Beyond one elliptic curve

Ekta Chaubey

Elliptic Functions in Mathematics and Physics, Ascona $7^{\text {th }}$ September 2018
in collaboration with L. Adams, S. Weinzierl

Institut für Physik, Universität Mainz

Outline

(1) Introduction
(2) Preliminaries

Kinematics
Iterated Integrals
(3) Elliptic Curves

Maximal Cut
All the three elliptic curves
(4) Differential Equations (DEs)

The system of DEs
Integration kernels
Boundary Conditions
(5) Solutions of DEs for the Master Integrals (MIs)

A taste of the results
(6) Outlook

Introduction

Motivation

Higher order loop corrections inevitable for precision particle physics. Starting from 2-loops multiple polylogarithms (MPLs) not sufficient to describe Feynman Integrals (Fls).

Motivation

Higher order loop corrections inevitable for precision particle physics. Starting from 2-loops multiple polylogarithms (MPLs) not sufficient to describe Feynman Integrals (FIs).

Single scale example: the sunrise.

Motivation

Higher order loop corrections inevitable for precision particle physics. Starting from 2-loops multiple polylogarithms (MPLs) not sufficient to describe Feynman Integrals (FIs).

Single scale example: the sunrise.

Multiscale example: NNLO contribution for the process $p p \rightarrow t \bar{t}$ involves calculating the planar double box integral with a closed top loop (The Topbox).

Tool at our disposal: Differential Equations (DEs)

Finding the canonical-form

- First we try to find a basis that brings the DEs to the ' ϵ-form' [J. Henn, '13].
- In cases where rational transformation is sufficient : several algorithms exist; e.g. in massless processes.
- for algebraic cases (involving roots): not many transformations well known.

Tool at our disposal: Differential Equations (DEs)

Finding the canonical-form

- First we try to find a basis that brings the DEs to the ' ϵ-form' [J. Henn, '13].
- In cases where rational transformation is sufficient : several algorithms exist; e.g. in massless processes.
- for algebraic cases (involving roots): not many transformations well known.
- One such algorithm is enlarging the set of transformations from basis from rational functions in kinematic variables
[L. Adams, S. Weinzierl, '18]

```
rational functions in the kinematic variables, the periods of the elliptic curve
and their derivatives
```


Tool at our disposal: Differential Equations (DEs)

Finding the canonical-form

- First we try to find a basis that brings the DEs to the ' ϵ-form' [J. Henn, '13].
- In cases where rational transformation is sufficient : several algorithms exist; e.g. in massless processes.
- for algebraic cases (involving roots): not many transformations well known.
- One such algorithm is enlarging the set of transformations from basis from rational functions in kinematic variables
[L. Adams, S. Weinzierl, '18]

rational functions in the kinematic variables, the periods of the elliptic curve and their derivatives

Linear form of DEs

We may slightly relax the form of DE and consider

$$
d \vec{J}=\left(A^{(0)}+\epsilon A^{(1)}\right) \vec{J},
$$

where $A^{(0)}$ and $A^{(1)}$ are independent of ϵ and $A^{(0)}$ is strictly lower-triangular and $A^{(1)}$ is block triangular.

Preliminaries

Kinematics

The Topbox

- Solid lines \rightarrow massive propagators,
all external momenta \rightarrow out-going and on-shell.
$s=\left(p_{1}+p_{2}\right)^{2}$ and $t=\left(p_{2}+p_{3}\right)^{2}$.
- Nine independent scalar products involving the loop momenta.

Auxiliary Topology

- Integral family for the auxiliary topology given by:

$$
\begin{gathered}
I_{\nu_{1} \nu_{2} \nu_{3} \nu_{4} \nu_{5} \nu_{6} \nu_{7} \nu_{8} \nu_{9}}\left(D, s, t, m^{2}, \mu^{2}\right) \\
=e^{2 \gamma_{E} \varepsilon}\left(\mu^{2}\right)^{\nu-D} \int \frac{d^{D} k_{1}}{i \pi^{\frac{D}{2}}} \frac{d^{D} k_{2}}{i \pi^{\frac{D}{2}}} \prod_{j=1}^{9} \frac{1}{P_{j}^{\nu_{j}}}, \\
P_{1}=-\left(k_{1}+p_{2}\right)^{2}+m^{2}, P_{2}=-k^{2}+m^{2}, P_{3}=-\left(k_{1}+p_{1}+p_{2}\right)^{2}+m^{2}, P_{4}=-\left(k_{1}+k_{2}\right)^{2}+m^{2}, \\
P_{5}=-k_{2}^{2}, P_{6}=-\left(k_{2}+p_{3}+p_{4}\right)^{2}, P_{7}=-\left(k_{2}+p_{3}\right)^{2}+m^{2}, P_{8}=-\left(k_{1}+p_{2}-p_{3}\right)^{2}+m^{2}, \\
P_{9}=-\left(k_{2}-p_{2}+p_{3}\right)^{2} .
\end{gathered}
$$

Sector id:

$$
\mathrm{id}=\sum_{j=1}^{9} 2^{j-1} \Theta\left(\nu_{j}\right) .
$$

Sector id:

$$
\mathrm{id}=\sum_{j=1}^{9} 2^{j-1} \Theta\left(\nu_{j}\right) .
$$

Aim:

Interested in the Laurent expansion of these integrals in ϵ, where $\epsilon=(4-D) / 2$ is the dimensional regularisation parameter.

$$
I_{\nu_{1} \nu_{2} \nu_{3} \nu_{4} \nu_{5} \nu_{6} \nu_{7}}(4-2 \epsilon)=\sum_{j=j_{\text {min }}}^{\infty} \epsilon^{j} I_{\nu_{1} \nu_{2} \nu_{3} \nu_{4} \nu_{5} \nu_{6} \nu_{7}}^{(j)} .
$$

Iterated integrals

Chen's definition

For $\lambda \in[0,1]$ the k-fold iterated integral of $\omega_{1}, \ldots \omega_{k}$ along the path γ is defined by $I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k}-1} d \lambda_{k} f_{k}\left(\lambda_{k}\right)$.

Iterated integrals

Chen's definition

For $\lambda \in[0,1]$ the k-fold iterated integral of $\omega_{1}, \ldots \omega_{k}$ along the path γ is defined by $I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k}-1} d \lambda_{k} f_{k}\left(\lambda_{k}\right)$.

Choice of co-ordinate system

(1) We set $\mu=m$ and can take $\frac{s}{m^{2}}, \frac{t}{m^{2}}$ as the two dimensionless ratios on which the FI depends; the (s, t) coordinates.
(2) We can also choose the (x, y) coordinates where $\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}, \frac{t}{m^{2}}=y$ (to rationalise the square root $\left.\sqrt{-s\left(4 m^{2}-s\right)}\right)$.
(3) In order to simultaneously rationalise also the square root $\sqrt{-s\left(-4 m^{2}-s\right)}$, we may use the coordinate $\frac{s}{m^{2}}=-\frac{\left(1+\tilde{x}^{2}\right)^{2}}{\tilde{x}\left(1-\tilde{x}^{2}\right)}$.
Working bottom-up we choose coordinates suitable to the sector.

Iterated integrals

Multiple Polylogarithms

- For $z_{k} \neq 0$, defined by

$$
G\left(z_{1}, . . z_{k} ; y\right)=\int_{0}^{y} \frac{d y_{1}}{y_{1}-z_{1}} \int_{0}^{y_{1}} \frac{d y_{2}}{y_{2}-z_{2}} \ldots \int_{0}^{y_{k}-1} \frac{d y_{k}}{y_{k}-z_{k}}
$$

Iterated integrals

Multiple Polylogarithms

- For $z_{k} \neq 0$, defined by

$$
G\left(z_{1}, . . z_{k} ; y\right)=\int_{0}^{y} \frac{d y_{1}}{y_{1}-z_{1}} \int_{0}^{y_{1}} \frac{d y_{2}}{y_{2}-z_{2}} \ldots \int_{0}^{y_{k}-1} \frac{d y_{k}}{y_{k}-z_{k}}
$$

Iterated integrals of modular forms

- Let $f_{1}(\tau), f_{2}(\tau), \ldots, f_{k}(\tau)$ be modular forms of a congruence subgroup.
- Assuming $f_{k}(\tau)$ vanishes at the cusp $\tau=i \infty$, we define the k-fold iterated integral by

$$
\begin{aligned}
F\left(f_{1}, f_{2}, . ., f_{k} ; q\right) & =(2 \pi i)^{k} \int_{i \infty}^{\tau} d \tau_{1} f_{1}\left(\tau_{1}\right) \int_{i \infty}^{\tau_{1}} d \tau_{2} f_{2}\left(\tau_{2}\right) \ldots \int_{i \infty}^{\tau_{k}-1} d \tau_{k} f_{k}\left(\tau_{k}\right) \\
q & =e^{2 \pi i \tau}
\end{aligned}
$$

Elliptic Curves

Elliptic Curves

Maximal Cut

Baikov representations: the loop by loop approach.
1 We first consider a one-loop sub-graph with a minimal number of propagators and change the integration variables for this sub-graph as:

$$
\frac{d^{D} k}{i \pi^{\frac{D}{2}}}=u \frac{2^{-e} \pi^{-\frac{e}{2}}}{\Gamma\left(\frac{D-e}{2}\right)} G\left(p_{1}, \ldots, p_{e}\right)^{\frac{1+e-D}{2}} G\left(k, p_{1}, \ldots, p_{e}\right)^{\frac{D-e-2}{2}} \prod_{j=1}^{e+1} d P_{j}
$$

then repeat the procedure for the second loop.

Elliptic Curves

Maximal Cut

Baikov representations: the loop by loop approach.
1 We first consider a one-loop sub-graph with a minimal number of propagators and change the integration variables for this sub-graph as:

$$
\frac{d^{D} k}{i \pi^{\frac{D}{2}}}=u \frac{2^{-e} \pi^{-\frac{e}{2}}}{\Gamma\left(\frac{D-e}{2}\right)} G\left(p_{1}, \ldots, p_{e}\right)^{\frac{1+e-D}{2}} G\left(k, p_{1}, \ldots, p_{e}\right)^{\frac{D-e-2}{2}} \prod_{j=1}^{e+1} d P_{j}
$$

then repeat the procedure for the second loop.
(2. For an integral of the form

$$
I=e^{2 \gamma_{E} \varepsilon}\left(\mu^{2}\right)^{n-D} \int \frac{d^{D} k_{1}}{i \pi^{\frac{D}{2}}} \frac{d^{D} k_{2}}{i \pi^{\frac{D}{2}}} N\left(k_{1}, k_{2}\right) \prod_{j=1}^{n} \frac{1}{P_{j}}
$$

a maximal cut is given by

$$
\operatorname{MaxCut}_{\mathcal{C}} I=e^{2 \gamma_{E} \varepsilon}\left(\mu^{2}\right)^{n-D} \int_{\mathcal{C}} \frac{d^{D} k_{1}}{i \pi^{\frac{D}{2}}} \frac{d^{D} k_{2}}{i \pi^{\frac{D}{2}}} N\left(k_{1}, k_{2}\right) \prod_{j=1}^{n} \delta\left(P_{j}\right)
$$

Coming up: Extraction of all the 3 curves using Maximal Cut

Extraction of the elliptic curve

Sector 73: Elliptic Curve a, $E^{(a)}$

- Starting with the sub-loop C_{1} first we obtain
$\mathrm{MaxCut}_{\mathcal{C}} I_{1001001}(2-2 \varepsilon)=$

$$
\frac{u \mu^{2}}{\pi^{2}} \int_{\mathcal{C}} \frac{d P^{\prime}}{\left(P^{\prime}-t+2 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime}-t+6 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime 2}+6 m^{2} P^{\prime}-4 m^{2} t+9 m^{4}\right)^{\frac{1}{2}}}+\mathcal{O}(\varepsilon)
$$

Extraction of the elliptic curve

Sector 73: Elliptic Curve a, $E^{(a)}$

- Starting with the sub-loop C_{1} first we obtain

$$
\begin{aligned}
& \operatorname{MaxCut}_{\mathcal{C}} \\
& \qquad \frac{u \mu^{2}}{\pi^{2}} \int_{\mathcal{C}} \frac{d P^{\prime}}{\left(P^{\prime}-t+2 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime}-t+6 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime 2}+6 m^{2} P^{\prime}-4 m^{2} t+9 m^{4}\right)^{\frac{1}{2}}}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

- We could have equally well started with the sub-loop C_{2}, where we find

$$
\begin{aligned}
& \operatorname{MaxCut} \\
& \qquad \\
& \qquad \frac{u \mu^{2}}{\pi^{2}} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}\right)^{\frac{1}{2}}}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 73: Elliptic Curve a, $E^{(a)}$

- Starting with the sub-loop C_{1} first we obtain
$\mathrm{MaxCut}_{\mathcal{C}} I_{1001001}(2-2 \varepsilon)=$

$$
\frac{u \mu^{2}}{\pi^{2}} \int_{\mathcal{C}} \frac{d P^{\prime}}{\left(P^{\prime}-t+2 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime}-t+6 m^{2}\right)^{\frac{1}{2}}\left(P^{\prime 2}+6 m^{2} P^{\prime}-4 m^{2} t+9 m^{4}\right)^{\frac{1}{2}}}+\mathcal{O}(\varepsilon)
$$

- We could have equally well started with the sub-loop C_{2}, where we find

$$
\begin{aligned}
& \operatorname{MaxCut} \\
& \qquad \\
& \qquad \frac{u \mu^{2}}{\pi^{2}} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}\right)^{\frac{1}{2}}}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

The two representations are related by $P^{\prime}=P-2 m^{2}$.

Extraction of the elliptic curve

Sector 127: Elliptic Curve b, $E^{(b)}$

For the double box integral in 4 space-time dimensions.
$\mathrm{MaxCut}_{\mathcal{C}} I_{1111111}(4-2 \varepsilon)=$

$$
\begin{aligned}
& \frac{u \mu^{6}}{4 \pi^{4} s^{2}} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& +\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 127: Elliptic Curve b, $E^{(b)}$

For the double box integral in 4 space-time dimensions.
$\mathrm{MaxCut}_{\mathcal{C}} I_{1111111}(4-2 \varepsilon)=$

$$
\begin{aligned}
& \frac{u \mu^{6}}{4 \pi^{4} s^{2}} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& +\mathcal{O}(\varepsilon)
\end{aligned}
$$

The term $-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}$ vanishes in the limit $s \rightarrow \infty$.

Extraction of the elliptic curve

Sector 79: Elliptic Curve b, $E^{(b)}$

For the maximal cut in the sector 79
MaxCut $_{\mathcal{C}} I_{1112001}(4-2 \varepsilon)=$

$$
\begin{aligned}
& \frac{u \mu^{4}}{4 \pi^{3} s} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& +\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 79: Elliptic Curve b, $E^{(b)}$

For the maximal cut in the sector 79

$$
\begin{aligned}
& \operatorname{MaxCut}_{\mathcal{C}} I_{1112001}(4-2 \varepsilon)= \\
& \quad \frac{u \mu^{4}}{4 \pi^{3} s} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& \quad+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Up to the prefactor, this is the same maximal cut as for the full topology. So sectors 79 and 127 are associated to the same elliptic curve.

Extraction of the elliptic curve

Sector 121: Elliptic Curve c, $E^{(c)}$

For the sector 121,
MaxCutc $I_{2001111}(4-2 \varepsilon)=\frac{u \mu^{4}}{4 \pi^{3}(-s)^{\frac{1}{2}}\left(4 m^{2}-s\right)^{\frac{1}{2}}}$

$$
\begin{aligned}
& \times \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} \frac{(s+4 t)}{\left(s-4 m^{2}\right)} P+m^{2}\left(m^{2}-4 t\right) \frac{s}{s-4 m^{2}}-\frac{4 m^{2} t^{2}}{s-4 m^{2}}\right)^{\frac{1}{2}}} \\
& +\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 121: Elliptic Curve c, $E^{(c)}$

For the sector 121,

$$
\operatorname{MaxCut}_{\mathcal{C}} I_{2001111}(4-2 \varepsilon)=\frac{u \mu^{4}}{4 \pi^{3}(-s)^{\frac{1}{2}}\left(4 m^{2}-s\right)^{\frac{1}{2}}}
$$

$$
\begin{aligned}
& \times \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} \frac{(s+4 t)}{\left(s-4 m^{2}\right)} P+m^{2}\left(m^{2}-4 t\right) \frac{s}{s-4 m^{2}}-\frac{4 m^{2} t^{2}}{s-4 m^{2}}\right)^{\frac{1}{2}}} \\
& +\mathcal{O}(\varepsilon)
\end{aligned}
$$

This corresponds to an elliptic curve different from the ones found in sectors 79 and 127. In the limit $s \rightarrow \infty$ the maximal cut integral reduces again, up to a prefactor, to one of the sunrise.

Extraction of the elliptic curve

Sector 93: Elliptic Curve b, $E^{(b)}$

For the sector 93,

$$
\begin{aligned}
& \frac{1}{\varepsilon} \operatorname{MaxCut}_{\mathcal{C}} I_{1012101}(4-2 \varepsilon)= \\
& \quad \frac{u \mu^{4}}{\pi^{2} s} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& \quad+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 93: Elliptic Curve b, $E^{(b)}$

For the sector 93,

$$
\begin{aligned}
& \frac{1}{\varepsilon} \operatorname{MaxCut}_{\mathcal{C}} I_{1012101}(4-2 \varepsilon)= \\
& \frac{u \mu^{4}}{\pi^{2} s} \int_{\mathcal{C}} \frac{d P}{(P-t)^{\frac{1}{2}}\left(P-t+4 m^{2}\right)^{\frac{1}{2}}\left(P^{2}+2 m^{2} P-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right)^{\frac{1}{2}}} \\
& \quad+\mathcal{O}(\varepsilon)
\end{aligned}
$$

This is again the same elliptic curve from the sector 79 and 127 .

Extraction of the elliptic curve

Sector 123: No elliptic curve

The last maximal cut example is from the sector 123 . We find:

$$
\begin{aligned}
& \operatorname{MaxCut}_{\mathcal{C}} I_{1101111}(4-2 \varepsilon)=\frac{u \mu^{4}}{4 \pi^{3}(-s)^{\frac{1}{2}}\left(4 m^{2}-s\right)^{\frac{1}{2}}} \\
& \quad \times \int_{\mathcal{C}} \frac{d P}{(P-t)\left(P^{2}+2 m^{2} \frac{(s+4 t)}{\left(s-4 m^{2}\right)} P+m^{2}\left(m^{2}-4 t\right) \frac{s}{s-4 m^{2}}-\frac{4 m^{2} t^{2}}{s-4 m^{2}}\right)^{\frac{1}{2}}} \\
& \quad+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Extraction of the elliptic curve

Sector 123: No elliptic curve

The last maximal cut example is from the sector 123 . We find:

$$
\begin{aligned}
& \operatorname{MaxCut}_{\mathcal{C}} I_{1101111}(4-2 \varepsilon)=\frac{u \mu^{4}}{4 \pi^{3}(-s)^{\frac{1}{2}}\left(4 m^{2}-s\right)^{\frac{1}{2}}} \\
& \quad \times \int_{\mathcal{C}} \frac{d P}{(P-t)\left(P^{2}+2 m^{2} \frac{(s+4 t)}{\left(s-4 m^{2}\right)} P+m^{2}\left(m^{2}-4 t\right) \frac{s}{s-4 m^{2}}-\frac{4 m^{2} t^{2}}{s-4 m^{2}}\right)^{\frac{1}{2}}} \\
& \quad+\mathcal{O}(\varepsilon)
\end{aligned}
$$

The denominator may be viewed as a square root of a quartic polynomial, where two roots coincide. This does not involve an elliptic curve and corresponds to genus zero.

Reading an elliptic curve from the maximal cut

After 'getting' the curve:
(1) We may read off the elliptic curve (e.g. for the sunrise integral) from the maximal cut:

$$
E^{a}: w^{2}-\left(z-\frac{t}{\mu^{2}}\right)\left(z-\frac{t-4 m^{2}}{\mu^{2}}\right)\left(z^{2}+\frac{2 m^{2}}{\mu^{2}} z+\frac{m^{4}-4 m^{2} t}{\mu^{4}}\right)=0 .
$$

Reading an elliptic curve from the maximal cut

After 'getting' the curve:
(1) We may read off the elliptic curve (e.g. for the sunrise integral) from the maximal cut:

$$
E^{a}: w^{2}-\left(z-\frac{t}{\mu^{2}}\right)\left(z-\frac{t-4 m^{2}}{\mu^{2}}\right)\left(z^{2}+\frac{2 m^{2}}{\mu^{2}} z+\frac{m^{4}-4 m^{2} t}{\mu^{4}}\right)=0 .
$$

(2) The roots of the quartic polynomial are

$$
z_{1}^{(a)}=\frac{t-4 m^{2}}{\mu^{2}}, \quad z_{2}^{(a)}=\frac{-m^{2}-2 m \sqrt{t}}{\mu^{2}}, \quad z_{3}^{(a)}=\frac{-m^{2}+2 m \sqrt{t}}{\mu^{2}}, \quad z_{4}^{(a)}=\frac{t}{\mu^{2}}
$$

Reading an elliptic curve from the maximal cut

After 'getting' the curve:

(1) We may read off the elliptic curve (e.g. for the sunrise integral) from the maximal cut:

$$
E^{a}: w^{2}-\left(z-\frac{t}{\mu^{2}}\right)\left(z-\frac{t-4 m^{2}}{\mu^{2}}\right)\left(z^{2}+\frac{2 m^{2}}{\mu^{2}} z+\frac{m^{4}-4 m^{2} t}{\mu^{4}}\right)=0
$$

(2) The roots of the quartic polynomial are

$$
z_{1}^{(a)}=\frac{t-4 m^{2}}{\mu^{2}}, \quad z_{2}^{(a)}=\frac{-m^{2}-2 m \sqrt{t}}{\mu^{2}}, \quad z_{3}^{(a)}=\frac{-m^{2}+2 m \sqrt{t}}{\mu^{2}}, \quad z_{4}^{(a)}=\frac{t}{\mu^{2}}
$$

(3) This curve has the j -invariant

$$
j\left(E^{(a)}\right)=\frac{\left(3 m^{2}+t\right)^{3}\left(3 m^{6}+75 m^{4} t-15 m^{2} t^{2}+t^{3}\right)}{m^{6} t\left(m^{2}-t\right)^{6}\left(9 m^{2}-t\right)^{2}}
$$

Differential Equations (DEs)

The system of DEs

Pre-canonical MIs

- Let the DEs for \vec{I} read

$$
d \vec{I}=A \vec{I}, \quad A=A_{s} \frac{d s}{m^{2}}+A_{t} \frac{d t}{m^{2}}
$$

- Matrix-valued one-form A satisfies the integrability condition

$$
d A-A \wedge A=0
$$

The system of DEs

Pre-canonical MIs

- Let the DEs for \vec{I} read

$$
d \vec{I}=A \vec{I}, \quad A=A_{s} \frac{d s}{m^{2}}+A_{t} \frac{d t}{m^{2}}
$$

- Matrix-valued one-form A satisfies the integrability condition

$$
d A-A \wedge A=0
$$

Change of Basis

- We can change the basis,

$$
\vec{J}=U \vec{I}
$$

to obtain

$$
d \vec{J}=A^{\prime} \vec{J}
$$

where the matrix A^{\prime} is related to A by

$$
A^{\prime}=U A U^{-1}-U d U^{-1}
$$

The system of DEs

‘Linear-form'

- We choose \vec{J} so that it brings the DEs linear in ϵ,

$$
d \vec{J}=\left(A^{(0)}+\varepsilon A^{(1)}\right) \vec{J}
$$

- The matrices $A^{(0)}$ and $A^{(1)}$ are independent of ϵ and $A^{(0)}$ is strictly lower-triangular and $A^{(1)}$ is block triangular.

The system of DEs

‘Linear-form’

- We choose \vec{J} so that it brings the DEs linear in ϵ,

$$
d \vec{J}=\left(A^{(0)}+\varepsilon A^{(1)}\right) \vec{J}
$$

- The matrices $A^{(0)}$ and $A^{(1)}$ are independent of ϵ and $A^{(0)}$ is strictly lower-triangular and $A^{(1)}$ is block triangular.

Simple DEs

- The system of DEs simplifies for $t=m^{2}$ (i.e. for $\mathrm{y}=1$), as well as for $s=\infty$ (i.e. for $\mathrm{x}=0$).
- For $y=1$ the solution for MIs can be expressed in terms of MPLs.
- For $x=0$ the MIs are expressed in terms of iterated integrals of modular forms.

Basis for the Linear form of DEs

An example for the basis:

$$
\begin{aligned}
J_{24}= & \varepsilon^{3} \frac{(1-x)^{2}}{x} \frac{\pi}{\psi_{1}^{(b)}} I_{1112001} \\
J_{25}= & \varepsilon^{3}(1-2 \varepsilon) \frac{(1-x)^{2}}{x} I_{1111001}-\frac{1}{3}(y-9) \frac{\psi_{1}^{(b)}}{\pi} J_{24} \\
J_{26}= & \frac{6}{\varepsilon} \frac{\left(\psi_{1}^{(b)}\right)^{2}}{2 \pi i W_{y}^{(b)}} \frac{d}{d y} J_{24}-\frac{1}{4}\left(3 y^{2}-10 y-9\right)\left(\frac{\psi_{1}^{(b)}}{\pi}\right)^{2} J_{24} \\
& -\frac{1}{24}\left(y^{2}-30 y-27\right) \frac{\psi_{1}^{(b)}}{\pi} \frac{\psi_{1}^{(a)}}{\pi} J_{6}
\end{aligned}
$$

Integration kernels

For our system of DEs we find 107 independent integration kernels.
In case of multiple polylogarithms:

- For the cases with a singular point at $s=4 m^{2}$, (i.e. to rationalise the square root $\left.\sqrt{-s\left(4 m^{2}-s\right)}\right)$ we make the replacements as:

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}, \quad \frac{d s}{\sqrt{-s\left(4 m^{2}-s\right)}}=\frac{d x}{x}
$$

Integration kernels

For our system of DEs we find 107 independent integration kernels.

In case of multiple polylogarithms:

- For the cases with a singular point at $s=4 m^{2}$, (i.e. to rationalise the square root $\left.\sqrt{-s\left(4 m^{2}-s\right)}\right)$ we make the replacements as:

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}, \quad \frac{d s}{\sqrt{-s\left(4 m^{2}-s\right)}}=\frac{d x}{x}
$$

- For subtopologies with singular point at $s=-4 m^{2}$ we make the change as

$$
\frac{s}{m^{2}}=-\frac{\left(1+x^{\prime}\right)^{2}}{x^{\prime}}, \quad \frac{d s}{\sqrt{-s\left(-4 m^{2}-s\right)}}=\frac{d x^{\prime}}{x^{\prime}}
$$

Integration kernels

For our system of DEs we find 107 independent integration kernels.

In case of multiple polylogarithms:

- For the cases with a singular point at $s=4 m^{2}$, (i.e. to rationalise the square root $\left.\sqrt{-s\left(4 m^{2}-s\right)}\right)$ we make the replacements as:

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}, \quad \frac{d s}{\sqrt{-s\left(4 m^{2}-s\right)}}=\frac{d x}{x}
$$

- For subtopologies with singular point at $s=-4 m^{2}$ we make the change as

$$
\frac{s}{m^{2}}=-\frac{\left(1+x^{\prime}\right)^{2}}{x^{\prime}}, \quad \frac{d s}{\sqrt{-s\left(-4 m^{2}-s\right)}}=\frac{d x^{\prime}}{x^{\prime}}
$$

- In order to simultaneously rationalise the two square roots $\sqrt{-s\left(4 m^{2}-s\right)}$ and $\sqrt{-s\left(-4 m^{2}-s\right)}$, we introduce a variable \tilde{x} through $x=\tilde{x} \frac{(1-\tilde{x})}{1+\tilde{x}}$.

Integration kernels

Integration kernels for multiple polylogarithms

Overall we have the following kernels in this case:

$$
\begin{array}{ll}
\omega_{0}=\frac{d s}{s} & =\frac{2(2 \tilde{x}) d \tilde{x}}{\tilde{x}^{2}+1}-\frac{d \tilde{x}}{\tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}+1}-\frac{d \tilde{x}}{\tilde{x}} \\
\omega_{4}=\frac{d s}{s-4 m^{2}} & =\frac{2(2 \tilde{x}-2) d \tilde{x}}{\tilde{x}^{2}-2 \tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}+1}-\frac{d \tilde{x}}{\tilde{x}} \\
\omega_{-4}=\frac{d s}{s+4 m^{2}} & =\frac{2(2 \tilde{x}+2) d \tilde{x}}{\tilde{x}^{2}+2 \tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}+1}-\frac{d \tilde{x}}{\tilde{x}} \\
\omega_{0,4}=\frac{d s}{\sqrt{-s\left(4 m^{2}-s\right)}} & =\frac{d \tilde{x}}{\tilde{x}-1}-\frac{d \tilde{x}}{\tilde{x}+1}+\frac{d \tilde{x}}{\tilde{x}} \\
\omega_{-4,0}=\frac{d s}{\sqrt{-s\left(-4 m^{2}-s\right)}} & =-\frac{d \tilde{x}}{\tilde{x}-1}+\frac{d \tilde{x}}{\tilde{x}+1}+\frac{d \tilde{x}}{\tilde{x}}
\end{array}
$$

Integration kernels

Modular form kernels

- For MIs depending only t , integration kernels are of the form $(2 \pi i) f(\tau) d \tau_{6}^{(a)}$
$\left(\tau_{6}^{(a)}=\frac{1}{6} \frac{\psi_{2}^{(a)}}{\psi_{1}^{(a)}}\right) ; \mathrm{f}$ is a modular form of $\Gamma_{1}(6)$ from the set $\left\{1, f_{2}, f_{3}, f_{4}, g_{2,1}\right\}$,

$$
\begin{array}{ll}
f_{2}=-\frac{1}{4}\left(3 y^{2}-10 y-9\right)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{2}, & f_{3}=-\frac{3}{2} y(y-1)(y-9)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{3} \\
f_{4}=\frac{1}{16}(y+3)^{4}\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{4}, & g_{2,1}=-\frac{1}{2} y(y-9)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{2}
\end{array}
$$

Integration kernels

Modular form kernels

- For MIs depending only t , integration kernels are of the form $(2 \pi i) f(\tau) d \tau_{6}^{(a)}$

$$
\begin{aligned}
& \left(\tau_{6}^{(a)}=\frac{1}{6} \frac{\psi_{2}^{(a)}}{\psi_{1}^{(a)}}\right) ; \mathrm{f} \text { is a modular form of } \Gamma_{1}(6) \text { from the set }\left\{1, f_{2}, f_{3}, f_{4}, g_{2,1}\right\} \text {, } \\
& f_{2}=-\frac{1}{4}\left(3 y^{2}-10 y-9\right)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{2}, \quad f_{3}=-\frac{3}{2} y(y-1)(y-9)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{3}, \\
& f_{4}=\frac{1}{16}(y+3)^{4}\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{4}, \\
& g_{2,1}=-\frac{1}{2} y(y-9)\left(\frac{\psi_{1}^{(a)}}{\pi}\right)^{2} .
\end{aligned}
$$

The high energy limit

- Let $g_{n, r}=-\frac{1}{2} \frac{y(y-1)(y-9)}{y-r}\left(\frac{\Psi_{1}^{a}}{\pi}\right)^{n}$ and $h_{n, s}=-\frac{1}{2} y(y-1)^{1+s}(y-9)\left(\frac{\Psi_{1}^{(a)}}{\pi}\right)^{n}$.
- In the limit $x \rightarrow 0, E^{(b)}$ and $E^{(c)}$ degenerate to $E^{(a)}$ and we may express all MIs in terms of iterated integrals of modular forms. Corresponding full set is

$$
\left\{1, g_{2,0}, g_{2,1}, g_{2,9}, g_{3,1}, h_{3,0}, g_{4,0}, g_{4,1}, g_{4,9}, h_{4,0}, h_{4,1}\right\}
$$

Integration kernels

The full set of Integration kernels

Notations:

- We define ' m-weight' $=$ scaling power +2 .
- The integration kernels appearing in the ϵ^{0} part $A^{(0)}$ denoted by $a_{n, j}^{(r)}$, where n gives the m-weight, (r) indicates the periods and j indexes different integration kernels with the same n and (r).
- Integration kernels appearing in the ϵ^{1}-part $A^{(1)}$ denoted by $\eta_{n, j}^{(r)}$.
- For d-log form we use $d_{2, j}$.

Integration kernels

The full set of Integration kernels

Notations:

- We define ' m-weight' $=$ scaling power +2 .
- The integration kernels appearing in the ϵ^{0} part $A^{(0)}$ denoted by $a_{n, j}^{(r)}$, where n gives the m-weight, (r) indicates the periods and j indexes different integration kernels with the same n and (r).
- Integration kernels appearing in the ϵ^{1}-part $A^{(1)}$ denoted by $\eta_{n, j}^{(r)}$.
- For d-log form we use $d_{2, j}$.

$$
\begin{aligned}
& \left\{\omega_{0}, \omega_{4}, \omega_{-4}, \omega_{0,4}, \omega_{-4,0}, f_{2}, f_{3}, f_{4}, g_{2,1}, \eta_{0}^{(r)}, \eta_{1,1-4}^{(b)}, \eta_{1,1-3}^{(c)}, d_{2,1-5},\right. \\
& \eta_{2,1-12}, \eta_{2}^{\left(\frac{r}{s}\right)}, a_{3,1-4}^{(b)}, a_{3,1-3}^{(c)}, \eta_{3,1-3}^{(a)}, \eta_{3,1-24}^{(b)}, \eta_{3,1-11}^{(c)}, a_{4,1}^{(a, b)} \\
& \left.a_{4,1}^{(a, c)}, a_{4,1-5}^{(b, b)}, a_{4,1}^{(c, c)}, a_{4,1}^{(b, c)}, \eta_{4,1-3}^{(a, b)}, \eta_{4,1}^{(a, c)}, \eta_{4,1-5}^{(b, b)}, \eta_{4,1}^{(c, c)}, \eta_{4,1}^{(b, c)}\right\}
\end{aligned}
$$

Integrating the system of DE

Boundary Conditions (BCs)

- We integrate the system of DE starting from the point $(x, y)=(0,1)$.
- The BC may be expressed as a linear combination of transcendental constants.
- A basis of these transcendental constants up to weight four is given by

$$
\begin{array}{ll}
w=1: & \ln (2) \\
w=2: & \zeta_{2}, \quad \ln ^{2}(2) \\
w=3: & \zeta_{3}, \quad \zeta_{2} \ln (2), \quad \ln ^{3}(2) \\
w=4: & \zeta_{4}, \quad \operatorname{Li}_{4}\left(\frac{1}{2}\right), \quad \zeta_{3} \ln (2), \quad \zeta_{2} \ln ^{2}(2), \quad \ln ^{4}(2)
\end{array}
$$

Integrating the system of DE

Boundary Conditions (BCs)

- We integrate the system of DE starting from the point $(x, y)=(0,1)$.
- The BC may be expressed as a linear combination of transcendental constants.
- A basis of these transcendental constants up to weight four is given by

$$
\begin{array}{ll}
w=1: & \ln (2) \\
w=2: & \zeta_{2}, \quad \ln ^{2}(2) \\
w=3: & \zeta_{3}, \quad \zeta_{2} \ln (2), \quad \ln ^{3}(2) \\
w=4: & \zeta_{4}, \quad \operatorname{Li}_{4}\left(\frac{1}{2}\right), \quad \zeta_{3} \ln (2), \quad \zeta_{2} \ln ^{2}(2), \quad \ln ^{4}(2)
\end{array}
$$

- For MIs which do not depend on s or t we need to calculate explicitly the BCs. Two such integrals: J_{1} (which is also a product of tadpoles) and J_{8} (the sunrise at the pseudo threshold).

Integrating the system of DEs

The tadpole integral

$$
T_{\nu}\left(D, m^{2}, \mu^{2}\right)=e^{\gamma_{E} \epsilon} \frac{\Gamma\left(\nu-\frac{D}{2}\right)}{\Gamma(\nu)}\left(\frac{m^{2}}{\mu^{2}}\right)^{\frac{D}{2}-\nu}
$$

For $D=2-2 \epsilon, \mu=m$ and $\nu=1$ we have

$$
T_{1}(2-2 \epsilon)=e^{\gamma_{E} \epsilon} \Gamma(\epsilon)=\frac{1}{\epsilon}\left[1+\frac{1}{2} \zeta_{2} \epsilon^{2}-\frac{1}{3} \zeta_{3} \epsilon^{3}+\frac{9}{16} \zeta_{4} \epsilon^{4}+\mathcal{O}\left(\epsilon^{5}\right)\right]
$$

Integrating the system of DEs

The tadpole integral

$$
T_{\nu}\left(D, m^{2}, \mu^{2}\right)=e^{\gamma_{E} \epsilon} \frac{\Gamma\left(\nu-\frac{D}{2}\right)}{\Gamma(\nu)}\left(\frac{m^{2}}{\mu^{2}}\right)^{\frac{D}{2}-\nu}
$$

For $D=2-2 \epsilon, \mu=m$ and $\nu=1$ we have

$$
T_{1}(2-2 \epsilon)=e^{\gamma_{E} \epsilon} \Gamma(\epsilon)=\frac{1}{\epsilon}\left[1+\frac{1}{2} \zeta_{2} \epsilon^{2}-\frac{1}{3} \zeta_{3} \epsilon^{3}+\frac{9}{16} \zeta_{4} \epsilon^{4}+\mathcal{O}\left(\epsilon^{5}\right)\right]
$$

Sunrise at Pseudo-Threshold [L. Adams, C. Bogner, S. Weinzierl, arxiv: 1302.7004]

$$
\begin{aligned}
J_{8}= & 6 \epsilon^{2} e^{2 \gamma_{E} \epsilon} \Gamma(1+2 \epsilon) \int_{0}^{1} d x_{2} \int_{0}^{1} d x_{4}\left[\frac{1}{x_{2}-1}-\frac{1}{x_{2}+1}\right]\left[\frac{1}{x_{4}+1}-\frac{1}{x_{4}+x_{2}}\right] \\
& \times\left(x_{2}+1\right)^{\epsilon}\left(x_{4}+1\right)^{-2 \epsilon}\left(x_{4}+x_{2}\right)^{-2 \epsilon}\left(x_{4}+\frac{x_{2}}{x_{2}+1}\right)^{\epsilon}
\end{aligned}
$$

- For all the other MIs we obtain BCs from the behaviour at a specific point, where the MI vanishes or reduces to simpler integrals, here these are (x, y) equal to $(0,1),(1,1) \&(-1,1)$.

Solutions of DEs for the Master Integrals (MIs)

A peek at the results

$$
J_{k}=\sum_{j=0}^{\infty} \varepsilon^{j} J_{k}^{(j)} .
$$

The integrals which do not depend on s nor t

$$
\begin{aligned}
J_{1}= & 1+\zeta_{2} \varepsilon^{2}-\frac{2}{3} \zeta_{3} \varepsilon^{3}+\frac{7}{4} \zeta_{4} \varepsilon^{4}+\mathcal{O}\left(\varepsilon^{5}\right) \\
J_{8}= & 6 \zeta_{2} \varepsilon^{2}+\varepsilon^{3}\left(21 \zeta_{3}-36 \zeta_{2} \ln 2\right)+\varepsilon^{4}\left(144 \operatorname{Li}_{4}\left(\frac{1}{2}\right)-78 \zeta_{4}+72 \zeta_{2} \ln ^{2}(2)+6 \ln ^{4}(2)\right) \\
& +\mathcal{O}\left(\varepsilon^{5}\right)
\end{aligned}
$$

A peek at the results

One of the MIs which depend only on s

$$
\begin{aligned}
J_{2}^{(0)}= & 0 \\
J_{2}^{(1)}= & -G(0 ; x) \\
J_{2}^{(2)}= & 2 G(-1,0 ; x)-G(0,0 ; x)+\zeta_{2} \\
J_{2}^{(3)}= & -4 G(-1,-1,0 ; x)+2 G(-1,0,0 ; x)+2 G(0,-1,0 ; x)-G(0,0,0 ; x) \\
& -2 \zeta_{2} G(-1 ; x)+2 \zeta_{3} \\
J_{2}^{(4)}= & 8 G(-1,-1,-1,0 ; x)-4 G(-1,-1,0,0 ; x)-4 G(-1,0,-1,0 ; x) \\
& -4 G(0,-1,-1,0 ; x)+2 G(-1,0,0,0 ; x)+2 G(0,-1,0,0 ; x) \\
& +2 G(0,0,-1,0 ; x)-G(0,0,0,0 ; x)+4 \zeta_{2} G(-1,-1 ; x) \\
& -2 \zeta_{2} G(0,-1 ; x)-4 \zeta_{3} G(-1 ; x)+\frac{8}{3} \zeta_{3} G(0 ; x)+\frac{19}{4} \zeta_{4} .
\end{aligned}
$$

A peek at the results

One of the MIs which depend only on t

$$
\begin{aligned}
J_{6}^{(0)}= & 0, \\
J_{6}^{(1)}= & 0, \\
J_{6}^{(2)}= & F\left(1, f_{3} ; q_{6}\right)+3 \zeta_{2}, \\
J_{6}^{(3)}= & -F\left(f_{2}, 1, f_{3} ; q_{6}\right)-F\left(1, f_{2}, f_{3} ; q_{6}\right)+3 \zeta_{2} F\left(1 ; q_{6}\right)-3 \zeta_{2} F\left(f_{2} ; q_{6}\right)+\frac{21}{2} \zeta_{3} \\
& -18 \zeta_{2} \ln (2) \\
J_{6}^{(4)}= & F\left(f_{2}, f_{2}, 1, f_{3} ; q_{6}\right)+F\left(f_{2}, 1, f_{2}, f_{3} ; q_{6}\right)+F\left(1, f_{2}, f_{2}, f_{3} ; q_{6}\right)+F\left(1, f_{4}, 1, f_{3} ; q_{6}\right) \\
& +3 \zeta_{2} F\left(f_{2}, f_{2} ; q_{6}\right)-3 \zeta_{2} F\left(1, f_{2} ; q_{6}\right)-3 \zeta_{2} F\left(f_{2}, 1 ; q_{6}\right)+3 \zeta_{2} F\left(1, f_{4} ; q_{6}\right) \\
& +\zeta_{2} F\left(1, f_{3} ; q_{6}\right)+\left(\frac{21}{2} \zeta_{3}-18 \zeta_{2} \ln (2)\right)\left(F\left(1 ; q_{6}\right)-F\left(f_{2} ; q_{6}\right)\right)-39 \zeta_{4}+72 \operatorname{Li}_{4}\left(\frac{1}{2}\right) \\
& +36 \zeta_{2} \ln ^{2}(2)+3 \ln ^{4}(2) .
\end{aligned}
$$

A peek at the results

One of the MIs which depend on both s and t

$$
\begin{aligned}
J_{24}^{(0)}= & 0 \\
J_{24}^{(1)}= & 0 \\
J_{24}^{(2)}= & 0 \\
J_{24}^{(3)}= & I_{\gamma}\left(\eta_{0}^{(b)}, \eta_{2}^{\left(\frac{b}{a}\right)}, f_{3} ; \lambda\right)-\frac{3}{2} I_{\gamma}\left(\eta_{0}^{(b)}, \eta_{3,5}^{(b)}, \omega_{0,4} ; \lambda\right) \\
& -3 I_{\gamma}\left(\eta_{1,1}^{(b)}, \omega_{0,4}, \omega_{0,4} ; \lambda\right)+I_{\gamma}\left(\eta_{2}^{\left(\frac{a}{b}\right)}, \eta_{0}^{(a)}, f_{3} ; \lambda\right) \\
& +\frac{9}{2} I_{\gamma}\left(\eta_{0}^{(b)}, a_{3,2}^{(b)}, \omega_{0,4}, \omega_{0,4} ; \lambda\right)+I_{\gamma}\left(\eta_{0}^{(b)}, a_{4,1}^{(a, b)}, \eta_{0}^{(a)}, f_{3} ; \lambda\right) \\
& +\frac{7}{4} \zeta_{2} I_{\gamma}\left(\eta_{0}^{(b)} ; \lambda\right)-2 \zeta_{2} I_{\gamma}\left(\eta_{1,1}^{(b)} ; \lambda\right)+3 \zeta_{2} I_{\gamma}\left(\eta_{2}^{\left(\frac{a}{b}\right)} ; \lambda\right) \\
& +3 \zeta_{2} I_{\gamma}\left(\eta_{0}^{(b)}, a_{3,2}^{(b)} ; \lambda\right)+3 \zeta_{2} I_{\gamma}\left(\eta_{0}^{(b)}, a_{4,1}^{(a, b)} ; \lambda\right)-3 \ln (2) \zeta_{2}-\frac{7}{4} \zeta_{3} .
\end{aligned}
$$

Outlook

Summary

(1) Analytic results for the planar double box relevant to top-pair production with a closed top loop presented.
(2) This system depends on two scales and involves several elliptic sub-sectors.
(3) Extraction of the elliptic curves shown.
(9) Results expressed in terms of iterated integrals and the occuring integration kernels discussed.

Summary

(1) Analytic results for the planar double box relevant to top-pair production with a closed top loop presented.
(2) This system depends on two scales and involves several elliptic sub-sectors.
(3) Extraction of the elliptic curves shown.
(9) Results expressed in terms of iterated integrals and the occuring integration kernels discussed.

Outlook

(1) The first time an integral involving more than one elliptic curve has been calculated.
(2) Opens the door to even more complicated class of Feynman Integrals.

Summary

(1) Analytic results for the planar double box relevant to top-pair production with a closed top loop presented.
(2) This system depends on two scales and involves several elliptic sub-sectors.
(3) Extraction of the elliptic curves shown.
(9) Results expressed in terms of iterated integrals and the occuring integration kernels discussed.

Outlook

(1) The first time an integral involving more than one elliptic curve has been calculated.
(2) Opens the door to even more complicated class of Feynman Integrals.

Thanks!

