Simulations for FCC-ee beam self-polarization

E. Gianfelice (Fermilab)

VYDIO February 5, 2018

Goal since October Workshop: a complete simulation of the effect of misalignements. Optics: 45 GeV optics with smaller β_u^* from September 2017

• 60 deg FODO.

2/21

- $\hat{\beta}_y$ is smaller but focusing is stronger too.
- As a consequence, the SY sextupoles became stronger.

Reminder from December 14 meeting: two (more) problems encountered i.e.

- Small ϵ_y and D^y_{rms} is no warranty for high polarization
- Problems by tracking with SITROS and MAD-X PTC

New optics: arcs

Stable machine and $|C^-| \simeq 0$ with ^a

	IR Quads	IR BPMs	other Quads	other BPMs
$oldsymbol{\delta x}~(oldsymbol{\mu}\mathrm{m})$	0	0	50	0
$oldsymbol{\delta y} \; (oldsymbol{\mu} \mathrm{m})$	0	0	50	0
$oldsymbol{\delta heta} \; (oldsymbol{\mu} \mathrm{rad})$	0	0	50	0
calibration	-	0	-	0

Trying increasing errors: Twiss failure by switching on the SY sextupoles.

^a errors added in 10 steps

New optics: arcs

Stable machine and $|C^-| \simeq 0.007$ with ^a

	IR Quads	IR BPMs	other Quads	other BPMs
$oldsymbol{\delta x}~(oldsymbol{\mu} \mathrm{m})$	0	0	50	50
$oldsymbol{\delta y} \; (oldsymbol{\mu} \mathrm{m})$	0	0	50	50
$\boldsymbol{\delta \theta} ~(\boldsymbol{\mu} \mathrm{rad})$	0	0	50	50
calibration	-	0	-	1%

• The coupling is due mainly to the SYs: with them off it is $|C^-| < 0.002$

 \leadsto try inserting a thin skew quadrupole in the middle of each SYs for a coupling local correction. This may introduce vertical dispersion.

By powering the 8 SYs skews with $K = -S \times \ell \times y$ it is possible to reach $|C^-| \simeq 0.0009$, but indeed vertical dispersion increases.

^aerrors added in 10 steps, but calibration errors kept fixed at 1%

 D_y rms value increases from 7 mm to 130 mm. Will be it possible to correct D_y later on by the "distributed" skew quads? For the moment I do not resort to those skews.

Improvements to IR correction

- \bullet one vertical corrector 0.05 m long close to each QC1Rn , QC1Ln, QC2Rn, QC2Ln and QT
- \bullet one horizontal and one vertical corrector 0.05 m long close to each QC2Rn, QC2Ln and QT

Strategy for inserting errors:

• one IP at a time

6/21

• correction by SVD using only the local correctors

	IR Quads	IR BPMs	other Quads	other BPMs
$oldsymbol{\delta x}~(oldsymbol{\mu} \mathrm{m})$	50	50	0	50
$oldsymbol{\delta y} \; (oldsymbol{\mu} \mathrm{m})$	50	50	0	50
$oldsymbol{\delta heta} \; (oldsymbol{\mu} \mathrm{rad})$	50	50	0	50
calibration	-	1%	-	1%

Put all together : stable machine with $|C^-| \simeq 0.018$.

	D_{rms}^y	ϵ_x	ϵ_y	ϵ_ℓ
	mm	nm	pm	$\mu\mathrm{m}$
unp.	0	0.255	0.0000	1.259
errs+corrs	11.4	0.254	2.937	1.237

with V=96 MV

Arcs: change strategy

Vertical dispersion increases when moving to "polarization tunes"

• Switch to .1/.2 tunes and turn on sextupoles at the end of the orbit correction and re-correct orbit (if stable...)

	IR Quads	IR BPMs	other Quads	other BPMs
$oldsymbol{\delta x} \; (oldsymbol{\mu} \mathrm{m})$	0	0	50	50
$oldsymbol{\delta y} \; (oldsymbol{\mu} \mathrm{m})$	0	0	50	50
$\boldsymbol{\delta heta} \; (\boldsymbol{\mu} \mathrm{rad})$	0	0	50	50
calibration	-	0	-	1%

- Reading back errors and corrections there is discrepancy in the vertical plane (only!)
 - y_{rms} =10 μ m \rightarrow 20 μ m
 - $D_{rms}^{y} = 3.6 \text{ mm} \rightarrow 5.6 \text{ mm}$
- $|C^-| \simeq 0.003$

8/21

• $\epsilon_y = 1.7 \text{ pm}$ (with wigglers, no IR errors)

Errors only in the arcs quads. Add coupling D_y correction with 289 skew quads.

	x_{rms}	y_{rms}	D_{rms}^y	ϵ_x	ϵ_y	$ C^- $
	$(\boldsymbol{\mu}\mathrm{m})$	$(\boldsymbol{\mu}\mathrm{m})$	(mm)	(nm)	(pm)	
before	10	20	5.6	0.225	1.752	0.003
after	10	20	3.1	0.225	<mark>0.125</mark>	0.0005

Back to theory. In linear approximation

10/21

$$rac{\partial \hat{n}}{\partial \delta}(ec{u};s) = ec{d}(s) = rac{1}{2} \Im \Big\{ (\hat{m}_0 + i \hat{l}_0)^* \sum_{k=\pm x,\pm y,\pm s} \Delta_k \Big\} \, ,$$

$$\Delta_{\pm x,\pm y} = (1+a\gamma) rac{e^{\mp i \mu_{x,y}}}{e^{2i\pi(
u \pm Q_{x,y})} - 1} rac{[-D \pm i(lpha D + eta D')]_{x,y}}{\sqrt{eta_{x,y}}} \,\,\, J_{x,y}$$

$$\Delta_{\pm s} = (1+a\gamma) rac{e^{\pm i \mu_s}}{e^{2i\pi(
u \pm Q_{s)}}-1} \,\,\, J_s$$

$$J_{\pm x,\pm y} = \int_s^{s+L} ds'(\hat{m}_0 + i \hat{l}_0) \cdot \left\{ egin{array}{c} \hat{y} \sqrt{eta_x} \ \hat{x} \sqrt{eta_y} \end{array}
ight\} \, K e^{\pm i \mu_{x,y}}$$

$$J_s = \int_s^{s+L}\!ds'(\hat{m}_0+i\hat{l}_0)\cdot(\hat{y}D_x+\hat{x}D_y)~K$$

Why is $\Delta_{\pm y}$ so large? If D_y is too large, why is P_y and not P_s affected?

Plotting the factor $\frac{[-D_y \pm i(\alpha_y D + \beta D'_y)]}{\sqrt{\beta_y}}$ which multiplies $J_{\pm y}$

Trying correcting only D_y (2 mm rms): no change on polarization.

Correcting only D_y

12/21


```
Swopping tunes: P_y \rightarrow 0
Increasing Q_y to .3 helped!
```


Large improvement of the factor \rightarrow disease understood, a cure must be found!

Running SITROS (w/o wigglers, because bends array dimension exceeded...)

- .1/.8
 - "Na
N" after \simeq 3000 turns
- .1/.2

15/21

– Beam equilibrium found but $\epsilon_x=1.25$ nm, $\epsilon_y=57.8$ pm and little polarization...

Tracking problems

Why are the emittances found by SITROS tracking so large?

Repeat tracking for the ideal machine: $\epsilon_x = 1 \text{ nm}$ (instead of 0.24 nm), $\epsilon_y = 0$ Increase from 300 to 600 particles, no difference. Increase number of bends for radiation (from 1400 to 2400): $\epsilon_x = 1.1 \text{ nm}$

Try tracking with MADX-PTC.

- 40 particles
- 4D Gaussian distribution with 1 σ cut
- 4000 turns ($\simeq 2 \tau_x$)

Hints from Tobias:

- PTC does not compute the synchronous phase
- sign convention is opposite to MADX

Used commands

```
!compute synchronous phase
 match, sequence=L000013;
  vary, name = LAGCA1, step=1.0E-6;
  constraint, sequence=L000013, range = #E, T=0;
  jacobian, calls=30, tolerance=1.E-22, strategy=3;
 endmatch;
 !ptc convention is opposite!!!
 lagca1=-lagca1;
 ptc_create_universe;
 ptc_create_layout,model=3,method=4,nst=10,exact,time=true;
 ptc_align; ! needed for overtaking the errors defined before ptc
! ptc_setswitch,fringe=true,radiation=true;! Qs modulation seen on x
                                          ! but Dx=6e-7 m at IP !
 call, file="my_ptcstart_gauss.dat";
 ptc_track,
 ICASE=6,ELEMENT_BY_ELEMENT,RADIATION_MODEL1,RADIATION_QUAD,
 RADIATION_ENERGY_LOSS, TURNS=4000, DUMP;
 ptc_track_end;
 ptc_end:
```


Ideal machine, tunes: .1/.2/.024

18/21

Repeat using "ptc_setswitch"

19/21

 $\sigma_{x} \lesssim 0.318 \ \mu \mathrm{m} \rightarrow \epsilon_{x} \lesssim 0.7 \ \mathrm{pm}$

Back to the polarization problem

Tried a different seed: same problem. Found skew quadrupole settings improving Δ_{\pm} at expenses of betatron coupling. With .1/.2 tunes:

Problems by SITROS tracking: no equilibrium found, particles "lost" because of too large vertical amplitude!

Ρ

- Decreasing the errors by a factor 3 and eliminating errors on BPMs did not help.
- Equilibrium instead is found for the ring w/o errors.

21/21

• Did I introduce a bug in the code?? Verified that reasonable values of equilibrium emittance are obtained with SITROS tracking for the optics prior to the $\beta_y^*=0.8$ mm one and the introduction of 4 more wigglers.

