

New Physics Results from the LHC: boosted multi-boson signatures

Jordan Damgov

for ATLAS and CMS Collaborations

MBI2018, Aug 28-30, 2018

Heavy resonance searches at LHC

The search for new heavy particles is an integral part of the physics program at LHC

Using generalized models as a benchmarks in diboson resonance searchers

- 2 Higgs-doublet model (2HDM)
- ❖ Heavy Vector Triplet (W', Z')
- Warped extra dimensions

Narrow width resonances

Reconstruction of **boosted V(W,Z,H)** is critical for heavy (TeV scale) diboson resonance searches

ATLAS EXPERIMENT

Boosted hadronic decays

Large-*R* **jet:** anti- $k_T R = 1.0$

Track-CaloClusters ATL-PHYS-PUB-2017-015

Jet grooming technique: trimming

- To remove the effects of pile-up and underlying event
- Trimming parameters: $R_{\text{sub}} = 0.2$ and $f_{\text{cut}} = 0.05$

minimum transverse momentum fraction > f_{cut}

V/H-tagging

ATLAS-CONF-2018-016 ATLAS-CONF-2016-039

Jet substructure: energy correlation D_2

W/Z-jet tagger:

- \triangleright Large-R jet mass window and D_2 selection (p_T dependent)
- Working points: 50% and 80% constant signal efficiency in wide range: 200-2500 GeV

Higgs-jet tagger:

- Large-R jet mass window cut
- b-tagging of track jet (R=0.2), MV2c10 algorithm

The stars correspond to the 60%, 70%, 77% and 85% b-tagging WPs (from left to right).

Boosted hadronic decays

Eur. Phys. J. C 77 (2017) 636

Large-R jets : anti- k_T , R = 0.8 with **p**ileup **p**er **p**article **i**dentification (PUPPI)

Jet mass — **soft-drop** algorithm:

Recursively removes soft wide-angle radiation from a jet

V/H-tagging

Jets substructure:

- ightharpoonup N-subjettiness : $\tau_{21} = \tau_2/\tau_1$ separating bosons jets from q/g jets;
 - ✓ high- and low-purity regions based on the value of τ_{21}

W/Z-jet tagging: mass window, τ_{21} selection

Higgs-jet tagging: mass window, τ_{21} selection

double-b tagger: MVA discriminant. "loose" and "tight" working point

All-hadronic decays

The advantage:

- Largest branching fraction.
- Simpler background composition mostly QCD multijets(>90%).
- Smoothly falling m_{vv} spectra well modeled by parametric functions

Challenges:

- Overwhelming multijet background
- Lower mass searches limited by triggers (higher pt thresholds)

ATLAS: $W \rightarrow qq \rightarrow J$ and $Z \rightarrow qq \rightarrow J$ mass windows partially overlap; 50% efficiency WP

Background Modeling:

$$\frac{dn}{dx} = p_1(1-x)^{p_2-\xi p_3}x^{-p_3}$$

CMS: Non-overlapping W and Z mass windows. Low- and high-purity categories in

N-subjetiness. Background Modeling:

$$\frac{\mathrm{d}N}{\mathrm{d}m_{\mathrm{jj}}} = \frac{P_0}{(m_{\mathrm{jj}}/\sqrt{s})^{P_1}}$$

X→VV→qqqq

HVT model A and/or B

Signature: 2 large-R jets

W/Z and Higgs bosons decay hadronically

Dominant background: multi-jets **Additional handle**: b-tag for H->bb

ATLAS:

Categorize according the **number of b-tag track jets (1 and 2)** associated with the Higgs candidate. 1-tag is more efficient from m_{VV} >2.5 TeV when the two track jets merge into one.

CMS:

Signal regions with **loose and tight double-b tag** for the Higgs candidate. **Low- and high-purity** in N-subjetiness. Loose b-tag and low-purity help with sensitivity of the search at higher resonance mass.

W mass and Z mass categories.

ATLAS:

- ❖ 0-tag sample(99% multijet) is used to model the kinematics in the signal regions (1-,2-tags).
- high-mass sideband in m_{J,H} is used for the normalization
- ❖ The background modeling is validated in sideband region for the V-jet mass.
- $f_{\text{Multijet}}(x) = p_a (1-x)^{p_b} (1+x)^{p_c x}$, $x = m_{JJ} / \sqrt{s}$
- tt and V+jets are also modeled with parametric function

Higgs boson candidate mass [GeV]

CMS:

❖ Background (>95% multijets) is estimated directly from data using smooth, monotonic **parametric functions**. **Validated** in V-jet mass sideband and on simulation.

$$\frac{p_0}{x^{p_1}}$$
, $\frac{p_0 (1-x)^{p_1}}{x^{p_2}}$, $\frac{p_0 (1-x)^{p_1}}{x^{p_2+p_3 \log(x)}}$, $x = m_{VH}/\sqrt{s}$

Preferred for low-purity and loose b-tag categories

Number of b-tags

X→HH→bbbb

<u>Phys. Lett. B 781 (2018) 244</u>

arXiv:1808.01473

ATLAS:

Categorize according the **number of b-tag track jets** (2,3 and 4) associated with the Higgs candidates Multijet background (80-95%) modeled from data

- ➤ **Shape** the same selection, but has one track jet failing b-tag.
- Normalization signal free sideband region in m_J.
 Includes resolved jets topology
 - ✓ Extends to lower masses (~200GeV)

CMS:

Two complementary searches:

- merged two large-R jets with double-b tag
- partially merged: one large-R jet and 2 resolved

Background estimation – multiple sidebands

X→HH→bbbb

Fit reduced mass $m_{Jjj,red} \equiv m_{Jjj} - (m_J - m_H) - (m_{jj}(j_1, j_2) - m_H)$ > 8-10% improvement on HH mass resolution

X→HH→bbbb: limits

X→WV→lvqq: ATLAS

- ❖ Using high-purity (50% WP) and low-purity (80% WP) improves sensitivity
- > Dominant background: W+jets, tt
 - ✓ Shape from the simulation
 - ✓ Normalization estimated from combined fit in signal and control regions
 - W+jet: mass sidebands of V→qq
 - tt: requires b-jets
- Consider resolved jets topologies to extend the search to lower resonance masses
- \triangleright Consider excusive **VBF category**: $m_{tag}(j,j) > 770 \text{GeV}$, $|\Delta \eta_{tag}(j,j)| > 4.7$

X>WV->lvqq

X→WV→lvqq: CMS

2D bump hunt in the (m_{WV}, m_{iet}) plane, where m_{iet} is the soft-drop jet mass.

Takes advantage of 2D sidebands to constraint the backgrounds:

- resonant in m_{iet} "W+V/t" (tt-dominated)
- > non-resonant in m_{iet} "W+jets" (W+jets, mis-assigned tt)

Kernel approach in building of smooth 2D templates

- ➤ Each gen.-level event contributes a gaussian, according to scale & resolution model.
- > Performs loosely constraint fit to the data

X→WV→lvqq: Limits

X→WV→lvqq: Limits

$X \rightarrow ZV \rightarrow IIqq, vvqq$

The analyses considers

- resolved and merged V->qq decays
- ggF/DY and VBF categories ($m_{tag}(j,j)$) >770GeV, $|\Delta \eta_{tag}(j,j)|$ >4.7)
- categorization according to the number of b-tags (two or less than two)

Background modeling

- ❖ The **shape** of kinematic distribution is taken from the simulation
- ❖ Normalization is constrained from simultaneous fit in signal and control regions (outside of m_J/m_{ii} window).

The vvqq search uses the transverse mass instead.

Backgrounds normalization in the control regions

$X \rightarrow ZV \rightarrow IIqq$, vvqq: CMS

arXiv:1803.03838 arXiv:1803.10093

Both analyses perform high-mass resonance search with **merged V->qq decay** The Z->II also performs "low-mass" and covers 400<m_{ZV}<850 GeV mass range **Modify lepton reconstruction is used for boosted Z->II**

Dominant backgrounds are Z+jets (irreducible) and W+jets.

- Using m_j sideband to estimate the background (normalization and shape)
- > Transfer function of the shape (CR->SR) is derived from the simulation.

$X \rightarrow ZV \rightarrow IIqq$, vvqq: limits

$X \rightarrow ZH \rightarrow IIbb$, vvbb; WH $\rightarrow Ivbb$: ATLAS

JHEP 03 (2018) 174

data

other

1.5 TeV HVT x 10

tt, single top

W+(bb,bc,cc)

W+(bl,cl), W+l

Z+(bb,bc,cc)

Z+(bl,cl), Z+l

uncertainty

Searches in mass range 220 - 5000 GeV

resolved and merged H→bb.

Using **1** and **2** b-tag categories for the merged $H \rightarrow bb$

Backgrounds estimation: shape from the simulation, **normalization** from fit to data

large-R jets

ATLAS

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

2 lep., ≥ 1 large-R jets

1 b-tag, 0 add. b-tags

75 GeV < m , < 145 GeV

Events/Ge\

large-R jets

large-R jets

$X \rightarrow ZH \rightarrow IIbb$, vvbb; $X \rightarrow WH \rightarrow Ivbb$: CMS

arXiv:1807.02826

Searches in mass range 850 - 4500 GeV

New interpretation with dark matter production

Sub-jets b-tag: **1-b-tag and 2-b-tag categories**Major backgrounds estimated from data in sidebands

$X \rightarrow ZH \rightarrow Ilbb$, vvbb; $X \rightarrow WH \rightarrow lvbb$: limits

Z' HVT model A, B

W' HVT model A, B

2HDM

Dark matter interpretation (Z'-2HDM)

The excluded regions in the considered benchmark scenario ($g_Z'=0.8$, $g_\chi=1$, $\tan\beta=1$, $m_\chi=100$ GeV, and $m_A=m_H=m_H\pm$) are represented by the areas below the curve. The hatched band relative to the observed limit represents the uncertainty on the signal cross section.

ATLAS combinations

arXiv:1808.02380

Exclusion limits (VV+VH):

- HVT model B at about 4.5 TeV
- HVT model A at about 4.3 TeV

Exclusion limits for *HVT model A* benefits from additional channels:

 $X \rightarrow II$ and $X \rightarrow Iv : 5.5 GeV$

ATLAS EXPERIMENT

ATLAS combinations

arXiv:1808.02380

ATLAS combinations

CMS summaries

Combination of all the channels is being work on.

At high mass, most stringent limits come from WW \rightarrow Ivqq and WW \rightarrow 4q.

CMS summaries PhysicsResultsB2GDibosons

- ❖ 95% CL upper limits on cross sections of WZ, WH, and ZH resonances,
 ➤ W' and Z' bosons in HVT model B.
- **❖** Several channels with similar sensitivity will benefit from combination.

Summary

- Most recent results for diboson resonance searches are presented (boosted signature)
 - No significant deviations from Standard Model observed.
- **❖** Looking forward to take advantage of the full Run 2 dataset
 - and take advantage of the advancements in the reconstruction of events with boosted topologies

CMS Integrated Luminosity, pp Data included from 2010-03-30 11:22 to 2018-08-24 09:31 UTC 80 80 **2010, 7 TeV, 45.0** pb^{-1} (Eb **2011, 7 TeV, 6.1** fb⁻¹ 70 Total Integrated Luminosity - 2012, 8 TeV, 23.3 ${ m fb}^{-1}$ 60 **2015, 13 TeV, 4.2** fb⁻¹ **2016, 13 TeV, 40.8** fb⁻¹ 50 50 **2017, 13 TeV, 49.8** fb⁻¹ 2018, 13 TeV 42.8 fb⁻¹ 40 30 30 20 20 10 10 1 Sep Date (UTC)

ATLAS:X \rightarrow V γ \rightarrow qq γ , X \rightarrow H γ \rightarrow bb γ

arXiv:1805.01908

