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MGF: modular graph functions (Green, Vanhove, D'Hoker, Giirdogan)
eMPL: elliptic multiple polylogarithms (Brown, Vanhove)
single-valued integration (Schnetz)

eMZV: elliptic multiple zeta values (Enriquez, Matthes, Zerbini)

iEi: iterated Eisenstein integrals (Schlotterer, Brodel)



Modular graph functions

The genus 1 contribution to the graviton amplitude of closed superstrings
are integrals over the moduli 7 = 71 + iy € My 1 = H/PSLy(Z) of

Ba({sy}|7) = (H L dzk>exp( > s,-,-g<z,-—zj|7>)

1<i<j<4

Z4:0

The Green's function on the torus & = C/A; with A, =Z & 77 is

T 1 ™ — -
G(zr) =2 > s { (wz — wz)] .
T wen\{0} 2

The low energy expansion is indexed by simple graphs G, with coefficients

II /gdzk) I oG-z

vev(6)’E 2 | iLjcE(o)

D[G](7,T) = (
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MGFs are modular invariant, real analytic, with MZV coefficients d,Em’"):

D[G] = Z(WTz)k Z qmandl((m,n)

k n,m>0
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MGFs are modular invariant, real analytic, with MZV coefficients d,Em’" :
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Real analytic Eisenstein series




D[] =D { ’/;\.] ¢ (Zagier)
D{@} — 24D [O>- —18D[ ]+3D [@}2
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Eigenvalue equations with respect to A = 4722870;, e.g.
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iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

[or=] e (wn)(1)
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Q Ifw=df isexact, [ w=f(y(1)) — f(v(0)) is boring.
@ Not all iterated integrals are homotopy invariant.



iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

[ = | [T [

Q Ifw=df isexact, [ w=f(y(1)) — f(v(0)) is boring.
@ Not all iterated integrals are homotopy invariant.

Take w = ydx € Q}(IR?), then f w is the area between v and the x-axis.

(z,y) (2,7)
y
5
(0,0

= integrability condition (Chen), simplest case:

/w homotopy invariant < dw =0
.



Elliptic polylogarithms (Brown & Levin)

Consider X = &, = C/N\; where A, =7 @ 77. The series

Zak ! «(z|T)

k>0

¥ (0|7)9(z + alT)

Fe el = = Ginyatalm

defines meromorphic functions gx(z) on € with

k (—2imy
gk(z + 1|7) = gk(z|7) gk(z + 7|7) = g(z|7) +ng_1 z|lT)—.

Jj=1 J!

g =1, g1(z) = (s :§+O(z) o(z) = p(2) — gf(2)

@ gy is smooth for all k # 1 (on the fundamental domain)

@ g1 has first order poles (with unit residue) on A,



Fix a finite set ¥ C C of punctures to define closed forms
wg")(z) =gi(z—0)dz €QYT\ (0c+A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/wg’l)---wg”) f( ) /dtgnlt—zl)~<n2"'nr;z>
0 Z2...zr



Fix a finite set ¥ C C of punctures to define closed forms
w((,”)(z) =gi(z—0)dz €QYT\ (0c+A,))
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@ holomorphic, homotopy invariant

@ not doubly-periodic, not even the forms w,(,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X
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@ holomorphic, homotopy invariant

@ not doubly-periodic, not even the forms w,(,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X
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Fix a finite set ¥ C C of punctures to define closed forms
W(2) = ga(z—0) dz € QY(C\ (0 +A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/ “51"1)"'“’57'):r<n1.”nr?2) :/ dt gn,(t - 21) f<n2--.,,r;z>
0 7212 0 22,

© holomorphic, homotopy invariant

© not doubly-periodic, not even the forms w((,")

@ functions live on the cover C\ U,cx (0 + A7) of E\ X
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Fix a finite set ¥ C C of punctures to define closed forms
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Fix a finite set ¥ C C of punctures to define closed forms
W(2) = ga(z—0) dz € QY(C\ (0 +A,))

for each n > 0 and o € ¥. Elliptic MPL are their iterated integrals:

/ “51"1)"'“’57'):r<n1.”nr?2) :/ dt gn,(t - 21) f<n2--.,,r;z>
0 7102, 0 Zy- -z

© holomorphic, homotopy invariant
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So, the integrand of MGFs is contained in the algebra A, generated by

/Ur+1 wlm) () and their c.c
2 2 .C.
oo

where n; > 0 and o; € . This A, defines a subsheaf of Q%(Conf, (&;)).

Approach

Integrate out each puncture sequentially along the fibrations
EN\A{z,...,zp—1} = Conf, (&;) - Conf,_1 (&)




So, the integrand of MGFs is contained in the algebra A, generated by

Or41
/ : wgfl) -—-w{™)  and their c.c.

Zr
0

where n; > 0 and o; € . This A, defines a subsheaf of Q%(Conf, (&;)).

Approach

Integrate out each puncture sequentially along the fibrations

EN\A{z,...,zp—1} = Conf, (&;) - Conf,_1 (&)

Every period f € A, is an iterated integral on the fibre, e.g.

f:Z/Oan'(/Oznv)*'fu,v

where f,, € A,—1 and u, v are forms independent of z,.




Integration

Suppose we have written the integrand in the form

f = [Z/Ou(/ov> f] -dz, A dz,,

Then we can easily find a primitive F with dF = f as

F= lZ/Onw(()o)u-</0nv) -fuﬂ,] -dz,.

Apply Stokes to the fundamental domain D = [0, 1] x [0, 7] \ X:

/f: F.
D oD

Problem: F does not extend to a smooth function on D°. In other words,
F is not single-valued.



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

W

To decompose

[ wn= [ ey w(e)osn) wm)(n),

7*N 0<t1<tr<1

split the interval
{a<tl={n<n<}u{n<i<nlu{;<n<t}

wawi
f"/*"



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

~

1 to n

To decompose

[ o = (% m)*(w2) (22) (3 % 1) (wa) (1),
Yxn 0<t;: <tr<1
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Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

31 Y to 1

To decompose

/7 o= [ ) (m)(@)0 ) (w)(w)

split the interval

(h<tl={u<n<iu{n<i<nluld<u <t}

waw1 fww fwfw
f“/*n 721 772'71




Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):
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Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):
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More generally, the path concatenation formula reads

r
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Y*n k=0"" Y



Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
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0 k=0"0 "
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Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
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—_———
G-Anfl

Monodromy and derivatives commute

0, (M, — id) F = (M,, — id) 8,F = (M, —id) f =0

= the monodromies of F are antiholomorphic:



Analytic continuation M, along a closed loop 7 with 1(0) =7(1) =0 is

z r z
Mn/ wr...wl:Z/ wr"'wk+1/Wk”'w1-
0 k=0"0 "
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Monodromy and derivatives commute

0, (M, — id) F = (M,, — id) 8,F = (M, —id) f =0

= the monodromies of F are antiholomorphic:

(/\/l%—id)F:zu:(/()znu>*Fg

for any basis 1, € m1(&; \ L) of loops. We can choose them such that

/ wg") = (2im)05,701,n

o



Note that the leading length of the monodromy is

z 4
(M??_id)/o wn---wlz/o wn---wg/wl—i—lower length
n



Note that the leading length of the monodromy is

z 4
(M??_id)/o wn---wlz/o wn---wg/wl—i—lower length
n

So there is an antiholomorphic form with the opposite monodromies:

(M, —1id) {Z Z (/Ozn uwé) 2/:1‘(’;} = —zu: (/Ozn u)* F7+lower length

pEY U



Note that the leading length of the monodromy is
zZ V4
(M, —id)/ Wh w1 :/ wn--'wz/wl + lower length
0 0 n

So there is an antiholomorphic form with the opposite monodromies:

{ZZ(/ );;}: — (M, —id) F + lower length

pEY U

Corollary: Existence of single-valued primitives

By adding antiholomorphic functions, we can find a primitive F € A, with

dF =f and (M,, —id)F=0 forallgex




insert picture of fundamental domain




Stokes' theorem [, f = [; F gets contributions from
@ the punctures o € ¥:

lim 7( F=0
r—=0J|z—o|=r

@ the sides of D:
1 T 1
/0 F+ 1+TF:—/O (Mo —id) F
1+7 0 T
/1 F+/TF:/O (Mo —id) F



Stokes' theorem [, f = [, F gets contributions from
@ the punctures o € ¥:

Hm%‘ F=0
r=0Jz—g|=r

@ the sides of D:

/OlF—i- ’ F:—/Ol(./\/l[oyT]—id)FE.An_l

147

147 0 T
/ F +/ F= / (M[O,l] — id) FeA, 1
1 T 0

The monodromies

@%ﬂq@Fam @%HAQF

are antiholomorphic iterated integrals.




Given a function f € A, single-valued on Conf, (&;):
@ There is a function F € A, that is single-valued on D° with 0, F = f.
@ We can apply Stokes' theorem to d(Fdz,) = fdz, A dz,.
© All contributions are eMPL on the base A,_1.

© Due to convergence, the result is necessarily single-valued and
descends to Conf,_1 (&;).



Given a function f € A, single-valued on Conf, (&;):
@ There is a function F € A, that is single-valued on D° with 0, F = f.
@ We can apply Stokes' theorem to d(Fdz,) = fdz, A dz,.
© All contributions are eMPL on the base A,_1.

© Due to convergence, the result is necessarily single-valued and
descends to Conf,_1 (&;).

After integrating out all but one puncture, a MGF is thus expressed in
terms of iterated integrals on £X, that is, eMZV and their c.c.

1 T
wA(n17... 7nl’) :/O wé"l)_.-wénf)7 wB(nl’... 7nr) :A w(()nl) ,.-w(()nr)



Iterated Eisenstein integrals

Theorem (Enriquez, Matthes, Brodel, Schlotterer, Mafra, Zerbini)

eMZV can be written as iterated Eisenstein integrals.

b b b
27"’67/ 8nm " 8n = ”1g1+n1(b)/ 8ny - 'gnr_”rgl-i-nr(a)/ 8ny - 8n,—
a a a

r—1 ",u+”u+1+1

SR (CENRTEY

nu+nu1+1—k
ny+1 — 1 H

b
X / gn1 e gnuflgkgnHJrz e gn,
a
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Shuffle product

The shuffle product of two words
Wnim** Wpy1 W Wp-- Wy = Z Wo(n+m) =" Wo(1)
a

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

(o) (L) = [ewn
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Shuffle product

The shuffle product of two words
Wnim** Wpy1 W Wp-- Wy = Z Wo(n+m) =" Wo(1)
a

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

(o) (L) = [ewn

/wa . /w2w1 = / (w3wow1 + wrw3wy + wowiws)
v v ~

{3} x{th<tl={t<tb<tlu{t<ts<blU{ts<t; <t}
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FARERY. = 2510 Zppp e

k np+1
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P ( ot e
p=1 r=0 Np—1— 1 Zp—1 Zp+1
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1
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wij = (dzj — dz)gn(z — zi;7) + Egn-‘rl(zj —z;T)

where



