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Introduction



Motivation

Higher order loop corrections inevitable for precision particle physics. Starting from 2-loops
multiple polylogarithms (MPLs) not sufficient to describe Feynman Integrals (FIs).

Single scale example: the sunrise.

Multiscale example: NNLO contribution for the process pp → tt̄ involves calculating the
planar double box integral with a closed top loop (The Topbox).
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Tool at our disposal: Differential Equations (DEs)

Finding the canonical-form

• First we try to find a basis that brings the DEs to the ‘ε-form’ [J. Henn, ’13].
• In cases where rational transformation is sufficient : several algorithms exist; e.g. in massless

processes.
• for algebraic cases (involving roots): not many transformations well known.

• One such algorithm is enlarging the set of transformations from basis
from rational functions in kinematic variablesy [L. Adams, S. Weinzierl, ’18]

rational functions in the kinematic variables, the periods of the elliptic curve
and their derivatives

Linear form of DEs
We may slightly relax the form of DE and consider

d ~J = (A(0) + εA(1)) ~J,

where A(0) and A(1) are independent of ε and A(0) is strictly lower-triangular and A(1) is block
triangular.
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Preliminaries



Kinematics

The Topbox

• Solid lines → massive propagators,
all external momenta → out-going and on-shell.
s = (p1 + p2)2 and t = (p2 + p3)2.

• Nine independent scalar products involving the loop momenta.

Auxiliary Topology

• Integral family for the auxiliary topology given by:

Iν1ν2ν3ν4ν5ν6ν7ν8ν9

(
D, s, t,m2, µ2

)
= e2γEε

(
µ2
)ν−D ∫ dDk1

iπ
D
2

dDk2

iπ
D
2

9∏
j=1

1
P
νj

j

,
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−p13 −p24

P1 = −(k1 + p2)2 + m2, P2 = −k2 + m2, P3 = −(k1 + p1 + p2)2 + m2, P4 = −(k1 + k2)2 + m2,
P5 = −k2

2 , P6 = −(k2 + p3 + p4)2, P7 = −(k2 + p3)2 + m2, P8 = −(k1 + p2 − p3)2 + m2,
P9 = −(k2 − p2 + p3)2.
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Sector id:

id =
9∑
j=1

2j−1Θ(νj).

Aim:

Interested in the Laurent expansion of these integrals in ε, where ε = (4 − D)/2 is the di-
mensional regularisation parameter.

Iν1ν2ν3ν4ν5ν6ν7 (4− 2ε) =
∞∑

j=jmin

εjI
(j)
ν1ν2ν3ν4ν5ν6ν7 .
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Iterated integrals

Chen’s definition

For λ ∈ [0, 1] the k-fold iterated integral of ω1, ...ωk along the path γ is defined by

Iγ(ω1, ..., ωk;λ) =
∫ λ

0 dλ1f1(λ1)
∫ λ1

0 dλ2f2(λ2)...
∫ λk−1

0 dλkfk(λk).

Choice of co-ordinate system

1 We set µ = m and can take s
m2 , t

m2 as the two dimensionless ratios on which the FI
depends; the (s,t) coordinates.

2 We can also choose the (x,y) coordinates where s
m2 = − (1−x)2

x
, t
m2 = y (to

rationalise the square root
√
−s(4m2 − s)).

3 In order to simultaneously rationalise also the square root
√
−s(−4m2 − s), we may

use the coordinate s
m2 = − (1+x̃2)2

x̃(1−x̃2) .

Working bottom-up we choose coordinates suitable to the sector.
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Iterated integrals

Multiple Polylogarithms

• For zk 6= 0, defined by

G(z1, ..zk; y) =
∫ y

0

dy1

y1 − z1

∫ y1

0

dy2

y2 − z2
...

∫ yk−1

0

dyk

yk − zk
.

Iterated integrals of modular forms

• Let f1(τ), f2(τ),...,fk(τ) be modular forms of a congruence subgroup.

• Assuming fk(τ) vanishes at the cusp τ = i∞, we define the k-fold iterated integral by

F (f1, f2, .., fk; q) =(2πi)k
∫ τ

i∞
dτ1f1(τ1)

∫ τ1

i∞
dτ2f2(τ2)...

∫ τk−1

i∞
dτkfk(τk),

q =e2πiτ .
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Elliptic Curves



Elliptic Curves

Maximal Cut
Baikov representations: the loop by loop approach.

1 We first consider a one-loop sub-graph with a minimal number of propagators and change
the integration variables for this sub-graph as:

dDk

iπ
D
2

= u
2−eπ−

e
2

Γ(D−e2 )
G(p1, ..., pe)

1+e−D
2 G(k, p1, ..., pe)

D−e−2
2

e+1∏
j=1

dPj ,

then repeat the procedure for the second loop.

2 For an integral of the form

I = e2γEε
(
µ2
)n−D ∫ dDk1

iπ
D
2

dDk2

iπ
D
2

N (k1, k2)
n∏
j=1

1
Pj
,

a maximal cut is given by

MaxCutC I = e2γEε
(
µ2
)n−D ∫

C

dDk1

iπ
D
2

dDk2

iπ
D
2

N (k1, k2)
n∏
j=1

δ (Pj) ,

Coming up: Extraction of all the 3 curves using Maximal Cut
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Extraction of the elliptic curve

Sector 73: Elliptic Curve a, E(a)

• Starting with the sub-loop C1 first we obtain

MaxCutC I1001001 (2− 2ε) =

uµ2

π2

∫
C

dP ′

(P ′ − t + 2m2)
1
2 (P ′ − t + 6m2)

1
2 (P ′2 + 6m2P ′ − 4m2t + 9m4)

1
2

+O (ε) .

• We could have equally well started with the sub-loop C2, where we find

MaxCutC I1001001 (2− 2ε) =

uµ2

π2

∫
C

dP

(P − t)
1
2 (P − t + 4m2)

1
2 (P 2 + 2m2P − 4m2t + m4)

1
2

+O (ε) .

The two representations are related by P
′

= P − 2m2.
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Extraction of the elliptic curve

Sector 127: Elliptic Curve b, E(b)

For the double box integral in 4 space-time dimensions.

MaxCutC I1111111 (4− 2ε) =
uµ6

4π4s2

∫
C

dP

(P − t)
1
2 (P − t+ 4m2)

1
2

(
P 2 + 2m2P − 4m2t+m4 − 4m2(m2−t)2

s

) 1
2

+O (ε) .

The term − 4m2(m2−t)2

s
vanishes in the limit s→∞.
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Extraction of the elliptic curve

Sector 79: Elliptic Curve b, E(b)

For the maximal cut in the sector 79

MaxCutC I1112001 (4− 2ε) =
uµ4

4π3s

∫
C

dP

(P − t)
1
2 (P − t+ 4m2)

1
2

(
P 2 + 2m2P − 4m2t+m4 − 4m2(m2−t)2

s

) 1
2

+O (ε) .

Up to the prefactor, this is the same maximal cut as for the full topology. So sectors 79 and 127
are associated to the same elliptic curve.
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Extraction of the elliptic curve
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Extraction of the elliptic curve

Sector 121: Elliptic Curve c, E(c)

For the sector 121,

MaxCutC I2001111 (4− 2ε) =
uµ4

4π3 (−s)
1
2 (4m2 − s)

1
2

×

∫
C

dP

(P − t)
1
2 (P − t + 4m2)

1
2

(
P 2 + 2m2 (s+4t)

(s−4m2)P + m2(m2 − 4t) s
s−4m2 − 4m2t2

s−4m2

) 1
2

+O (ε) .

This corresponds to an elliptic curve different from the ones found in sectors 79 and 127. In the limit s→∞
the maximal cut integral reduces again, up to a prefactor, to one of the sunrise.
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Extraction of the elliptic curve

Sector 93: Elliptic Curve b, E(b)

For the sector 93,

1
ε

MaxCutC I1012101 (4− 2ε) =

uµ4

π2s

∫
C

dP

(P − t)
1
2 (P − t+ 4m2)

1
2

(
P 2 + 2m2P − 4m2t+m4 − 4m2(m2−t)2

s

) 1
2

+O (ε) .

This is again the same elliptic curve from the sector 79 and 127.
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Extraction of the elliptic curve

Sector 123: No elliptic curve

The last maximal cut example is from the sector 123. We find:

MaxCutC I1101111 (4− 2ε) =
uµ4

4π3 (−s)
1
2 (4m2 − s)

1
2

×
∫
C

dP

(P − t)
(
P 2 + 2m2 (s+4t)

(s−4m2)P +m2 (m2 − 4t) s
s−4m2 − 4m2t2

s−4m2

) 1
2

+O (ε) .

The denominator may be viewed as a square root of a quartic polynomial, where two roots
coincide. This does not involve an elliptic curve and corresponds to genus zero.
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Reading an elliptic curve from the maximal cut

After ‘getting’ the curve:

1 We may read off the elliptic curve (e.g. for the sunrise integral) from the maximal cut:

Ea : w2 −
(
z −

t

µ2

)(
z −

t− 4m2

µ2 )(z2 +
2m2

µ2 z +
m4 − 4m2t

µ4

)
= 0.

2 The roots of the quartic polynomial are

z
(a)
1 =

t− 4m2

µ2 , z
(a)
2 =

−m2 − 2m
√
t

µ2 , z
(a)
3 =

−m2 + 2m
√
t

µ2 , z
(a)
4 =

t

µ2

3 This curve has the j-invariant

j(E(a)) =
(3m2 + t)3(3m6 + 75m4t− 15m2t2 + t3)

m6t(m2 − t)6(9m2 − t)2
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Differential Equations (DEs)



The system of DEs

Pre-canonical MIs

• Let the DEs for ~I read

d~I = A~I, A = As
ds

m2 +At
dt

m2 .

• Matrix-valued one-form A satisfies the integrability condition

dA−A ∧A = 0.

Change of Basis

• We can change the basis,

~J = U~I,

to obtain

d ~J = A′ ~J,

where the matrix A′ is related to A by

A′ = UAU−1 − UdU−1.
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The system of DEs

‘Linear-form’

• We choose ~J so that it brings the DEs linear in ε,

d ~J =
(
A(0) + εA(1)

)
~J,

• The matrices A(0) and A(1) are independent of ε and A(0) is strictly lower-triangular and
A(1) is block triangular.

Simple DEs

• The system of DEs simplifies for t = m2 (i.e. for y=1), as well as for s =∞ (i.e. for x=0).

• For y=1 the solution for MIs can be expressed in terms of MPLs.

• For x=0 the MIs are expressed in terms of iterated integrals of modular forms.
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• The system of DEs simplifies for t = m2 (i.e. for y=1), as well as for s =∞ (i.e. for x=0).

• For y=1 the solution for MIs can be expressed in terms of MPLs.

• For x=0 the MIs are expressed in terms of iterated integrals of modular forms.
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Basis for the Linear form of DEs

An example for the basis:

J24 =ε3
(1− x)2

x

π

ψ
(b)
1

I1112001,

J25 =ε3 (1− 2ε)
(1− x)2

x
I1111001 −

1
3

(y − 9)
ψ

(b)
1
π

J24,

J26 =
6
ε

(
ψ

(b)
1

)2

2πiW (b)
y

d

dy
J24 −

1
4
(
3y2 − 10y − 9

)(ψ(b)
1
π

)2

J24

−
1
24
(
y2 − 30y − 27

) ψ(b)
1
π

ψ
(a)
1
π

J6,
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Integration kernels

For our system of DEs we find 107 independent integration kernels.

In case of multiple polylogarithms:

• For the cases with a singular point at s = 4m2,
(

i.e. to rationalise the square root√
−s(4m2 − s)

)
we make the replacements as :

s

m2 =−
(1− x)2

x
,

ds√
−s(4m2 − s)

=
dx

x

• For subtopologies with singular point at s = −4m2 we make the change as

s

m2 =−
(1 + x′)2

x′
,

ds√
−s(−4m2 − s)

=
dx′

x′

• In order to simultaneously rationalise the two square roots
√
−s(4m2 − s) and√

−s(−4m2 − s), we introduce a variable x̃ through x = x̃
(1−x̃)
1+x̃ .
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Integration kernels

Integration kernels for multiple polylogarithms

Overall we have the following kernels in this case:

ω0 =
ds

s
=

2 (2x̃) dx̃
x̃2 + 1

−
dx̃

x̃− 1
−

dx̃

x̃+ 1
−
dx̃

x̃
,

ω4 =
ds

s− 4m2 =
2 (2x̃− 2) dx̃
x̃2 − 2x̃− 1

−
dx̃

x̃− 1
−

dx̃

x̃+ 1
−
dx̃

x̃
,

ω−4 =
ds

s+ 4m2 =
2 (2x̃+ 2) dx̃
x̃2 + 2x̃− 1

−
dx̃

x̃− 1
−

dx̃

x̃+ 1
−
dx̃

x̃
,

ω0,4 =
ds√

−s (4m2 − s)
=

dx̃

x̃− 1
−

dx̃

x̃+ 1
+
dx̃

x̃
,

ω−4,0 =
ds√

−s (−4m2 − s)
= −

dx̃

x̃− 1
+

dx̃

x̃+ 1
+
dx̃

x̃
.
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Integration kernels

Modular form kernels

• For MIs depending only t, integration kernels are of the form (2πi)f(τ)dτ (a)
6(

τ
(a)
6 = 1

6
ψ

(a)
2

ψ
(a)
1

)
; f is a modular form of Γ1(6) from the set {1, f2, f3, f4, g2,1} ,

f2 =−
1
4

(
3y2 − 10y − 9

)(ψ(a)
1
π

)2

, f3 = −
3
2
y (y − 1) (y − 9)

(
ψ

(a)
1
π

)3

,

f4 =
1

16
(y + 3)4

(
ψ

(a)
1
π

)4

, g2,1 = −
1
2
y (y − 9)

(
ψ

(a)
1
π

)2

.

The high energy limit

• Let gn,r = − 1
2
y(y−1)(y−9)

y−r

(
Ψa

1
π

)n
and hn,s = − 1

2y(y − 1)1+s(y − 9)
(

Ψ(a)
1
π

)n
.

• In the limit x→ 0, E(b) and E(c) degenerate to E(a) and we may express all MIs in terms
of iterated integrals of modular forms. Corresponding full set is

{1, g2,0, g2,1, g2,9, g3,1, h3,0, g4,0, g4,1, g4,9, h4,0, h4,1} .
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Integration kernels

The full set of Integration kernels

Notations:

• We define ‘m-weight’ = scaling power + 2.

• The integration kernels appearing in the ε0 part A(0) denoted by a(r)
n,j , where n gives the

m-weight, (r) indicates the periods and j indexes different integration kernels with the same
n and (r).

• Integration kernels appearing in the ε1-part A(1) denoted by η(r)
n,j .

• For d-log form we use d2,j .

{
ω0, ω4, ω−4, ω0,4, ω−4,0, f2, f3, f4, g2,1, η

(r)
0 , η

(b)
1,1−4, η

(c)
1,1−3, d2,1−5,

η2,1−12, η
( r

s
)

2 , a
(b)
3,1−4, a

(c)
3,1−3, η

(a)
3,1−3, η

(b)
3,1−24, η

(c)
3,1−11, a

(a,b)
4,1 ,

a
(a,c)
4,1 , a

(b,b)
4,1−5, a

(c,c)
4,1 , a

(b,c)
4,1 , η

(a,b)
4,1−3, η

(a,c)
4,1 , η

(b,b)
4,1−5, η

(c,c)
4,1 , η

(b,c)
4,1

}
.
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Integrating the system of DE

Boundary Conditions (BCs)

• We integrate the system of DE starting from the point (x, y) = (0, 1).

• The BC may be expressed as a linear combination of transcendental constants.

• A basis of these transcendental constants up to weight four is given by

w = 1 : ln(2),

w = 2 : ζ2, ln2(2),

w = 3 : ζ3, ζ2 ln(2), ln3(2),

w = 4 : ζ4, Li4
(1

2

)
, ζ3 ln(2), ζ2 ln2(2), ln4(2).

• For MIs which do not depend on s or t we need to calculate explicitly the BCs . Two such
integrals: J1 (which is also a product of tadpoles) and J8 (the sunrise at the pseudo
threshold).
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Integrating the system of DEs

The tadpole integral

Tν
(
D,m2, µ2

)
= eγEε

Γ
(
ν − D

2

)
Γ (ν)

(
m2

µ2

)D
2 −ν

.

For D = 2− 2ε, µ = m and ν = 1 we have

T1 (2− 2ε) = eγEεΓ (ε) =
1
ε

[
1 +

1
2
ζ2ε

2 −
1
3
ζ3ε

3 +
9
16
ζ4ε

4 +O
(
ε5
)]
.

Sunrise at Pseudo-Threshold [L. Adams, C. Bogner, S. Weinzierl, arxiv: 1302.7004]

J8 = 6ε2e2γEεΓ (1 + 2ε)

1∫
0

dx2

1∫
0

dx4

[ 1
x2 − 1

−
1

x2 + 1

] [ 1
x4 + 1

−
1

x4 + x2

]
× (x2 + 1)ε (x4 + 1)−2ε (x4 + x2)−2ε

(
x4 +

x2

x2 + 1

)ε
.

• For all the other MIs we obtain BCs from the behaviour at a specific point, where the MI
vanishes or reduces to simpler integrals, here these are (x,y) equal to (0,1), (1,1) & (-1,1).
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Solutions of DEs for the Master
Integrals (MIs)



A peek at the results

Jk =
∞∑
j=0

εjJ
(j)
k
.

The integrals which do not depend on s nor t

J1 = 1 + ζ2ε
2 −

2
3
ζ3ε

3 +
7
4
ζ4ε

4 +O
(
ε5
)
,

J8 = 6ζ2ε2 + ε3 (21ζ3 − 36ζ2 ln 2) + ε4
(

144 Li4
(1

2

)
− 78ζ4 + 72ζ2 ln2 (2) + 6 ln4 (2)

)
+O
(
ε5
)
.
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A peek at the results

One of the MIs which depend only on s

J
(0)
2 = 0,

J
(1)
2 = −G (0;x) ,

J
(2)
2 = 2G (−1, 0;x)−G (0, 0;x) + ζ2,

J
(3)
2 = −4G (−1,−1, 0;x) + 2G (−1, 0, 0;x) + 2G (0,−1, 0;x)−G (0, 0, 0;x)

−2ζ2G (−1;x) + 2ζ3,

J
(4)
2 = 8G (−1,−1,−1, 0;x)− 4G (−1,−1, 0, 0;x)− 4G (−1, 0,−1, 0;x)

−4G (0,−1,−1, 0;x) + 2G (−1, 0, 0, 0;x) + 2G (0,−1, 0, 0;x)

+2G (0, 0,−1, 0;x)−G (0, 0, 0, 0;x) + 4ζ2G (−1,−1;x)

−2ζ2G (0,−1;x)− 4ζ3G (−1;x) +
8
3
ζ3G (0;x) +

19
4
ζ4.
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A peek at the results

One of the MIs which depend only on t

J
(0)
6 = 0,

J
(1)
6 = 0,

J
(2)
6 = F (1, f3; q6) + 3ζ2,

J
(3)
6 = −F (f2, 1, f3; q6)− F (1, f2, f3; q6) + 3ζ2F (1; q6)− 3ζ2F (f2; q6) +

21
2
ζ3

−18ζ2 ln (2)

J
(4)
6 = F (f2, f2, 1, f3; q6) + F (f2, 1, f2, f3; q6) + F (1, f2, f2, f3; q6) + F (1, f4, 1, f3; q6)

+3ζ2F (f2, f2; q6)− 3ζ2F (1, f2; q6)− 3ζ2F (f2, 1; q6) + 3ζ2F (1, f4; q6)

+ζ2F (1, f3; q6) +
(21

2
ζ3 − 18ζ2 ln (2)

)
(F (1; q6)− F (f2; q6))− 39ζ4 + 72Li4

(1
2

)
+36ζ2 ln2(2) + 3 ln4 (2) .
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A peek at the results

One of the MIs which depend on both s and t

J
(0)
24 = 0,

J
(1)
24 = 0,

J
(2)
24 = 0,

J
(3)
24 = Iγ

(
η

(b)
0 , η

( b
a

)
2 , f3;λ

)
−

3
2
Iγ

(
η

(b)
0 , η

(b)
3,5, ω0,4;λ

)
−3 Iγ

(
η

(b)
1,1, ω0,4, ω0,4;λ

)
+ Iγ

(
η

( a
b

)
2 , η

(a)
0 , f3;λ

)
+

9
2
Iγ

(
η

(b)
0 , a

(b)
3,2, ω0,4, ω0,4;λ

)
+ Iγ

(
η

(b)
0 , a

(a,b)
4,1 , η

(a)
0 , f3;λ

)
+

7
4
ζ2 Iγ

(
η

(b)
0 ;λ

)
− 2 ζ2 Iγ

(
η

(b)
1,1;λ

)
+ 3 ζ2 Iγ

(
η

( a
b

)
2 ;λ

)
+3 ζ2 Iγ

(
η

(b)
0 , a

(b)
3,2;λ

)
+ 3 ζ2 Iγ

(
η

(b)
0 , a

(a,b)
4,1 ;λ

)
− 3 ln (2) ζ2 −

7
4
ζ3.
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Outlook



Summary

1 Analytic results for the planar double box relevant to top-pair production with a closed top
loop presented.

2 This system depends on two scales and involves several elliptic sub-sectors.
3 Extraction of the elliptic curves shown.
4 Results expressed in terms of iterated integrals and the occuring integration kernels discussed.

Outlook

1 The first time an integral involving more than one elliptic curve has been calculated.
2 Opens the door to even more complicated class of Feynman Integrals.

Thanks!
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