FALKO DULAT

SLAAC

ADVENTURES IN PHASE SPACE INTEGRATION ELLIPTCS IN HIGGS PRODUCTION

- Predictions for the LHC require calculations of cross sections
- Perturbative description of scattering of non-perturbative protons
- Specify certain observables that we want to measure: total production rate, production rate as a function of transverse momentum, etc.

e

- Quantum mechanics requires averaging over unobserved degrees of freedom
- Integrate over the momenta of unmeasured particles
- Two types of unresolved momentum integrals:
- Loop integrals: Virtual particles, off-shell momenta $\quad \int_{\mathbb{R}^{3}, 1} \frac{d^{4} \ell}{\ell^{2}\left(\ell+p_{1}\right)^{2} \ldots}$
- Phase-space integrals: Real particles, physical momentum constraints, on-shell
 momenta

$$
\int \operatorname{dLips}(\ell)|\mathcal{M}(\ell)|^{2}=\int_{\mathbb{R}^{3}, 1} d^{4} \ell \delta^{+}\left(\ell^{2}-m^{2}\right)(\ldots)
$$

- Integrals require parametrization in unconstrained variables

- Loop integrals: Feynman parametrization, unconstrained integrals over Feynman parameters

$$
\int_{\mathbb{R}^{(d-1), 1}} \frac{d^{d} \ell_{1} \ldots d^{d} \ell_{L}}{\ell^{2}\left(\ell+p_{1}\right)^{2} \ldots} \propto \int\left[d^{n} \vec{x}\right] \frac{\mathcal{U}^{N_{\nu}-(L+1) d / 2}}{\mathcal{F}^{N_{\nu}-L d / 2}}
$$

- Phase space integrals: On-shell delta-functions introduce non-linear constraints:
- No-generally applicable parametrization to remove nonlinear constraints
- Can parametrize on-shell particles with energies and angles, but introduces non-linear gram determinant constraints

$$
\begin{aligned}
& d \Phi_{N-1}(D)= \mathcal{N}_{N-2}(D) \bar{z}^{(N-2)(D-2)-1}\left(\prod_{\substack{1 \leq i, j \leq N \\
i \neq j, i, j) \neq(1,2)}} d s_{i j}\right) \\
& \times \delta\left(1-\sum_{i=3}^{N}\left(s_{1 i}+s_{2 i}\right)+(1-z) \sum_{i=3}^{N} \sum_{j=3}^{i-1} s_{i j}\right) G_{N}\left(\left\{s_{i j}\right\}\right)^{\frac{D-N-1}{2}} \Theta\left[G_{N}\left(\left\{s_{i j}\right\}\right)\right] \\
& G_{N}\left(\left\{s_{i j}\right\}\right)=\operatorname{det}\left(s_{1 i} s_{2 j}+s_{1 j} s_{2 i}-s_{i j}\right)_{3 \leq i, j \leq N}
\end{aligned}
$$

[Anastasiou, Duhr, FD, Mistlberger]

- Remaining delta function introduces non-linear relation between all integration variables
- Vanishes in the soft limit
- Possible to find phase space parameterizations in specific cases, but usually algebraic
- E.g. parametrization for 2 -> 3

$$
\begin{aligned}
s_{34} & =\frac{s \bar{z}^{2} x_{1} \bar{x}_{1} x_{2}}{z+x_{1} \bar{z}} \\
s_{134} & =-s \bar{z} x_{1} \\
s_{234} & =-s \bar{z} \bar{x}_{1}\left[\frac{z+x_{1} \bar{x}_{2} \bar{z}}{z+x_{1} \bar{z}}\right] \\
s_{23} & =-s \bar{z} \bar{x}_{1} x_{3} \\
s_{24} & =-s \bar{z} \bar{x}_{1} \bar{x}_{3}
\end{aligned}
$$

$$
\int d \Phi_{3}=\frac{(2 \pi)^{-3+2 \epsilon}}{16 \Gamma(1-2 \epsilon)} \int_{0}^{1} d x_{1} d x_{2} d x_{3} d x_{4}\left(\frac{s \bar{z}^{3} x_{1} \bar{x}_{1}}{z+x_{1} \bar{z}}\right)\left(\frac{s^{2} \bar{z}^{4} x_{1}^{2} \bar{x}_{1}^{2} x_{2} \bar{x}_{2} x_{3} \bar{x}_{3} \sin ^{2}\left(\pi x_{4}\right)}{z+x_{1} \bar{z}}\right)^{-\epsilon}
$$

$$
\begin{aligned}
s_{13} & =-s \bar{z} x_{1}\left[x_{3} \bar{x}_{2}+\frac{x_{2} \bar{x}_{3}}{z+x_{1} \bar{z}}-2 \cos \left(\pi x_{4}\right) \sqrt{\frac{x_{2} \bar{x}_{2} x_{3} \bar{x}_{3}}{z+x_{1} \bar{z}}}\right] \\
s_{14} & =-s \bar{z} x_{1}\left[\bar{x}_{3} \bar{x}_{2}+\frac{x_{2} x_{3}}{z+x_{1} \bar{z}}+2 \cos \left(\pi x_{4}\right) \sqrt{\frac{x_{2} \bar{x}_{2} x_{3} \bar{x}_{3}}{z+x_{1} \bar{z}}}\right]
\end{aligned}
$$

- Phase space integrals often not discussed in the amplitudes / multiloop community
- Come with their own set of challenges
- Phase space integrals can be elliptic too!
- Phase space integrals are often done numerically

$$
\hat{\sigma}=\alpha_{s}^{2} \sigma^{\mathrm{LO}}+\alpha_{s}^{3} \sigma^{\mathrm{NLO}}+\alpha_{s}^{4} \sigma^{\mathrm{NNLO}}+\alpha_{s}^{5} \sigma^{\mathrm{N} 3 \mathrm{LO}}
$$

- Goal: Analytic calculation of the N3LO gluon fusion cross section
- Many possible infrared (soft and collinear) and ultraviolet divergences

[Anastasiou, Duhr, FD, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger; Mistlberger]
- Dimensional regularization used to render integrals finite
- Requires analytic calculation

$$
\hat{\sigma}=\alpha_{s}^{2} \sigma^{\mathrm{LO}}+\alpha_{s}^{3} \sigma^{\mathrm{NLO}}+\alpha_{s}^{4} \sigma^{\mathrm{NNLO}}+\alpha_{s}^{5} \sigma^{\mathrm{N} 3 \mathrm{LO}}
$$

- NLO computed in the early 90s

[Djouadi, Spira, Zerwas]
$\hat{\sigma}=\alpha_{s}^{2} \sigma^{\mathrm{LO}}+\alpha_{s}^{3} \sigma^{\mathrm{NLO}}+\alpha_{s}^{4} \sigma^{\mathrm{NNLO}}+\alpha_{s}^{5} \sigma^{\mathrm{N} 3 \mathrm{LO}}$
- NNLO corrections are not known in closed form
- Two-loop Higgs+3-parton amplitudes involve elliptic topologies

[Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov]
- Second order differential equation:

$$
\begin{gathered}
\partial_{\alpha}^{2} h_{1}^{(i)}(\alpha)+p_{1}(\alpha) \partial_{\alpha} h_{1}^{(i)}(\alpha)+q_{1}(\alpha) h_{1}^{(i)}(\alpha)=r_{1}^{(i)}(\alpha) \\
y_{1}(\alpha)=K\left(\frac{1}{2}-\frac{k(\alpha)}{2}\right), \quad y_{2}(\alpha)=K\left(\frac{1}{2}+\frac{k(\alpha)}{2}\right)
\end{gathered}
$$

- Solutions are integrals over products of complete elliptic integrals and polylogarithms

$$
\int_{0}^{1} \mathcal{G}(t) \mathcal{E}^{(\sigma)}(t) \tilde{K}_{i}^{(-\sigma)}(t) d t
$$

- Many examples of elliptic integrals with internal masses known in the literature
- Let's consider integrals without integral masses:
- Higgs production in heavy top approximation

$\hat{\sigma}=\alpha_{s}^{2} \sigma_{\sqrt{ } \mathrm{LO}}^{\mathrm{LO}}+\alpha_{s}^{3} \sigma_{\sqrt{ }}^{\mathrm{NLO}}+\alpha_{s}^{4} \sigma_{\sqrt{ }}^{\mathrm{NNLO}}+\alpha_{s}^{5} \sigma_{\sqrt{ }}^{\mathrm{N} 3 \mathrm{LO}}$
[Anastasiou, Duhr, FD, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger; Mistlberger]

$$
\begin{aligned}
\left.\frac{d^{2} \hat{\sigma}_{i j}}{d Y d p_{T}^{2}} \sim \sum_{X} \int d \Phi_{n}\left|\mathcal{M}_{i j \rightarrow H+X}\right|^{2} \begin{array}{r}
\mathcal{L}=\mathcal{L}_{Q C D, 5}-\frac{1}{4 v} C_{1} H G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
m_{t} \rightarrow \infty \\
z
\end{array}\right)=\frac{m^{2} h}{S}
\end{aligned}
$$

LO:

NLO:

NNLO:

$$
\frac{d^{2} \hat{\sigma}_{i j}}{d Y d p_{T}^{2}} \sim \sum_{X} \int d \Phi_{n}\left|\mathcal{M}_{i j \rightarrow H+X}\right|^{2}
$$

Triple virtual

Double-virtual real

Double-real virtual

Triple real

- Massless three-point function

Real-virtual ${ }^{2}$

- Interference of two one-loop four point amplitudes and phase space integral over a two-loop four-point amplitude.
- Combined phase space and loop integrals evaluate to HPLs with indices $\{0,1,-1\}$.

Double-real virtual

- Higgs+4-parton phase space integral over one-loop five-point amplitude
- Direct integration unfeasible

$$
\int d \Phi_{3}=\frac{(2 \pi)^{-3+2 \epsilon}}{16 \Gamma(1-2 \epsilon)} \int_{0}^{1} d x_{1} d x_{2} d x_{3} d x_{4}\left(\frac{s \bar{z}^{3} x_{1} \bar{x}_{1}}{z+x_{1} \bar{z}}\right)\left(\frac{s^{2} \bar{z}^{4} x_{1}^{2} \bar{x}_{1}^{2} x_{2} \bar{x}_{2} x_{3} \bar{x}_{3} \sin ^{2}\left(\pi x_{4}\right)}{z+x_{1} \bar{z}}\right)^{-\epsilon}
$$

$$
\begin{aligned}
s_{13} & =-s \bar{z} x_{1}\left[x_{3} \bar{x}_{2}+\frac{x_{2} \bar{x}_{3}}{z+x_{1} \bar{z}}-2 \cos \left(\pi x_{4}\right) \sqrt{\frac{x_{2} \bar{x}_{2} x_{3} \bar{x}_{3}}{z+x_{1} \bar{z}}}\right] \\
s_{14} & =-s \bar{z} x_{1}\left[\bar{x}_{3} \bar{x}_{2}+\frac{x_{2} x_{3}}{z+x_{1} \bar{z}}+2 \cos \left(\pi x_{4}\right) \sqrt{\frac{x_{2} \bar{x}_{2} x_{3} \bar{x}_{3}}{z+x_{1} \bar{z}}}\right]
\end{aligned}
$$

Double-real virtual

- Differential equations in the Higgs mass in canonical form
- Decoupled order-by-order in epsilon
- Algebraic alphabet
$\mathfrak{A}=\{z, 1-z, 1+z, 1+\sqrt{z}, 1+\sqrt{1+4 z}, 2-z+\sqrt{z(z-4)}\}$
- Differential equations solved in terms of Chen-iterated integrals in z
- Practical evaluation: Expand Chen iterated integrals in around $\mathrm{z}=1$ to arbitrary order

- Higgs+5-parton phase space integral over tree amplitudes
- Direct integration impossible in closed form
$d \Phi_{H+m}=\frac{d^{d} p_{h}}{(2 \pi)^{d}}(2 \pi) \delta_{+}\left(p_{h}^{2}-m_{h}^{2}\right)(2 \pi)^{d} \delta^{d}\left(p_{1}+p_{2}+p_{h}+\sum_{i=3}^{m+2} p_{i}\right) \prod_{i=3}^{m+2} \frac{d^{d} p_{i}}{(2 \pi)^{d}}(2 \pi) \delta_{+}\left(p_{i}^{2}\right)$
- Possible to derive differential equations for phase space integrals

$$
\delta_{+}\left(p^{2}-m^{2}\right) \rightarrow\left[\frac{1}{p^{2}-m^{2}}\right]_{c}
$$

- Treat delta-functions as residues of propagators
- Differential equation not in canonical form, but can be expanded around $z=1$

- 550 master integrals for RRR
- System of differential equations:

$$
\frac{\partial}{\partial z} \vec{I}(z)=A(z, \epsilon) \vec{I}(z)
$$

- Goal is to find a transformation such that

$$
\begin{aligned}
\vec{I}(z) & =T \vec{I}^{\prime}(z) \\
\epsilon A^{\prime}(z, \epsilon) & =T^{-1} A(z, \epsilon) T-T^{-1} \frac{\partial}{\partial z} T . \\
\frac{\partial}{\partial z} \vec{I}^{\prime}(z) & =\epsilon A^{\prime}(z, \epsilon) \overrightarrow{I^{\prime}}(z) . \quad \lim _{\epsilon \rightarrow 0} A^{\prime}(z, \epsilon)=\text { const. }
\end{aligned}
$$

- System can then be solved order-by-order in epsilon

$$
\vec{I}^{\prime}(z)=\left[\mathbb{I}+\epsilon \int^{z} d z^{\prime} A^{\prime}\left(z^{\prime}, \epsilon\right)+\epsilon^{2} \int^{z} d z^{\prime} \int^{z^{\prime}} d z^{\prime \prime} A^{\prime}\left(z^{\prime}, \epsilon\right) A^{\prime}\left(z^{\prime \prime}, \epsilon\right)+\ldots\right] \vec{I}_{0}^{\prime} .
$$

- Boundary constant \vec{I}_{0}^{\prime} is determined by an expansion around $z=1$ (soft expansion).
- Main work in solving the system is finding the transformation T.
- Algorithmic methods exist when T is rational in z and epsilon.
[Barkatou, Pflügel; Moser; Lee]
- Some sub-systems are algebraic in z.
- Necessary to find a transformation to rationalize before algorithm can be applied.

- There is a 4×4 system that cannot be solved this way.

$$
E_{i}=\int d \Phi_{H+3} \frac{n_{i}}{p_{145}^{2} p_{235}^{2} p_{1245}^{2} p_{1235}^{2}}
$$

$$
\frac{\partial}{\partial z} \vec{E}=A_{0}(z) \vec{E}+\epsilon A_{1}(z, \epsilon) \vec{E}+\vec{y}(z)
$$

$$
\begin{aligned}
& n_{1}=\frac{z s^{3}}{\epsilon\left(p_{12345}^{2}-s z\right)} . \\
& n_{2}=-\frac{s}{16}\left(p_{14}^{2}+p_{23}^{2}+p_{35}^{2}\right) . \\
& n_{3}=-\frac{s}{16}\left(p_{23}^{2}+p_{35}^{2}\right) . \\
& n_{4}=\frac{s^{2}}{\epsilon} .
\end{aligned}
$$

$$
A_{0}(z)=\left(\begin{array}{cccc}
\frac{11-2 z}{z^{2}-11 z-1} & 0 & 0 & \frac{3-z}{z^{2}-11 z-1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{z} & 0 & 0 & 0
\end{array}\right)
$$

- There is a 4×4 system that cannot be solved this way.
- For ep=0 the system becomes a coupled 2×2 system

$$
\frac{\partial}{\partial z}\binom{E_{4}^{0}}{E_{1}^{0}}=A_{T} \cdot\binom{E_{4}^{0}}{E_{1}^{0}}=\left(\begin{array}{cc}
0 & \frac{1}{z} \\
\frac{3-z}{z^{2}-11 z-1} & \frac{11-2 z}{z^{2}-11 z-1}
\end{array}\right) \cdot\binom{E_{4}^{0}}{E_{1}^{0}}
$$

- Finding a transformation that removes the ep=0 part of the system amounts to finding the homogeneous solution.

$$
\begin{aligned}
\binom{E_{4}^{0}}{E_{1}^{0}} & =T_{E} \cdot\binom{E_{4}^{\prime 0}}{E_{1}^{\prime 0}}=\left(\begin{array}{cc}
t_{11}(z) t_{12}(z) \\
t_{21}(z) & t_{22}(z)
\end{array}\right) \cdot\binom{E_{4}^{\prime 0}}{E_{1}^{\prime 0}} \\
\frac{\partial}{\partial z}\binom{E_{4}^{\prime 0}}{E_{1}^{\prime 0}} & =0 . \\
\frac{\partial}{\partial z} T_{E} & =A_{T} \cdot T_{E}
\end{aligned}
$$

- Coupled 2×2 system can be transformed into a second order differential equation

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial z^{2}} E_{4}^{0}+\frac{\left(3 z^{2}-22 z-1\right)}{z\left(z^{2}-11 z-1\right)} \frac{\partial}{\partial z} E_{4}^{0}+\frac{(z-3)}{z\left(z^{2}-11 z-1\right)} E_{4}^{0}=0 . \\
& E_{1}^{0}=z \frac{\partial}{\partial z} E_{4}^{0} .
\end{aligned}
$$

- Differential equation was solved directly by Stefan Weinzierl in terms of complete elliptic integrals

- Alternative: The leading singularity of a Feynman integral has to satisfy the same homogeneous differential equation as the full Feynman integral
- Compute leading singularity and normalize Feynman integral to have unit leading singularity
- System of differential equations should decouple order by order in ep.
- This normalization will not be algebraic.

- The Feynman integrals are dimension $3 \times 4-4=8$
- It is only possible to take a codimension 7 residue

Leading Singularity $\left(E_{4}\right) \sim \int d x \frac{\theta\left((x-z)\left(x^{3}-x^{2} z+2 x^{2}+2 x z+x-z\right)\right)}{\sqrt{(x-z)\left(x^{3}-x^{2} z+2 x^{2}+2 x z+x-z\right)}}$

- The root in the denominator has four distinct roots
- The leading singularity is elliptic

Leading Singularity $\left(E_{4}\right) \sim \int d x \frac{\theta\left((x-z)\left(x^{3}-x^{2} z+2 x^{2}+2 x z+x-z\right)\right)}{\sqrt{(x-z)\left(x^{3}-x^{2} z+2 x^{2}+2 x z+x-z\right)}}$

- The leading singularity can be computed in terms of complete elliptic integrals

$$
\begin{aligned}
I_{1} & =\int_{r_{2}}^{r_{3}} d x \frac{1}{\sqrt{\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)}} \\
& =\frac{2}{\sqrt{\left(r_{4}-r_{2}\right)\left(r_{3}-r_{1}\right)}} K(1-m)
\end{aligned}
$$

$$
\varpi=\left(\begin{array}{cc}
I_{1}(z) & I_{2}(z) \\
z \partial_{z} I_{1}(z) & z \partial_{z} I_{2}(z)
\end{array}\right)
$$

$$
I_{2}=\int_{r_{3}}^{r_{4}} d x \frac{1}{\sqrt{\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)}}
$$

$$
=\frac{2}{\sqrt{\left(r_{4}-r_{2}\right)\left(r_{3}-r_{1}\right)}} K(m)
$$

$$
t_{i j}(z)=c_{1} I_{1}+c_{2} I_{2}+c_{3} z \frac{\partial}{\partial z} I_{1}+c_{4} z \frac{\partial}{\partial z} I_{2}
$$

$$
c_{i} \in \mathbb{C}
$$

- The coefficients can be determined by equating expansions but are complex and unwieldy.

$$
\left.\begin{array}{rl}
\binom{E_{4}^{0}}{E_{1}^{0}} & =T_{E} \cdot\binom{E_{4}^{\prime 0}}{E_{1}^{\prime 0}}=\left(\begin{array}{l}
t_{11}(z) \\
t_{21}(z) \\
t_{12}(z)
\end{array} t_{22}(z)\right.
\end{array}\right) \cdot\binom{E_{4}^{\prime 0}}{E_{1}^{\prime 0}} .
$$

- The only obstruction to solving the entire system is the need for a non-algebraic transformation to decouple the system in the ep=0 limit.
- The homogeneous solution of the 2×2 system is such a transformation.
- By definition, the rotated system is decoupled order-by-order:

$$
\begin{aligned}
& E_{1}=t_{22} E_{1}^{\prime}+t_{21} E_{4}^{\prime}, \\
& E_{4}=t_{11} E_{4}^{\prime}+t_{12} E_{1}^{\prime},
\end{aligned}
$$

- The price to pay is the introduction of integrals over the unknown functions $t_{i j}(z)$

$$
\vec{I}^{\prime}(z)=\left[\mathbb{I}+\epsilon \int^{z} d z^{\prime} A^{\prime}\left(z^{\prime}, \epsilon\right)+\epsilon^{2} \int^{z} d z^{\prime} \int^{z^{\prime}} d z^{\prime \prime} A^{\prime}\left(z^{\prime}, \epsilon\right) A^{\prime}\left(z^{\prime \prime}, \epsilon\right)+\ldots\right] \vec{I}_{0}^{\prime}
$$

$\vec{I}^{\prime}(z)=\left[\mathbb{I}+\epsilon \int^{z} d z^{\prime} A^{\prime}\left(z^{\prime}, \epsilon\right)+\epsilon^{2} \int^{z} d z^{\prime} \int^{z^{\prime}} d z^{\prime \prime} A^{\prime}\left(z^{\prime}, \epsilon\right) A^{\prime}\left(z^{\prime \prime}, \epsilon\right)+\ldots\right] \vec{I}_{0}^{\prime}$

$$
\begin{aligned}
& E_{1}=t_{22} E_{1}^{\prime}+t_{21} E_{4}^{\prime} \\
& E_{4}=t_{11} E_{4}^{\prime}+t_{12} E_{1}^{\prime}
\end{aligned}
$$

- Such a solution is useless unless we can evaluate the functions $t_{i j}(z)$
- Use differential equations to obtain power series for the $t_{i j}(z)$

$$
\begin{aligned}
& t_{i j}(z)=\sum_{n=0}^{\infty} \bar{z}^{n} b_{i j}^{(n)} \\
& t_{i j}(z)=\sum_{n=0}^{\infty} z^{n} c_{i j}^{(n)}+\log (z) \sum_{n=0}^{\infty} d_{i j}^{(n)} z^{n} \\
& T_{E}=e^{-\log (\bar{z}) \lim _{z \rightarrow 1} \bar{z} A_{T}} \cdot\left(\begin{array}{cc}
t_{11}^{1} & t_{12}^{1} \\
t_{21}^{1} & t_{22}^{1}
\end{array}\right)=\left(\begin{array}{ll}
t_{11}^{1} & t_{12}^{1} \\
t_{21}^{1} & t_{22}^{1}
\end{array}\right)+\mathcal{O}\left(\bar{z}^{1}\right) \text {. } \\
& T_{E}=e^{\log (z)} \lim _{z \rightarrow 0} z A_{T} \cdot\left(\begin{array}{cc}
t_{11}^{0} & t_{12}^{0} \\
t_{21}^{0} & t_{22}^{0}
\end{array}\right)=\left(\begin{array}{cc}
t_{11}^{0} & t_{12}^{0} \\
t_{21}^{0} & t_{22}^{0}
\end{array}\right)+\log (z)\left(\begin{array}{cc}
t_{21}^{0} & t_{22}^{0} \\
0 & 0
\end{array}\right)+\mathcal{O}\left(z^{1}\right)
\end{aligned}
$$

- Plugging in the Ansatz yields difference equations for the coefficients

$$
\begin{aligned}
& b_{11}^{(n+2)}=\frac{(n+1) b_{11}^{(n+1)}}{n+2}-\frac{b_{21}^{(n+1)}}{n+2} \text {. } \\
& c_{11}^{(n+2)}=\frac{c_{11}^{(n)}}{(n+2)^{2}}-\frac{3 c_{1}^{(n+1)}}{(n+2)^{2}}+\frac{c_{c 1}^{(n)}}{n+2}-\frac{11 c_{2}^{(n+1)}}{n+2}-\frac{2 d_{11}^{(n)}}{(n+2)^{3}} \\
& +\frac{6 d_{n+1)}^{(n+1)}}{(n+2)^{3}}-\frac{d_{12}^{(n)}}{(n+2)^{2}}{ }^{2} \frac{11 d_{n+1}^{(n+1)}}{(n+2)^{2}} \text {. } \\
& b_{21}^{(n+2)}=\frac{b_{11}^{(n)}}{11(n+2)}+\frac{2 b_{11}^{(n+1)}}{11(n+2)}+\frac{1}{11} b_{21}^{(n)}+\frac{9}{11} b_{21}^{(n+1)} \\
& c_{21}^{(n+2)}=\frac{c_{11}^{(n)}}{n+2}-\frac{3 c_{1+1}^{(n+1)}}{n+2}+c_{21}^{(n)}-11 c_{21}^{(n+1)}-\frac{d_{11}^{(n)}}{(n+2)^{2}}+\frac{3 d_{1}^{(n+1)}}{(n+2)^{2}} . \\
& d_{11}^{(n+2)}=\frac{d_{11}^{(n)}}{(n+2)^{2}}-\frac{3 d_{1}^{(n+1)}}{(n+2)^{2}}+\frac{d_{21}^{(n)}}{n+2}-\frac{11 d_{2+1}^{(n+1)}}{n+2} . \\
& d_{21}^{(n+2)}=\frac{d_{1}^{(n)}}{n+2}-\frac{3 d_{1}^{(n+1)}}{n+2}+d_{21}^{(n)}-11 d_{21}^{(n+1)} .
\end{aligned}
$$

$$
\begin{aligned}
& b_{11}^{(n+2)}=\frac{(n+1) b_{11}^{(n+1)}}{n+2}-\frac{b_{21}^{(n+1)}}{n+2} . \\
& b_{21}^{(n+2)}=\frac{b_{11}^{(n)}}{11(n+2)}+\frac{2 b_{11}^{(n+1)}}{11(n+2)}+\frac{1}{11} b_{21}^{(n)}+\frac{9}{11} b_{21}^{(n+1)}
\end{aligned}
$$

$$
c_{11}^{(n+2)}=\frac{c_{11}^{(n)}}{(n+2)^{2}}-\frac{33_{11}^{(n+1)}}{(n+2)^{2}}+\frac{c_{21}^{(n)}}{n+2}-\frac{111_{22}^{(n+1)}}{n+2}-\frac{2 d_{11}^{(n)}}{(n+2)^{3}}
$$

$$
+\frac{6 d_{1+1}^{(n+1)}}{(n+2)^{3}}-\frac{d_{2(2)}^{(n+1)}}{(n+2)^{2}}-\frac{11 d_{(2+1)}^{(n+2)}}{(n+2)^{2}} .
$$

$$
c_{21}^{(n+2)}=\frac{c_{c_{11}^{(n)}}^{n+2}}{n+\frac{3 c_{1+1}^{(n)}}{n+2}+c_{21}^{(n)}-11 c_{21}^{(n+1)}-\frac{d_{11}^{(n)}}{(n+2)^{2}}+\frac{3 d_{1}^{(n+1)}}{(n+2)^{2}} . .}
$$

$$
d_{11}^{(n+2)}=\frac{d_{11}^{(n)}}{(n+2)^{2}}-\frac{3 d_{d_{1+1}^{(n+1)}}^{(n+2)^{2}}+\frac{d_{21}^{(n)}}{n+2}-\frac{11 d_{2+1}^{(n+1)}}{n+2} .}{.}
$$

$$
d_{21}^{(n+2)}=\frac{d_{12}^{(n)}}{n+2}-\frac{331_{1}^{(n+1)}}{n+2}+d_{21}^{(n)}-111_{21}^{(n+1)} .
$$

- The difference equations can be solved to any required order to obtain power series solutions for the DE.
- The boundary conditions for the b coefficients can be determined from the knowledge of the system at $z=1$.
- Hard to compute the associator to determine the boundary values at $\mathrm{z}=0$.

$$
\begin{aligned}
& z=0 \\
& z=\frac{1}{2}(11-5 \sqrt{5}) \sim-0.09 \\
& z=\frac{1}{2}(11+5 \sqrt{5}) \sim 11.09
\end{aligned}
$$

- Expansion around $z=1$ has a radius of convergence of 1
- Expansion around $z=0$ has a radius of convergence of ~ 0.09
- In the interval $(0,0.09)$ the two expansions overlap.
- Approximation of the associator can be obtained by matching both expansions at a point in the interval.
- Possible to evaluate the functions $t_{i j}(z)$ to arbitrary precision.
- The system of differential equations is decoupled order-by-order in epsilon.
- We can evaluate the homogeneous solutions to arbitrary precision.
$\vec{I}^{\prime}(z)=\left[\mathbb{I}+\epsilon \int^{z} d z^{\prime} A^{\prime}\left(z^{\prime}, \epsilon\right)+\epsilon^{2} \int^{z} d z^{\prime} \int^{z^{\prime}} d z^{\prime \prime} A^{\prime}\left(z^{\prime}, \epsilon\right) A^{\prime}\left(z^{\prime \prime}, \epsilon\right)+\ldots\right] \overrightarrow{I_{0}^{\prime}}$
- The system can now be solved order-by-order in terms of Chen iterated integrals.
$J(\vec{\omega}, z)=J\left(\omega_{n}(z), \ldots, \omega_{1}(z), z\right)=\int_{0}^{z} d z^{\prime} \omega_{n}\left(z^{\prime}\right) J\left(\omega_{n-1}\left(z^{\prime}\right), \ldots, \omega_{1}\left(z^{\prime}\right), z^{\prime}\right)$
$\left\{1, \frac{1}{1-z}, \frac{1}{z}, \frac{1}{z+1}, \frac{1}{\sqrt{z}}, \frac{1}{\sqrt{4-z} \sqrt{z}}, \frac{\sqrt{z}}{1-z}, \frac{1}{\sqrt{z} \sqrt{z+4}}, \frac{\sqrt{z}}{\sqrt{z+4}}, \frac{1}{\sqrt{4 z+1}}, \frac{\sqrt{4 z+1}}{z}\right.$,
$\left.t_{11}, t_{12}, t_{21}, t_{22}, \frac{t_{11}}{1-z}, \frac{t_{11}}{z}, \frac{t_{11}}{z+1}, \frac{t_{12}}{1-z}, \frac{t_{12}}{z}, \frac{t_{12}}{z+1}, \frac{t_{21}}{z}, \frac{t_{22}}{z}\right\}$.

$$
J(\vec{\omega}, z)=J\left(\omega_{n}(z), \ldots, \omega_{1}(z), z\right)=\int_{0}^{z} d z^{\prime} \omega_{n}\left(z^{\prime}\right) J\left(\omega_{n-1}\left(z^{\prime}\right), \ldots, \omega_{1}\left(z^{\prime}\right), z^{\prime}\right)
$$

- Chen iterated integrals can be shuffle regulated in the usual fashion
$J\left(\omega_{n}(z), \ldots, \omega_{1}(z), \frac{1}{z} ; z\right)=\log (z) J\left(\omega_{n}(z), \ldots, \omega_{1}(z) ; z\right)-J\left(\omega_{n}(z), \ldots, \omega_{2}(z), \frac{1}{z}, \omega_{1}(z) ; z\right)+\ldots$
- Letters that are divergent for $\mathrm{z}=0$ are regulated as

$$
\begin{aligned}
J\left(\omega_{n}(z), \ldots, \omega_{1}(z), \frac{f(z)}{z} ; z\right) & =J\left(\omega_{n}(z), \ldots, \omega_{1}(z), \frac{f(z)-f(0)}{z} ; z\right) \\
& +f(0) J\left(\omega_{n}(z), \ldots, \omega_{1}(z), \frac{1}{z} ; z\right)
\end{aligned}
$$

$$
\begin{aligned}
J(\vec{\omega}, z) & =J\left(\omega_{n}(z), \ldots, \omega_{1}(z), z\right)=\int_{0}^{z} d z^{\prime} \omega_{n}\left(z^{\prime}\right) J\left(\omega_{n-1}\left(z^{\prime}\right), \ldots, \omega_{1}\left(z^{\prime}\right), z^{\prime}\right) \\
& \left\{1, \frac{1}{1-z}, \frac{1}{z}, \frac{1}{z+1}, \frac{1}{\sqrt{z}}, \frac{1}{\sqrt{4-z} \sqrt{z}}, \frac{\sqrt{z}}{1-z}, \frac{1}{\sqrt{z} \sqrt{z+4}}, \frac{\sqrt{z}}{\sqrt{z+4}}, \frac{1}{\sqrt{4 z+1}}, \frac{\sqrt{4 z+1}}{z}\right. \\
& \left.t_{11}, t_{12}, t_{21}, t_{22}, \frac{t_{11}}{1-z}, \frac{t_{11}}{z}, \frac{t_{11}}{z+1}, \frac{t_{12}}{1-z}, \frac{t_{12}}{z}, \frac{t_{12}}{z+1}, \frac{t_{21}}{z}, \frac{t_{22}}{z}\right\} .
\end{aligned}
$$

- The iterated integrals are not pure
- The iterated integrals fulfill more identities than just shuffle

$$
\sum c_{i} a_{i}(\bar{z}) J\left(\vec{\omega}_{i}, \bar{z}\right)=0, \quad, c_{i} \in \mathbb{Q}
$$

- The coefficients cani be determined, by expanding the iterated integrals and prefactors to sufficiently high order in z and demanding that every power in z vanishes separately

$$
\begin{aligned}
J\left(t_{11}, \frac{t_{12}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right) & =J\left(t_{12}, \frac{t_{11}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right)-J\left(t_{21}, \frac{t_{12}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right) \\
& -\frac{11}{5} J\left(\frac{t_{21}}{1-\bar{z}}, \frac{t_{12}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right)+J\left(t_{22}, \frac{t_{11}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right) \\
& +\frac{11}{5} J\left(\frac{t_{22}}{1-\bar{z}}, \frac{t_{11}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right)+\frac{1}{5}(5 \bar{z}-16) t_{11} J\left(\frac{t_{12}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right) \\
& -\frac{1}{5}(5 \bar{z}-16) t_{12} J\left(\frac{t_{11}}{1-\bar{z}}, \frac{1}{1-\bar{z}}\right) .
\end{aligned}
$$

- With this all ingredients are in place to cross section
- Differential equations are solved in terms of Chen iterated integrals with algebraic and non-algebraic letters
- Iterated integrals can be regulated and identities can be resolved by match power series
- How do we numerically evaluate the result?
- In principle each length-n iterated integral can be evaluated as an n-dimensional integral (with eg. Monte Carlo)
- Not very fast, stable or efficient :(
- More efficient to derive series expansions around several points
Critical points of the cross section: $\left\{\frac{1}{2}(1+5 \sqrt{5}), 4,1,0, \frac{1}{2}(11-5 \sqrt{5}),-\frac{1}{4},-1,-4\right\}$ $\sim\left\{11.0902,4,1,0,-0.0901699,-\frac{1}{4},-1,-4\right\}$.
- Derive expansions around $\left\{z=0, z=\frac{1}{2}, z=1\right\}$
- Associated radii of convergence $\left\{r_{0}=\left|\frac{1}{2}(11-5 \sqrt{5})\right| \sim 0.09, r_{1 / 2}=\frac{1}{2}, r_{1}=1\right\}$
- Sufficient to cover the entire interval $(0,1)$
- Allows for relative precision better than 10^{-10}

- Many sources of elliptic structures in Higgs production
- Massive internal lines in the full standard model
- Complicated massless phase space integrals
- Possible to solve large systems of DEs with elliptic subsystems
- Crucial to approximate associators by matching series expansions
- This technique does not actually rely on knowledge about elliptic functions, maybe generalizable to higher functions?
- Even more elliptic structures in Higgs production if we introduce more constraints (differential Higgs)

