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Influence of the vertical closed orbit
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Abstract

The series of the experiments on precise mass measurement of J/Ψ-, Ψ′- mesons have
been performed in 2002-2004. Energy calibration has been done with the help of the
resonant depolarization technique. The present paper discusses the influence of the
vertical orbit distortions on the accuracy of the energy calibration. The sources of
the orbit distortions are misalignments of the quadrupoles and sextupoles in vertical
plane and kicks of the vertical correctors. Comparison with previously published
papers is presented.
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1 Introduction

The series of the experiments on precise mass measurement of J/Ψ-, Ψ′-
mesons have been performed in 2002-2004. The following mass values have
been obtained [1]:

MJ/Ψ = 3096.917± 0.010± 0.007 MeV ,

MΨ′ = 3686.111± 0.025± 0.009 MeV .
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Energy calibration of the colliding beams has been performed by resonant
depolarization technique. To achieve high accuracy of the mass measurements
an analysis of possible errors have been performed [3,2]. In particular, the effect
of the vertical closed orbit distortions influence on accuracy of the energy
calibration was preliminary estimated with the result of 14 keV correction
for the mass of Ψ′–meson. Comparatively large value of possible energy bias
stimulated the further analysis which is presented below.

The discussed effect have been addressed by numerous authors [4,5,6,7]. The
common conclusion was that value of the systematic error in energy calibration
is proportional to the squared value of the orbital distortions. Initially we
have performed similar calculations and compared them with simulation. The
difference by order of magnitude was observed at integer resonance vicinity
and also the theoretical estimation predicted the opposite sign of the effect
value at the energy region of Ψ′-meson.

The authors of [6] proposed usage of single spin harmonic (measured, for ex-
ample, by polarization life time) for evaluation the energy bias. This approach
was compared with simulation and limitations for usage were found.

The present paper discusses all mentioned approaches and gives more accurate
estimation of the effect.

2 The problem definition

The spin precession frequency ΩS of the particle moving in vertical guiding
field is described by

ΩS = Ω0(1 + γ
q′

q0
) , (1)

where Ω0 = q0B/γ is revolution frequency, B is average guiding field, γ is
Lorentz factor, q′, q0 are anomalous and normal parts of gyromagnetic ratio.
Introducing the spin tune ν = (ΩS − Ω0)/Ω0 = γq′/q0 one will have a known
relation between energy E and spin tune

E[MeV ] = ν × 440.64843(3) . (2)

The closed orbit in this case is assumed to be flat. In general, the radial and
the longitudinal magnetic as well as vertical electric fields may exist in real
accelerator that makes the given equation inadequate. In the first order of
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perturbation theory the modified relation between spin frequency and beam
energy can be expressed in the form

ν ′ = γ
q′

q0
+∆ν(γ, perturbations) . (3)

The goal is to estimate spin tune shift ∆ν by the given perturbations. This
gives a possibility to find the correct energy value by the quantity ν ′ − ∆ν,
where ν ′ is a spin tune measured by the resonant depolarization technique and
the following relation has to be used:

γ =
q0
q′
(ν ′ −∆ν) .

The longitudinal fields arise from the errors of compensation of the detector’s
field. Consideration of these perturbations is most simple and presented in
[3].We consider the influence of the radial fields which arise primary due to
misalignment of quadrupoles in vertical plane.

3 The general approach

To calculate the shift of the spin tune in the presence of the radial field we
will assume sources of perturbations (including vertical correctors, quadrupole
lenses and other sources of radial fields) to be point-like and rather weak. The
calculations will be done in the second order of perturbation theory with the
help of spinor matrices technique [9] using Pauli matrices (σx, σy, σz) and the
unit 2×2 matrix I. Also, the coordinate system is related to the velocity vector
of the equilibrium particle. Thus, rotation angle of the spin vector 2χ = να is
proportional to the rotation angle of the velocity vector α. The spinor matrix
for the rotation around radial (x) basis vector on the angle 2χi = ναi for the
perturbation at azimuth θi is

Ti = I cos(χi)− iσx sin(χi) .

Spin evolution in vertical field is described by

Mi = I cos
(

Φi+1,i

2

)

− iσz sin
(

Φi+1,i

2

)

,

where Φi+1,i = Φ(θi+1)− Φ(θi) and Φ(θi) =
θi
∫

0
νKdθ is a rotation angle of the

spin vector in the guiding field from the origin azimuth to given perturba-
tion location; K is the orbit curvature in units of the inverse mean machine

3



radius 1/R. The total one-turn matrix of the spin evolution is obtained by
multiplication of the subsequent spinor matrices

M =
∏

i

TiMi .

The new spin tune ν ′ is obtained from the following formula cos(πν ′) =
1/2 Sp(M), while ν denotes spin tune without radial fields. It is simple to
calculate spin tune in the case of one perturbation (neglecting higher than
second order terms)

cos(πν)− cos(πν ′) =
χ2
1

2
cos(πν) ,

of two perturbations

cos(πν)− cos(πν ′) =
χ2
1 + χ2

2

2
cos(πν) + χ1χ2 cos(πν − Φ2,1) ,

of N perturbations

cos(πν)− cos(πν ′) = cos(πν)
N
∑

i=1

χ2
i

2
+

N
∑

j>i,i=1

χiχj cos(πν − Φj,i) . (4)

This gives the spin tune shift

∆ν = ν ′ − ν =
1

2π sin πν



cos πν
∑

χ2
i + 2

∑

j>i

χiχj cos(πν − Φj,i)



. (5)

The first term in the right part of the equation describes non-correlated part
of the orbital distortions influence, the second one corresponds to their cor-
relations. The authors of [4,5,6,7] neglected the second term by statistical
considerations or by assumption that closed orbit is well corrected and re-
mained distortions are statistically independent. Hence, the spin tune shift
is

∆ν =
cosπν

2π sin πν

∑

χ2
i =

ν2 cotπν

8π

∑

α2
i . (6)

The summation over the orbit rotation angles αi was estimated by using ob-
served vertical orbit RMS 〈z2〉 (assuming that 〈z〉 = 0), number of quadrupole
lenses N (inclusion of vertical orbit correctors does not change the result much
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for VEPP-4M) and average focus distance of the lenses F . The final estimation
is following

∆ν =
ν2 cot(πν)

8π

N 〈z2〉
F 2

. (7)

The comparison of the calculations by obtained formula with simulation is
presented on Fig.1, where ∆E = 440.65 ·∆ν. As it could be seen the obtained
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Fig. 1. Energy shift versus spin tune at 1 mm vertical orbit RMS. Triangles are
calculations by formula (7), circles with errors are results of the simulation.

estimation gives energy bias about 10 times bigger than simulation for energy
region of τ lepton, sign of the estimation is opposite to one from simulation
at Ψ′ region and value of estimation is zero at half integer spin tune when
simulation value is not.

Equation (5) could be written in the integral form which will be used for
further calculations. Given z is the vertical closed orbit deviations in units of
R and z′′ = d2z/dθ2. The spin rotation angle is than 2χi = νz′′∆θi, where ∆θi
is an interval of the i-th perturbation. Thus, the spin tune shift is

∆ν =
1

16π sin πν

2π
∫

0

νz′′dθ

2π
∫

0

νz′′
[

ei(πν−|Φ−Φ′|) + c.c.
]

dθ′ . (8)
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Introducing the definition of the spin harmonic amplitude

ωk =
1

2π

2π
∫

0

νz′′ exp [−i(Φ− νθ)− ikθ]dθ , (9)

it is possible to transform (8) to the form obtained by A.M.Kondratenko [8]
(who derived this equation in different way)

∆ν =
1

2

∑

k

|ωk|2
ν − k

. (10)

The goal of the following calculations is to estimate spin harmonic amplitude
ωk by vertical orbit RMS 〈z2〉.

4 Calculation of the spin harmonics

4.1 No straight sections and constant beta

Assuming accelerator without straight sections i.e. Φ = νθ and given Fourier
expansion of z =

∑

zne
inθ and z′′ = −∑ znn

2einθ one can obtain that ωk =
−νk2zk and corresponding spin tune shift is

∆ν =
1

2

∞
∑

k=−∞

|ωk|2
ν − k

=
ν2

2

∞
∑

k=−∞

|zk|2k4

ν − k
. (11)

To evaluate orbit harmonics zn it is convenient to use the known variables
u = z/

√
βz and φ =

∫ θ
0 dθ/(νzβz), where βz is vertical beta function in units

of R, νz is vertical betatron tune. Then the closed orbit equation is written
as:

d2u

dφ2
+ ν2

zu = ν2
zβ

3/2
z h(φ) = F (φ) , (12)

where h(φ) = ∆Hx/ 〈Hz〉. Performing Fourier decomposition on both parts of
equation (12) one obtains

un =
Fn

ν2
z − n2

,
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where u =
∑∞

n=−∞ une
inφ, F =

∑∞
n=−∞ Fne

inφ. The RMS of orbit distortions
is calculated by summation over squared harmonic amplitudes

〈

u2
〉

=
∞
∑

n=−∞

|un|2 =
∞
∑

n=−∞

FnF
∗
n

(ν2
z − n2)2

. (13)

Assuming that all orbits with the same RMS are produced by random and
uniform kicks F (φ) i.e. FiF ∗

j = f 2δij (where ¯ denotes averaging over orbits
with the same RMS and ∗ is complex conjugation) we calculate the RMS orbit
distortion

〈u2〉 =
∞
∑

n=−∞

|un|2 = f 2
∞
∑

n=−∞

1

(ν2
z − n2)2

= f 2Q , (14)

where

Q =
π

2ν3
z

cot πνz +
π2

2ν2
Z

csc2 πνz . (15)

The obtained relation (14) allows to find mean squared excitation f 2 = 〈u2〉/Q.

In homogeneous approximation βz = const = 〈βz〉 the following relations

could be written φ(θ) = θ, zn = un

√

〈βz〉, 〈z2〉 = 〈u2〉 〈βz〉 and

|zn|2= |un|2 〈βz〉 = 〈βz〉
|Fn|2

(ν2
z − n2)2

=

= 〈βz〉
〈u2〉
Q

1

(ν2
z − n2)2

=
〈z2〉
Q

1

(ν2
z − n2)2

. (16)

Substituting obtained relations into formula (11) we obtain the desired relation
between average spin tune shift and orbit RMS

∆ν =
ν2

2

〈z2〉
Q

∞
∑

k=−∞

k4

(ν2
z − k2)2(ν − k)

. (17)

To evaluate the uncertainty of the above estimation it is necessary to calculate

∆ν2 =

(

ν2 〈βz〉
2

)2 ∞
∑

k,n=−∞

k4

(ν2
Z − k2)2(ν − k)

×

× n4

(ν2
z − n2)2(ν − n)

|Fk|2|Fn|2 , (18)
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where averaging is performed over all possible orbits with the same RMS.
Taking into account that FkF ∗

kFnF ∗
n = 3f 4(δk,n + δk,−n) + f 4, we obtain

σ∆ν =

√

∆ν2 −∆ν
2
=

ν2
√
3

2

〈z2〉
Q

×

×
√

√

√

√2ν
∞
∑

k=−∞

k8

(ν2
z − k2)4(ν − k)2(ν + k)

. (19)

Comparison of the obtained estimation with simulation for VEPP-4M is pre-
sented on Fig.2 Performed calculations are in a good agreement with simula-
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Fig. 2. Energy shift versus spin tune at 1 mm vertical orbit RMS. The solid line
represents estimation by (17), dashed lines represent the uncertainty of the estimate,
calculated by (19), circles with errors are results of the simulation.

tion in the region far from the integer spin resonance ν = 4. The discrepancy
between simulation and calculation in the vicinity of integer spin resonance
is due to underestimated resonant spin harmonic for VEPP-4M. To perform
better estimation our assumptions about absence of the straight sections and
constant beta have to be changed. There are two long straight sections of 40 m
each with circumference of 366 m at VEPP-4M.
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4.2 Straight sections and beta function variations

The straight sections give more complicated relation between spin and orbital
harmonics

ωk =
1

2π

2π
∫

0

ν0z
′′ exp [−i(Φ− νθ)− ikθ]dθ =

=− ν

2π

∞
∑

n=−∞

znn
2

2π
∫

0

exp [−i(Φ− νθ)− i(k − n)θ]dθ =

=−ν
∞
∑

n=−∞

Dknznn
2 , (20)

where elements of the matrix Dkn are calculated as

Dkn =
1

2π

2π
∫

0

exp [−i(Φ − νθ)− i(k − n)θ]dθ . (21)

There are two straight sections with the length of L each, in case of VEPP-
4M. The straight sections are separated by arcs with radius R. The calculated
elements of the matrix Dkn in described layout are

Dkn =
νr

πδ∆
sin

(

x1δ

2

)

[1 + cos(π(k − n))] , (22)

where δ = k−n−ν, ∆ = ν(r−1)+k−n, r = R0/R, x1 = L/R0 = π(r−1)/r.

Azimuthal beta function variations leads to the following relations between or-
bital harmonic zn (along azimuth θ, z =

∑∞
n=−∞ zne

inθ) and uk (along azimuth
ϕ, u =

∑∞
k=−∞ uke

ikφ)

zn =
1

2π

2π
∫

0

z(θ)e−inθdθ =
1

2π

2π
∫

0

u(θ)
√

β(θ)e−inθdθ =

=
1

2π

∞
∑

k=−∞

uk

2π
∫

0

√

β(θ)eikϕ(θ)−inθdθ =
∞
∑

k=−∞

ukJnk , (23)

where definition of the matrix Jnk is following

Jnk =
1

2π

2π
∫

0

√

β(θ)eikϕ(θ)−inθdθ . (24)
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Performing Fourier decomposition of motion equation (12) and using def-
inition of Jnk we obtain relation between excitation harmonics Fm (F =
∑∞

m=−∞ Fme
imφ) and hn (h =

∑∞
n=−∞ hne

inθ)

Fm = νz
∞
∑

n=−∞

J∗
nmhn . (25)

Substituting obtained relations into formula (20) we obtain

ωk = −ννz
∑

n,m,l

Dknn
2JnmJ

∗
lmhl

ν2
z −m2

. (26)

Calculation of the squared spin harmonic amplitude and averaging over orbits
with the same RMS (hlh∗

s = h2δls), gives

|ωk|2 = ν2ν2
zh

2
∑

l

|Mkl|2 , (27)

where

Mkl =
∑

n

n2Dkn

∑

m

JnmJ
∗
lm

ν2
z −m2

. (28)

Calculation of the squared distortion harmonic h2 is similar to one performed
in previous paragraph, i.e. it is necessary to calculate orbital RMS and perform
averaging over orbits. The result is following

〈z2〉 = ν2
zh

2
∑

n,l

∣

∣

∣

∣

∣

∑

m

JnmJ
∗
lm

ν2
z −m2

∣

∣

∣

∣

∣

2

(29)

introducing

Q =
∑

n,l

∣

∣

∣

∣

∣

∑

m

JnmJ
∗
lm

ν2
z −m2

∣

∣

∣

∣

∣

2

,

we obtain h2 = 〈z2〉/(ν2
zQ).

Finally, the spin tune shift is

∆ν =
ν2

2

〈z2〉
Q

∑

k,l

|Mkl|2
ν − k

. (30)
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In order to calculate the uncertainty of the effect, we have to note that

hlh∗
shxh∗

z = h4δlsδxz + h4δlzδxs + h4δl,−xδs,−z

and hl = h∗
−l. Hence, relation for spin harmonics, which defines mean squared

spin tune shift is following

|ωk|2 · |ωt|2= ν4ν4
zh

4 ×




∑

l,x

|Mkl|2|Mtx|2 +
∑

l,x

MklM
∗
tlM

∗
kxMtx+

+
∑

l,x

MklM
∗
t,−lM

∗
kxM

∗
t,−x



 , (31)

but the relation for spin harmonics, which defines second power of the mean
spin tune shift is

|ωk|2 · |ωt|2 = ν4ν4
zh

4





∑

l,x

|Mkl|2|Mtx|2


 . (32)

Performing necessary calculations we obtain the uncertainty of the effect

σ∆ν =
ν2

2

〈z2〉
Q





∑

k,t

|∑l MklM
∗
tl|2 + |∑l MklMt,−l|2

(ν − k)(ν − t)





1

2

. (33)

Comparison of the estimation with simulation is presented on Fig.3.

5 Simulation.

The Monte-Carlo simulation have been done to understand the possible energy
shifts due to vertical closed orbit distortions for VEPP-4M. The sources of the
distortions were alignment errors of quadrupoles and sextupoles and random
kicks from vertical correctors. For each errors distribution closed orbit has
been found and along the closed orbit the spin tune has been calculated using
matrix technique. The resulted energy shift ∆E = 440.64843 ·(ν ′−ν) is shown
on Fig. 4. for Ψ′ and on Fig. 5. for τ lepton.
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Fig. 3. Energy shift versus spin tune at 1 mm vertical orbit RMS. The solid line
represents estimation by (30), dashed lines represent the uncertainty of the estimate,
calculated by (33), circles with errors are results of the simulation.

5.1 Insufficiency of one harmonic amplitude

Authors of [6] proposed usage of single spin harmonic from (10) (measured,
for example, by polarization life time) for evaluation the energy bias. To in-
vestigate adequacy of such approach three harmonics have been calculated
resonant one ω4 and two harmonics with preceding and subsequent indices ω3

and ω5 correspondingly in each simulation run. Then the mean squared har-
monic amplitude were found to calculate the spin tune shifts by substituting
each harmonic separately and all three together in (10). The comparison of
such an approach and simulation is shown on Fig.6. As it could be seen, usage
of resonant harmonic approximation is satisfactory in the region not further
than 0.1 in units of spin tune. The more distant range requires usage of all
other harmonics for correct estimation of the effect.
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Fig. 4. Distribution of energy shift ∆E versus RMS orbit deviation at energy
1850 MeV. Points are results of simulation.

6 Conclusion.

Vertical orbit distortions introduce an energy bias in energy calibration done
by resonant depolarization technique. This energy shift could be estimated for
general accelerator using assumptions of straight sections absence and constant
beta with satisfactory accuracy by formula (19). In case of accelerator with
long straight sections, as VEPP-4M, more accurate formula (30) could be
used.

The usage of one resonant spin harmonic approximation is adequate only in
the immediate region of spin resonance, the area distant on more than 0.1 in
units of spin tune from the resonance is not described well by such approach.

In the experiment for Ψ′-meson mass measurement the energy shift was −0.6±
0.4 keV with 1.2 mm of vertical orbit RMS, for J/Ψ-meson mass measurement
the energy shift was −0.8 ± 0.6 keV. For the ongoing experiment of τ lepton
mass measurement the effect was estimated to be 1.5± 1.5 keV.
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Fig. 5. Distribution of energy shift ∆E versus RMS orbit deviation at energy
1777 MeV. Points are results of simulation.
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monic separately, circles with errors are results of the simulation.
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