W mass studies - Kinematic Fit

WG1 \& WG2 working meeting

Marina Béguin, Paolo Azzurri

February 6, 2018

Kinematic Fit - Principle (1)

The aim is ...

...to improve the resolution of an object slightly changing the measured quantities (e.g four-vector) within their uncertainty to fulfil kinematic constraints.

To solve a problem with \mathbf{n} measured parameters \mathbf{y}, \mathbf{p} unmeasured parameters a and \mathbf{m} constraints \mathbf{f}, a kinematic fit will determine the corrections Δy on parameters y, such that :
(1) $S(y)=\Delta y^{T} V^{-1} \Delta y=\chi^{2}$ is minimal $\quad V=$ cov. matrix y params.
(2) All constraints are fulfilled:

$$
\begin{aligned}
f_{1}\left(a_{1}, \ldots, a_{p}, y_{1}, \ldots y_{n}\right) & =0 \\
f_{2}\left(a_{1}, \ldots, a_{p}, y_{1}, \ldots y_{n}\right) & =0 \\
\vdots & \\
f_{m}\left(a_{1}, \ldots, a_{p}, y_{1}, \ldots y_{n}\right) & =0
\end{aligned}
$$

Kinematic Fit - Principle (2)

To determine the optimal Δy, the Lagrange Multipliers definition is used :

$$
L(y, a, \lambda)=S(y)+2 \sum_{i=1}^{m} \lambda_{i} f_{i}(y, a)
$$

If the constraints are not linear, the minimization is done iteratively using the Taylor development at the first order :

$$
f\left(y^{\prime}\right) \sim f_{i}\left(y^{*}\right)+\sum_{i=1}^{4} \frac{\partial f_{i}}{\partial y_{i}}\left(\Delta y_{i}-\Delta y_{i}^{*}\right) \sim 0
$$

Fit output :

- $\chi^{2}=$ probability that the event kinematic hypothesis are true
- Resolution improvement on reconstructed object

Kinematic Fit - W mass reconstruction (1)

W mass reconstruction improvement in the hadronic decay

- Samples: Simulation with Pythia and reconstruction with Heppy (CLIC detector, ee-kt algorithm, 4 jets per event) at 162.3, 240 and 350 GeV .
- Kinematic fit :
- Measured parameters : rescaling coefficient α, jets angles θ and ϕ and jets velocity v
- Constraints :
- energy-momentum
conservation (4C) :

$$
\Sigma p_{x}=\Sigma p_{y}=\Sigma p_{z}=0 \text { and }
$$

$$
\Sigma E=\sqrt{s}
$$

- mass equality (1C) :

$$
M_{d j 1}=M_{d j 2}
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow :

$$
\begin{aligned}
& L=\frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{V}^{2}} \\
&+2 \lambda_{X} \Sigma p_{x} \\
&+2 \lambda_{Y} \Sigma p_{y} \\
& \quad+2 \lambda_{Z} \sum p_{z} \\
& \quad+2 \lambda_{E}(\Sigma E-\sqrt{s}) \\
& \quad+2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned}
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow : measured parameters y

$$
\begin{aligned}
L=\frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{V}^{2}} \\
\quad+2 \lambda_{X} \Sigma p_{x} \\
\quad+2 \lambda_{Y} \Sigma p_{y} \\
\quad+2 \lambda_{Z} \Sigma p_{z} \\
\quad+2 \lambda_{E}\left(\sum E-\sqrt{s}\right) \\
\quad+2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned}
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow :

$$
\Delta y=y_{\text {meas }}-y_{0}
$$

$$
\begin{aligned}
& L=\frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{v}^{2}} \\
&+2 \lambda_{X} \Sigma p_{x} \\
&+2 \lambda_{Y} \Sigma p_{y} \\
&+2 \lambda_{Z} \Sigma p_{z} \\
&+2 \lambda_{E}(\Sigma E-\sqrt{s}) \\
&+2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned}
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow :

$$
\begin{aligned}
L= & \frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{v}^{2}} \\
& +2 \lambda_{X} \Sigma p_{x} \\
& +2 \lambda_{Y} \Sigma p_{y} \\
& +2 \lambda_{z} \Sigma p_{z} \\
& +2 \lambda_{E}(\Sigma E-\sqrt{s}) \\
& +2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned} \quad V^{-1}=\left(\begin{array}{cccc}
\sigma_{\alpha}^{2} & 0 & 0 & 0 \\
0 & \sigma_{\theta}^{2} & 0 & 0 \\
0 & 0 & \sigma_{\phi}^{2} & 0 \\
0 & 0 & 0 & \sigma_{v}^{2}
\end{array}\right)
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow :

$$
\begin{aligned}
& \qquad \begin{aligned}
& L= \frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{v}^{2}} \\
&+2 \lambda_{x} \Sigma p_{x} \\
&+2 \lambda_{Y} \Sigma p_{y} \\
&+2 \lambda_{z} \Sigma p_{z} \\
& \text { Lagrange } \\
& \text { Multipliers }+2 \lambda_{E}(\Sigma E-\sqrt{s}) \\
&+2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned}
\end{aligned}
$$

Kinematic Fit - W mass reconstruction (2) - Likelihood

The likelihood is defined as follow :

$$
\begin{aligned}
& L=\frac{\sum_{i=1}^{4}\left(\alpha_{i}-\alpha_{i 0}\right)^{2}}{\sigma_{\alpha}^{2}}+\frac{\sum_{i=1}^{4}\left(\theta_{i}-\theta_{i 0}\right)^{2}}{\sigma_{\theta}^{2}}+\frac{\sum_{i=1}^{4}\left(\phi_{i}-\phi_{i 0}\right)^{2}}{\sigma_{\phi}^{2}}+\frac{\sum_{i=1}^{4}\left(v_{i}-v_{i 0}\right)^{2}}{\sigma_{v}^{2}} \\
&+2 \lambda_{X} \sum p_{x} \\
&+2 \lambda_{Y} \sum p_{y} \\
& \quad+2 \lambda_{Z} \sum p_{z} \\
& \quad+2 \lambda_{E}(\Sigma E-\sqrt{s}) \\
& \quad+2 \lambda_{M}\left(M_{d j 1}-M_{d j 2}\right)
\end{aligned}
$$

constraints $f_{i}(y)$

Jets parametrization

Four-vector parametrization as function of the measured parameters :

- $p_{x}=\alpha E_{0} v \sin \theta \cos \phi$
- $p_{y}=\alpha E_{0} v \sin \theta \sin \phi$
- $p_{z}=\alpha E_{0} v \cos \theta$
- $E=\alpha E_{0}$

Advantage $=$ measurements independent (covariance matrix diagonal) Disadvantage $=$ non-linear constraints, derivatives more complicated

Kinematic fit - W mass reconstruction (3) - Covariance matrix

No correlation between parameters \rightarrow diagonal matrix.

$$
V^{-1}=\left(\begin{array}{cccc}
\sigma_{\alpha}^{2} & 0 & 0 & 0 \\
0 & \sigma_{\theta}^{2} & 0 & 0 \\
0 & 0 & \sigma_{\phi}^{2} & 0 \\
0 & 0 & 0 & \sigma_{v}^{2}
\end{array}\right)
$$

σ determined by fit:

- $\sigma_{\alpha}: \frac{E_{j e t s}}{E_{\text {partons }}}-1$
- $\sigma_{\theta}: \theta_{\text {genjets }}-\theta_{\text {recojets }}$
- $\sigma_{\phi}: \phi_{\text {genjets }}-\phi_{\text {recojets }}$
- $\sigma_{v}: \frac{p}{E}{ }_{\text {genjets }}-\frac{p}{E_{\text {recojets }}}$

Kinematic fit - W mass reconstruction (4)

Resume

- Before fit : jets four-vector
- Kinematic fit : computation of Δy, the correction to apply on parameters in order to fulfil constraints taking into account their uncertainties.
- Fit output :
- corrected jets four-vector
- W mass given by the mass equality constraint

Kinematic fit - Results 240 GeV (1)

Kinematic fit - Results 240 GeV (2)

Kinematic fit - Results 350 GeV (1)

Kinematic fit - Results 350 GeV (2)

Kinematic fit - Results 162.3 GeV (1)

Kinematic fit - Results 162.3 GeV (2)

W mass measurement - Figure Of Merit (1)

The W mass...

... is determined by comparison of the distribution with templates generated for $M_{W} \pm 1 \mathrm{GeV}$. The figure of merit (FOM) is used to estimate the statistical uncertainty of M_{W}.

FOM computed like binned max. likelihood

$$
F O M=\Delta M_{w} \frac{\Sigma\left(b_{79}+b_{81}\right)}{\sum \frac{\left(b_{79}-b_{81}\right)^{2}}{b_{79}+b_{81}}}
$$

$$
\sigma_{m_{W}, \text { stat }}=\frac{\sqrt{\text { FOM }}}{\sqrt{N_{\text {event }}}}
$$

W mass measurement - Figure Of Merit (2)

Variation of the statistical uncertainty on W mass with the energy in the center of mass

Conclusion and Outlook

- Kinematic fit for the hadronic channel study is fully developed (4C and 5C fit)
- Improvement of W mass reconstruction for 240 and 350 GeV .
- The 5C fit at 162.3 GeV shows better W mass reconstruction but only the off-shell mass is well reconstructed. At this energy only the 4C fit will be used.

Next step: 2C fit for the semi-leptonic channel. The neutrino introduces unmeasured parameters to the fit.

Thanks for your attention

BACK-UP

Kinematic fit - Mathematics development (1)

Taylor development at first order :

$$
\begin{equation*}
f\left(y^{\prime}\right) \sim f_{i}\left(y^{*}\right)+\sum_{i=1}^{4} \frac{\partial f_{i}}{\partial y_{i}}\left(\Delta y_{i}-\Delta y_{i}^{*}\right) \sim 0 \tag{1}
\end{equation*}
$$

With vector notation and $B=\frac{\partial f}{\partial y}$, this equation can be written

$$
\begin{equation*}
\overrightarrow{f^{*}}+B\left(\Delta \vec{y}-\Delta \overrightarrow{y^{*}}\right) \sim 0 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
B \Delta \vec{y}-\vec{c}=0 \quad \text { with } \quad \vec{c}=B \Delta \vec{y}^{*}-\vec{f}^{*} \tag{3}
\end{equation*}
$$

Finally, the equation (1) becomes :

$$
\begin{equation*}
L=\Delta y^{T} V^{-1} \Delta y+2 \lambda^{T}(B \Delta \vec{y}-\vec{c}) \tag{4}
\end{equation*}
$$

which is minimal if $\frac{\partial L}{\partial y}=0$ and $\frac{\partial L}{\partial \lambda}=0$.

Kinematic fit - Mathematics development (2)

According to the equation (4), the equations to solve are :

$$
\begin{align*}
& \frac{\partial L}{\partial y}=V^{-1} \Delta y+B^{T} \lambda=0 \tag{5}\\
& \frac{\partial L}{\partial \lambda}=B \Delta y-\vec{c}=0 \tag{6}
\end{align*}
$$

With matrix notation this system becomes :

$$
\left(\begin{array}{cc}
V^{-1} & B^{T} \tag{7}\\
B & 0
\end{array}\right)\binom{\Delta y}{\lambda}=\binom{0}{\vec{c}}
$$

then,

$$
\binom{\Delta y}{\lambda}=\left(\begin{array}{cc}
V^{-1} & B^{T} \tag{8}\\
B & 0
\end{array}\right)^{-1}\binom{0}{\vec{c}}
$$

The tuned parameters α, θ, ϕ and v which are used to determined the fitted four-vector of each jets, can be computed with the Δy from equation (8)

Kinematic fit - Mathematics development (3)

As the constraints depend directly on the four-vector components $P=(\vec{p}, E)$, each matrix term can be simplified with a derivative chain :

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial P} \frac{\partial P}{\partial y} \quad \text { with } \quad f=\Sigma p_{i} \tag{10}
\end{equation*}
$$

