
FCC Software stack 
building with Spack

Javier Cervantes Villanueva
EP-SFT



07/02/18 Spack in FCC 1

FCC software is built against LCG’s CVMFS installation

• First step: create packages.yaml file describing LCG specs

• Using LCG compiler and packages description files

• Allows to build with Spack against LCG stack

• Specific package versions might replace LCG ones

• Package definitions on github:

• Separate HEP-FCC/fcc-spack for fcc-specific packages

• Using HEP-SF/hep-spack as a basis

• Spack builtin

Emulating 
incremental 
build

FCC Software Stack

LCG Releases

FCC Specific dependencies

FCCSW

~350 pkgs

14 pkgs

1 pkg



Workflow

07/02/18 Spack in FCC 2

Build
Packages-LCG-version.yaml

Packages-FCC-version.yaml

Installation

Binary tarballs

LCG Specification file

(packages, versions, installation paths…)

CVMFS

View creation

Relocated binaries

CVMFS Stratum 0 NodeBuild node

Binary tarballs
CVMFS

spack install fccdevel%gcc@6.2.0 

spack buildcache install /pkghash

spack view symlink [path] fccdevel/pkghash

Bundle Packages 

(PR#3133)

Syntax not 

consistent

May not find the correct 

binary

https://github.com/spack/spack/pull/3133


Next goal: Speed up builds

07/02/18 Spack in FCC 3

Reduce redundant work repeated every day

Incremental way to not build what it’s already installed in CVMFS
○ Options

○ Custom packages.yaml file (LCG Releases approach)
� Manually scan through different CVMFS paths (not scalable)
� Does not consider different hashes

○ Binary repository with all possible binaries/combinations installed so far
� Still requires download and installation of binaries

○ Read from remote opt/spack/.spack-db/index.json
� Not writable from CVMFS
� Not easy to synchronize

○ Desirable
○ Given an external path, automatically find out and consider matching hashes
○ Discovered packages might be linked as they were specified in the packages.yaml



Main limitations

07/02/18 Spack in FCC 4

● Taking packages from CVMFS get in conflict with the concept of 
Python extensions
○ spack active py-numpy
○ Creates a link inside opt/linux/python (problem for read-only systems)

● Running tests at installation process requires a view to prepare the 
environment, so it needs to be done as a post-installation step.

CVMFS Python Package APy-extension
Python error
Py-extension 
module not found



Various setups needed

Prepared infrastructure to provide setup:

• Tailored python scripts to create packages.yaml from external sources
• packages.yaml: To define versions and external packages
• compilers.yaml: To define custom compiler locations
• config.yaml: To define installation path (in CVFMS)
• mirrors.yaml: To define buildcache repo

507/02/18 Spack in FCC



Conclusions

• FCC software infrastructure is currently built and deployed using Spack
• Spack fully covers our basic requirements

• Build on top of the LCG releases
• Build and install in different nodes
• Manage different stack of versions

• Additional scripts needed to complete the workflow

• Most of the limitations can be worked around, although not always with 
the best solution

• Further optimizations during the build process are needed since they are 
crucial to maintain large sets of packages in an efficient way

607/02/18 Spack in FCC



• Is it worth to have a higher and more generic layer of software to configure Spack in order to 
build and maintain a large stack of packages?

• How do I build all the packages in debug mode?

• How do you manage the Spack configuration when building/installing a full software stack?
• Do you use any incremental approach?

• How do you distribute software using Spack?
• CVMFS? Build and install in the same node?

Open discussion

7

Further examples of processes and workflows using Spack are essential to see if the list of 
desired features is completed.

07/02/18 Spack in FCC


