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Elliptic Polylogarithms and Feynman Integrals

Feynman integrals are a useful representation for scattering amplitudes

© o

Their analytic structure is dictated by wunitarity and encoded in special
functions used for their evaluation
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Elliptic Polylogarithms and Feynman Integrals

Many F.l.s are expressible as Multiple PolyLogarithms (MPLs)

G(0;x) =In(x), G(a;x) =1In (172) for a#0

G(0,...,0;x) = 1 In" (x), G(a,w;x) = / &y G(w;y).
~—— n o ¥ —a

[E.Remiddi, J.Vermaseren '99; T. Gehrmann, E.Remiddi '00; Goncharov et al '00; Duhr, Gangl,
Rhodes '13; ...]
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Many F.l.s are expressible as Multiple PolyLogarithms (MPLs)

G(0;x) =In(x), G(a;x)=1In (172) for a#0

G(0,...,0;x) = 1 In" (x), G(a,w;x) = / &y G(w;y).
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Rhodes '13; ...]

A bit more “mathematically”:

- Space of functions generated by integrating rational functions
on the Riemann sphere CP!
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Elliptic Polylogarithms and Feynman Integrals

Why is this the case? — The differential equations method
[Kotikov '90, Remiddi '97, Gehrmann-Remiddi '00,..., J. Henn '13; C. Papadopoulos '14]

I

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

S7t...57¢
/H G ( K DD) =0 V=KL

Reduced to N master integrals, l;(d; xx) with i =1,..., N.

4
Differentiating the masters and using the IBPs we get a system of
N coupled differential equations

N

aiXk/,-(d;xk) = ci(di xe) fi(d; xi) -

j=1
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Elliptic Polylogarithms and Feynman Integrals

They look more or less like this:

4 €
Si =
Js
1—2e¢
s+t
+172€
S+ u

The coefficients are always rational functions!

s+f+u

s+t+u

=-O-
= -O

1
t

O]
O]

— If first order, we already see

why we get iterated integrals over rational functions (e expansion!)



Elliptic Polylogarithms and Feynman Integrals

Quite in general, differential equations are in block form

li(d; xic) = (mj(d; ), subj(d; x«))

I
P N M
a—xrm,-(d; Xk) = Zl hij(d; xk) mi(d; xk) + Zl nhii(d; xk) subj(d; x) .
= I =

homogeneous piece is MAIN source of complexity

¢

Loosely speaking (caveat: square roots!):
- if decoupled as d — 4, MPLs

- if coupled as d — 4, Elliptic...?

6
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Elliptic Polylogarithms and Feynman Integrals

As it turns out, it is often possible to choose a basis of Mls such that their
“polylogarithmic” nature becomes manifest — integrals with unit leading
singularities satisfy differential equations in canonical form [J. Henn '13]

0
Ox,

m(d; xc) = (d — 4) A(xx) m(d; x«)

where A(xx) are differentials of logarithms', for every x,, i.e. in differential
form:

dmi(d; xx) = (d — 4) dB(xk) m(d; xk)

LCaveat: not obvious what happens with “too many" square-roots!
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As it turns out, it is often possible to choose a basis of Mls such that their
“polylogarithmic” nature becomes manifest — integrals with unit leading
singularities satisfy differential equations in canonical form [J. Henn '13]

0
Ox,

m(d; xc) = (d — 4) A(xx) m(d; x«)

where A(xx) are differentials of logarithms', for every x,, i.e. in differential
form:

dmi(d; xx) = (d — 4) dB(xk) m(d; xk)

Now, as we very well know, this is not the end of the story...

LCaveat: not obvious what happens with “too many" square-roots!



Elliptic Polylogarithms and Feynman Integrals

Where the elliptic story begins, a.k.a. the sunrise graph:

/ d%% d91
(k2 = m?) (12 — m?)((k — | — p)? — m?)



Elliptic Polylogarithms and Feynman Integrals

Where the elliptic story begins, a.k.a. the sunrise graph:

/ de%k d?l
(k2 = m2)(2 — m2)((k =1 = p)? — m?)

In the language above, one finds that it fulfils an irreducible second order
differential equation [Broadhurst, Fleischer, Tarasov '93][Remiddi, Laporta '04]
[Mueller-Stach, Weinzierl, Zayadeh '12]

(di;+A(ds) B(d; s) —@+G(ds©_0
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Elliptic Polylogarithms and Feynman Integrals

Sunrise written as iterated integrals over the its homogeneous solutions

Homogeneous solutions given by the maximal cut:
[S.Laporta, E.Remiddi '04] [A.Primo, L.Tancredi '16, '17]

m

(:22 +Adis) -+ B(d: s)) —@— +6(d:s) Q =0

C d’ A(d d B(d 2 0
ut — (ﬁ“r ( ,S)E‘F ( ,S)) =



Elliptic Polylogarithms and Feynman Integrals

The cut / imaginary part of the sunrise graph in d =2

db
\/b b1)(b — by)(b — bs)(b — bs)

- 1 K ( 16m*\/s )
VEm—5)(s+mp  \Bm—5)(Vs + m)?

where K(x) is the complete elliptic integral of the first kind.

! dt
X):/o JI-2)1 _xp)
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Elliptic Polylogarithms and Feynman Integrals

By solving its second order differential equation, t he sunrise can be written as
iterated integrals over algebraic functions and (products) of complete elliptic
integrals... [see talks. by Weinzierl and Dulat]

Let's try to make sense of it...

2/47



Elliptic Polylogarithms and Feynman Integrals

Elliptic curves — some notation

Elliptic curve parametrized by a quartic or cubic polynomial

y'=x-a)x—a)(x—a)(x—a),  y = (x—e)lx—e)lx—e)

The two representations are equivalent (up to sending one point to infinity)

| A
~

~
_

yE=x*-x yr=xP—-x+1
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Elliptic Polylogarithms and Feynman Integrals
Elliptic curves — some notation

Quartic case
v = (x = a1)(x — a2)(x — a3)(x — as),,

The elliptic curve is characterised by two periods

a
w2:2c:4/ %:2[[((1—)\)

as
w1 = 2C4/ % = QK()\),
an Y a

with
(31 - 34)(«32 - 33) = > (31 _ 33)(32 — 34) .

T (- a)(a2—a)’

We usually choose wi € R and w, € iR, and define
w2

w1

14 /47



Elliptic Polylogarithms and Feynman Integrals

Elliptic curves are also equivalent to genus 1 surface: Complex Torus

Take a complex lattice

AN={wim+wn : mneZ}

w1,2 are called the periods on the lattice

Complex Torus ~ C/A

Weierstrass (z) function, doubly periodic on the torus

At 2 ~ s
o(z) = (z+ nw1 + mw2)?  (mMwi + nws)?

n24+m2#£0

One finds z — [x,y,1] = [p(2), ' (2),1]

[0'(2))° = 40(2)’ + @2p(2)’ —gz = ¥ =4 +gx" — g
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Elliptic Polylogarithms and Feynman Integrals

To move from the elliptic curve to the Torus, (a variant of) Abel map:

z—ﬂ/x dt
g w1 Ja \/'D4(t)

16 /47



Elliptic Polylogarithms and Feynman Integrals

A toy model: the imaginary part of the sunrise in d = 2 — 2¢ dimensions

p _/W’")z db (P4(b,s)>“
4m? P4(b75) Sb

Pa(b,s) = (b — by)(b— by)(b — bs)(b— ba).

with

These integrals (and generalisations thereof) appear in many other Feynman
integrals. How do we make sense of them?

17 /47



Elliptic Polylogarithms and Feynman Integrals

The imaginary part of the sunrise is a good place to see how these functions
show up in different guises... [E. Remiddi, L. Tancredi '17]

An example:

F(s,m’) = /(ﬁm)2 B g
’ an? Pa(bs) ©
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iterated integrals of rational functions over an elliptic curve




Elliptic Polylogarithms and Feynman Integrals

The imaginary part of the sunrise is a good place to see how these functions
show up in different guises... [E. Remiddi, L. Tancredi '17]

An example:

F(s,m’) = /(ﬁm)2 B g
’ an? Pa(bs) ©

1. Integral over the root of a quartic polynomial:
iterated integrals of rational functions over an elliptic curve

2. It also satisfies a non-homogeneous second-order differential equation in s

d2+<1+ 1 N 1 )d
ds? s s—1 s—9) ds

1 1 1 _ 2 _
(Gt e e)|FO=Re. i




Elliptic Polylogarithms and Feynman Integrals

We would like to

a. Understand these two representations

b. Figure out how to connect them (i.e., freely go from one to the other)

I

Let us see what we can say about the functions defined
by these repeated integrals...

(Vs—m)?
/ _ b log b
4

m? V/ Pa(b, s)

19



Elliptic Polylogarithms and Feynman Integrals

1. Natural language: iterated integrals of rational functions on an elliptic
curve (Generalization of MPLs, iterated integrals on the Riemann sphere...)
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What are rational functions on the elliptic curve?



Elliptic Polylogarithms and Feynman Integrals

1. Natural language: iterated integrals of rational functions on an elliptic
curve (Generalization of MPLs, iterated integrals on the Riemann sphere...)

What are rational functions on the elliptic curve?

A rational function on the elliptic curve is a function R(x,y) subject to the
constraint y = y/P(x)

_ pi(x)+p2(x)y  pr(x) 4 pa(x) v/ P(

B a1(x) + q2(x) y q1(x) + q2(x) v/ P(x) x W

3
2
+
N

R(x,y)




Elliptic Polylogarithms and Feynman Integrals

Given an elliptic curve y*> = P(x), with P(x) (cubic polynomial for simplicity),
let us study iterated integrals of rational functions on the curve.

1
/dx <R1(X)+ mRZ(X)> —

47
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Given an elliptic curve y*> = P(x), with P(x) (cubic polynomial for simplicity),
let us study iterated integrals of rational functions on the curve.

1
/dx (Rl(x)—f— ng(x)) —

After partial fractioning, one clearly ends up with

dx
/ o) from Ry(x)
o Xk, / L}( , from 1 R>(x)
y y(x—a) y




Elliptic Polylogarithms and Feynman Integrals

Given an elliptic curve y*> = P(x), with P(x) (cubic polynomial for simplicity),
let us study iterated integrals of rational functions on the curve.

1
/dx (Rl(x)—f— ng(x)) —

After partial fractioning, one clearly ends up with

dx g

y

o /M

X—C,‘)k ’

from Ry(x)

1
o from — Rx(x)
y

Integration by parts reduce everything to 4 kernels

/ dx / % x dx / dx
(x—a)’ vy’ vy’ y(x —c)




Elliptic Polylogarithms and Feynman Integrals

MPLs have one more property: integration kernels with simple poles!

We could define iterated integrals over these four kernels

/ /dx de / dx
(x =) y ' y(x —ci)

N
N



Elliptic Polylogarithms and Feynman Integrals

MPLs have one more property: integration kernels with simple poles!

We could define iterated integrals over these four kernels

Jea 15 15 T

xdx | —/du (% + O(uo)) — double pole at infinity!



Elliptic Polylogarithms and Feynman Integrals

MPLs have one more property: integration kernels with simple poles!

We could define iterated integrals over these four kernels

/X_C, /dx /xdx
%N—/du(%—i—@(uo)) &

Choose instead its primitive!

o[ e

double pole at infinity!

—  Trascendental Kernel!



Elliptic Polylogarithms and Feynman Integrals

Fundamental differences with MPLs:

- Impossible to find basis of kernels which are algebraic and only with
simple poles.

- We need infinite tower of integration kernels to span the whole space!



Elliptic Polylogarithms and Feynman Integrals

Integration Kernels (for “cubic” model) [J. Broedel, C. Duhr, F. Dulat, L. Tancredi '17]

C
900(07)() = jv
y
1 C;
p1(e,x) = L p(ex) = L pi(oe,x) = 2 Z3(x),
x—c y(x=¢) y
1 c _
orter) = (2 + 2 200) 27700,
xX—c 2y
_ C
ponlex) = 25 Z (), enloex) = 22 (x).
y(x—¢c) y
Ba(% %) = [ degm(an ) Ba(B 00
0
With the usual properties (shuffle...)
E3(S; x) E3(J; x) = Z E3(w; x), ¢ = (Z} e Z:) , same for d

wead
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Elliptic Polylogarithms and Feynman Integrals

Very same construction can be repeated using quartic representation of an
elliptic curve

y?=P(x), P(x) = (x — a1)(x — a2)(x — a3)(x — a4)
Go(0,x) = =,
y
o) = ——  paex)= X,
x—c y(x—¢)
di(oo,x) = 2 Z(x),  d1(oo,x) = =,
y y
bon(oo,x) = 2 2D - 22
y Ca

1 n—
Unle,x) = —— Z"V(x) — 8p2 a (),
X —C

Un(00,x) = 2 ZI0(x), (e, x) = =L Z{" (),
y y(x—¢)

X
m@:&ﬂ:AdWM%ﬂm@:%ﬁ,



Elliptic Polylogarithms and Feynman Integrals

Most of the kernels not needed in physical applications...

Yo(0,x) = 2
y

dlex) = —— . gex) = X
X—cC y(x—c¢)

Yi(o0,x) = 2 Zy(x),  wo1(oo,x) = 2,
y y

)

They contain MPLs as a trivial subset

Ea(g 0 dix) =G(a, . cuix),

47



Elliptic Polylogarithms and Feynman Integrals

Indeed, in this language, integrals above become straightforward

(v5—m)? db
Fo = [ ris s
(vs—m)? db
- Amz Pa(b,s) (6:0)
- - {Ea(88i(v5 = m?) —Ea(gdiam?) }

~ V(s — m2(Vs + 3m)

And similarly for all other integrals appearing in the imaginary part of the
sunrise graph, at every order in e.



Elliptic Polylogarithms and Feynman Integrals

We can prove that our functions are equivalent to the elliptic polylogarithms
introduced in the mathematics and string theory literature
[F. Brown, A. Levin, '11] [J. Broedel, C. Mafra, N. Matthes, O. Schlotterer '14]
Iterated integrals build on the Torus — two equivalent representations
1.
~ X ~
T dix) = / dt g™ (t—c) (22t
0

r(ljjjck,x)—/ dt £m)( (t—ca)T(2: &)



Elliptic Polylogarithms and Feynman Integrals

1. The integration kernels are defined through generating function

(20 x) = / dtg™(t — ) T(2 % t)
0

~601(0,7)01(z + 0, 7)
n) o 1\Y, 1 )
Flz,0,7) Zg  0i(z,7)01(c, )

61(z, 7) is the odd Jacobi theta function.



Elliptic Polylogarithms and Feynman Integrals

1. The integration kernels are defined through generating function

r(amaix) = / dtg™(t—a) (8%t
0

_1 (n) n_ 01(0,7)01(z 4+ o, 7)
F(z,a,1) = aZg (z,7)a" = 62z 7)o (o)

n>0

61(z, 7) is the odd Jacobi theta function.
Kernels are holomorphic but not doubly periodic
(1)(

g(l)(z+w1,7):g(1)(z,r), g (z4wy,T)=g8



Elliptic Polylogarithms and Feynman Integrals

2. Similarly, for the other representation

(e dx)= / dt F"(t — ) T(2 2 t)
0

1 Imz
(n) n_ i F
. E g (z,7) exp{ miag T} (z,,7)

n>0

31/47



Elliptic Polylogarithms and Feynman Integrals

2. Similarly, for the other representation

r(er ek, )=/0 dt F"(t — ) T(2 2 t)

ImT Imt

k
=5 [%fhnfz} g7 (zr) o O(zr) = gz, 7) + 2mi

Kernels are NOT holomorphic, and instead doubly periodic

FNz 4w, 7) = Nz7),  Fz4+w,T) =" (z,7)

31/47



Elliptic Polylogarithms and Feynman Integrals

Back to the toy model above: simply written in terms of these functions

2wq

F(s) =
V(Vs —1)(vs +3)
X {2Iog2F(8; Z) —2log (Vs — I)F(

co

)

And similarly for all other integrals appearing in the imaginary part of the
sunrise graph, at every order in e.

47



Elliptic Polylogarithms and Feynman Integrals

Something interesting: result above written as (2 - 25 x) where all

arguments are “rational points” in 7 (everything depends only on 7!)

,
=+

6 T r,sez.

[<IR%)



Elliptic Polylogarithms and Feynman Integrals

Something interesting: result above written as F( or ks x) where all
arguments are “rational points” in 7 (everything depends only on 7!)

,
=+

6 T r,sez.

[<IR%)

It turns out, quite in general, that in this case the integration kernels of the I'
polylogarithms transform nicely under modular transformations!

I

This implies that eMPLs evaluated at rational points can be written as linear
combinations of iterated integrals over Eisenstein series

n Ny i Nie = (m) (e e N
('151| '}’ksk"r - r.oodTthflﬁ ’252| '|’k5k'T ?

h(") ) B Z (27_”5 (1—) ( > Z e—27ri(scx—r/3)/N .
Nor,s P N e (a+Br)"
(@, 8)#0,0)




Elliptic Polylogarithms and Feynman Integrals

As an example, take the integral

(vs—m)?
(s) :/ — b b amd)
4

m? \/Pa(b,s)
repeating the exercise above we find (again m = 1 for simplicity):

1 1 im 1
I(s):%1(58;7)——,I(Sg;T)+ZT+|Og2+§|Og3.

l.e. iterated integrals of Eisenstein series for ['(6)! Similarly for all integrals in
the imaginary part of the sunrise graph.



Elliptic Polylogarithms and Feynman Integrals

Inspired by the integrals appearing in the imaginary part of the sunrise graph,
we defined a general class of functions and found it to be equivalent to the
elliptic polylogarithms of the math literature.

But are they useful for something else except the imaginary part of the sunrise?

Indeed, many examples both from the math and from the physics world turn
out to be expressible in terms of these functions



Elliptic Polylogarithms and Feynman Integrals

Start with the complete two-loop massive sunrise graph (d = 2)

m

1 1|1
- mg_pza[qm(gg;l)2E4(go;;1)+E4(301;1)

+Ea(57'1) —E4(58:1)]
Result can be obtained straightforwardly by direct integration over Feynman

parameters, and extended to higher orders in €. Similar results can be
obtained by using a dispersion relation, for equal and different masses!



Elliptic Polylogarithms and Feynman Integrals

First “generalisation”, the kite integral, finite in d = 2

K (p, m’) =

1
== [27\'2G(0,z) —272G(1,2z) + 3G(0,0,0, z) — 6G(0, 1,0, z) — 24¢(3)
z
+126(0,1,1,z) — 3G(1,0,0,2) — 6G(1,0,1,z) + 6G(1,1,0,z) + ...]
142z
E 001;1 E 010;1 —E 100;1
+(a1—a3)2(1—2)z[ 4(001 )+ 4(010 ) 4(000 )]
14z
E 0
+ (31733)(172)2[ +(o
+2BE4(§ 1 1i1) + Ea(351:1) +...] + 79 more Eys

oo 1!

T HE(g )

Also here, result obtained by direct integration!
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Elliptic Polylogarithms and Feynman Integrals

First (small) generalisation, the kite integral (contains the sunrise), finite in
d=2

K (p®, m*) =

1

== [271'2G(0,z) —27%G(1, z) + 3G(0,0,0,z) — 6G(0, 1,0, z) — 24¢(3)
z
+126G(0,1,1,2) — 3G(1,0,0,z) — 6G(1,0,1,z) + 6G(1,1,0,2) + ...]

1+=z
G = a1 =2) [Ea(§01:1) +Ea(510:1) —Ea(500:1)]
1+z 0-11

+m [Ba(§ o' 1) +Ea(§ 31 151)

+2E4 (3 1 1i1) + Ea(351:1) +...] +79 more Eys

Definitely does not look pure! See Brenda's talk...!

38/47



Elliptic Polylogarithms and Feynman Integrals

Note that:

With this formalism it is simple to show that sunrise (and the kite) can be
written as iterated integrals over modular forms of ['(6)! [ Adams, Weinzierl '17],
[Broedel, Duhr, Dulat, Penante, Tancredi '18]

1. Go from E4 — T functions (entirely algorithmic)

2. Check that one obtains only eMPLs evaluated at rational points!

39 /47



Elliptic Polylogarithms and Feynman Integrals

A more interesting example: [M. Czakon, A. Mitov '08; A. von Manteuffel, L. Tancredi '17]

- pf = pg = 0, four massive lines

p1 L —m2/p2
p =
T(d; p27 m2) = - 2 master integrals, T1(a), T2(a)
- Satisfy 2 coupled diff. eqs
P2

- Needed for NNLO v+, tt, ...

Again, it can be computed in terms of E4 by direct integration over Feynman
parameters.



Elliptic Polylogarithms and Feynman Integrals

Convenient to use Feynman parameters (the integral is finite in d = 4!)

d*k d*l

DR e (o e o e s By iy e

1.6 6 1
= CIX,' 4 1-— Xi
/o E < ,2:1: ) [F(xas %0, 33, xa, %5, %6, P2, m?)]?

with

Fx1, %2, X3, X4, X5, X6, P m°) =
(P 10 + x) x5 + %2 (x5 + x5)) %6 + X066 (50 + x6)] + m” (1 + 32 + % + )

X (x3x4 + X5x4 + X6 x4 + Xx3x5 + x3%6 + X2 (X3 + X5 + X6) + x1 (X2 + x4 + X5 + Xs)))

4147



Elliptic Polylogarithms and Feynman Integrals

We can perform all integrations in terms of E4 functions using Cheng-Wu
theorem [M. Hidding, F. Moriello '17]

T(4.3) = [5E4(883,;p;1)+5E4(883,,ip;1)+5E4(88%,m1p;1)+5E4(881,;,,;1)
4
00 1 1 00 1 1
— 3B, OOrmmﬂ' 1) — 3E4 oor,,:m1r1)*3E4(00rpmo 1)*3E4(00rpm1v1>
2t (Ba(38 201 + B4 (38.5,:1)) |

Ca

_3E4(°*1 11 1)—3E4(3;},m1m},1)—3E4(3;},;m3;1)—3E4(3;},:m1,1)

0 00 rmm 0+

+3Ioga(E4(g;j,,jm;1> +E4(g;,:m:1))]

432 0—-11 1 0—-111 0—-11 1 0—-111
77|:5E4(0000rmp;1)+5E4(0ooOrpp;]')+5E4<0oolrmp;1>+5E4(Ooolrpp;1)

with
1+ +1—16a
Gg=—"
* 4
1—+/1—4a 1—+1+4a 1++1—4a 1+ 1+ 4a
Fmm = 5 Fmp = > pm = 5 Fpp = 5
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Elliptic Polylogarithms and Feynman Integrals

Note that:

In this case, it does NOT seem to be possible to write this integral as iterated
integrals over modular forms. The corresponding ' eMPLs are NOT evaluated
at rational points (extra threshold coming from subtopologies!)
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We can perform all integrations in terms of E4 functions using Cheng-Wu
theorem [M. Hidding, F. Moriello '17]

2a°
T(4,a):?{SEza(SSémip;l)+5E4(88é,;p;1)+5E4(88i,ni,,:1)+5E4(88i,;,,;1)
4
— 3B (80,0, 5:1) —3Ba(88 1, 1:1) =3B (80 6:1) —3Ea(80 g 1:1)
00 1 . 00 1 |
+3Ioga(E4(00,mm,1)+E4(00,pm,1))]

4a° 0-11 1 0-11 1 0-11 1 0-11 1
—TA|:5E4(0<>oorm,,:1)+5E4(0<x>0rppr1)+5E4(oao1rmp’1)+5E4<0<>c1,ppv1)
0-1 1 1 0-1 1 1 0-1 1 1 0-11 1
,3E4<000,mmo?1)*3E4(ooormm1?1)*3E4(ooerpm0?1)*3E4(owrpm1i1)

+3loga (Ba(§ 22 ,0,01) +E4(3;},;m;1))]

Again, simple result, but definitely not pure! (see Brenda's talk!)
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Elliptic Polylogarithms and Feynman Integrals

This result is particularly important for “practical applications”, because it is
the first example of a realistic family of Feynman integrals that can be
expressed in terms of elliptic polylogarithms! (relevant for tt, vy, Hj, HH,...
production)

I

It is a first step! Many other examples will follow soon:
two- three- and four- point functions at two loops!



Elliptic Polylogarithms and Feynman Integrals

At least one loose end:

All examples that | showed you have been computed by direct integration over
Feynman parameters (or dispersion relations)!

How do we relate these functions to what comes out from solving the
corresponding differential equations? Still work in progress! Stay tuned!
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THANKS!
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