)�(z100)



CONCLUSION

▸ Many sources of elliptic structures in Higgs production 

▸ Massive internal lines in the full standard model 

▸ Complicated massless phase space integrals 

▸ Possible to solve large systems of DEs with elliptic subsystems 

▸ Crucial to approximate associators by matching series 
expansions 

▸ This technique does not actually rely on knowledge about 
elliptic functions, maybe generalizable to higher functions? 

▸ Even more elliptic structures in Higgs production if we 
introduce more constraints (differential Higgs)

�39




