Integral experiments for Bi nuclear data validation at the fast VENUS-F reactor

Antonín Krása, Anatoly Kochetkov, Peter Baeten, Nadia Messaoudi, Alexey Stankovskiy, Gert Van den Eynde, Guido Vittiglio, Jan Wagemans

Table of Contents

- I. Motivation
- II. VENUS-F reactor
- III. Delayed neutron data
- IV. C/E results
- V. Summary & Outlook

VENUS (1964-2007)

- zero-power nuclear reactor
- thermal (water moderated)
- at SCK•CEN in Mol, Belgium

VENUS (1964-2007)

- Integral experiments for nuclear data validation
- mock-up for PWR and BWR reactors

NEA NUCLEAR SCIENCE COMMITTEE

TASK FORCE ON COMPUTING RADIATION DOSE AND MODELLING OF RADIATION-INDUCED DEGRADATION OF REACTOR COMPONETS

PREDICTION OF NEUTRON EMBRITTLEMENT IN THE REACTOR PRESSURE VESSEL:

VENUS-1 AND VENUS-3 BENCHMARKS

NUCLEAR ENERGY AGENCY
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Nuclear Science NEA/NSC/DOC(2003)5 ISBN 92-64-02160-4

Benchmark on the Three-dimensional VENUS-2 MOX Core Measurements

Final Report

January 2004

© OECD 2004 NEA No. 4438

NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

VENUS-F (since 2011)

VENUS-F

- zero-power fast reactor
- solid Pb, Bi as coolant simulator and reflector
- can be operated critical and subcritical
- serves as a mockup of MYRRHA reactor core

MYRRHA

- fast reactor/ADS demonstrator
- LBE as coolant and spallation target

- validation of online reactivity monitoring
- validation of nuclear data and neutronic codes

Table of Contents

I. Motivation

II. VENUS-F reactor

- III. Delayed neutron data
- IV. C/E results
- V. Summary & Outlook

VENUS-F – a versatile reactor

VENUS-F - axial view

VENUS-F fuel assembly

Bi rods and plates

10 © 2018 SCK+CEN

VENUS-F reactor cores

So far 9 core configurations reached criticality

Critical configuration	#FAs	FA composition	Reflector	IPS
CR0	97	U+Pb	Pb	-
CC5	41	$U+Pb+Al_2O_3$	Pb	-
CC6	41	$U+Pb+Al_2O_3$	Pb	-
CC7	41	$U+Pb+Al_2O_3$	Pb+C	-
CC8	47	$U+Pb+Al_2O_3$	Pb+C	thermal spectrum
CC9	41	U+Bi+Al ₂ O ₃	Pb	-
CC10	41	U+Pb+Bi+Al ₂ O ₃	Pb+C	-
CC10b	47	U+Pb+Bi+Al ₂ O ₃	Pb+C	thermal spectrum
CC11	50	U+Pb+Bi+Al ₂ O ₃	Pb+C	thermal and fast spectrum

1 © 2018 SCK•CEN

Performed experiments

		Kinetic	CR	SR, FA, RA,	Spectral	Axial	Radial	Pb/Bi	Fuel
Core	Criticality	parameters	curve	IPS worth	indices	traverse	traverse	void	Doppler
CR0	×	×	×	×	×	×	×		×
CC5	×	×	×	×	×	×	×		×
CC6	×				×	×			
CC7	×	×	×		×	×	×	×	×
CC8	×		×	×	×	×	×		
CC9	×	×	×	×	×	×		×	×
CC10	×	×	×	×	×				
CC10b	×			×					
CC11	×		×		×		×	×	

12 © 2018 SCK•CEN

Neutron spectra and fission rates

MCNP calculations with JEFF-3.1.2

13 © 2018 SCK•CEN

MCNP calculation of the CC9 core criticality

- up to 600 pcm variation in k_{eff} when σ for all isotopes changed
- up to 140 pcm variation in $k_{\rm eff}$ due to change of Bi cross section

Table of Contents

- I. Motivation
- II. VENUS-F reactor

III. Delayed neutron data

- IV. C/E results
- V. Summary & Outlook

DN parameters in analysis of experimental data

- Core averaged DN data are used as input into analysis of exp. data
- For each core configuration, averaged group half-lives and corresponding group delayed neutron fractions are calculated (MCNP)

integral counting method:

 $\frac{\rho}{\beta_{eff}} = \frac{n_0 \sum_{i=1}^{G} \frac{\alpha_i}{\lambda_i}}{\int_0^{\infty} n(t) dt}$

 $\alpha_{\rm i} = \beta_{\rm i} / \beta_{\rm eff}$

inhour equation:

 $\frac{\rho}{\beta_{eff}} = \sum_{i=1}^{G} \frac{\alpha_i}{1 + \lambda_i T}$

inverse point kinetics:

$$\frac{\rho(t)}{\beta_{\text{eff}}} = 1 + \frac{1}{n(t)} \left(\frac{\Lambda_{\text{eff}}}{\beta_{\text{eff}}} \frac{dn}{dt} - n_0 \sum_{i=1}^{G} \alpha_i \exp(-\lambda_i t) - \sum_{i=1}^{G} \alpha_i \lambda_i \int_0^t n(t') \exp(-\lambda_i (t'-t)) dt' \right)$$

Delayed neutron data of ²³⁵U and ²³⁸U

- JEFF (since v.3): 8-group time structure of DN data (by Spriggs)
- JENDL (since 3.3): 6-group DN data
 - Least square method based on experimental and evaluated data
- ENDF/B (since v.VII): 6-group DN data (different group half-lives than JENDL)
 - CINDER'90 summation calculations based on evaluated exp. data file NuBase2003 (if not available, then calculated - quasi-particle random-phase approximation and the statistical gross theory)

Group structure	8-g	6-g								
Isotopes	all	235U		238U						
Group	JEFF (Spriggs)	JENDL (Keepin)	ENDF	JENDL (Keepin)	ENDF					
1	55.6	55.7	52.0	52.4	50.9					
2	24.5	22.7	21.2	21.6	22.1					
3	16.3	6.22	5.74	5.00	5.62					
4	5.21	2.3	2.29	1.93	2.14					
5	2.37	0.61	0.82	0.49	0.77					
6	1.04	0.23	0.24	0.17	0.23					
7	0.424									
8	0.195									

Impact of DN data on β_{eff} in VENUS-F

- Reference: JEFF-3.1.2 (cross-sections and DN data of all isotopes)
- ENDF/B-VII.1 or JENDL-4.0 give 1% less than JEFF-3.1.2 (3-4 σ)
- 1% smaller value if (in the reference calculation) any of the ²³⁵U or ²³⁸U cross-sections or DN data are replaced with JENDL-4.0 (while keeping everything else from JEFF-3.1.2)
- 2% smaller value if ENDF/B-VII.1 DNs data are used for ²³⁸U
- 1% bigger value if ENDF/B-VI 1 DNs data are used for 235U

Impact of DN data on λ^i in VENUS-F

- Reference: JEFF-3.1.2– the same half-lives of 8 groups for 235 U and 238 U
- if 6-g DN data (of ENDF or JENDL) are applied for one of the isotopes, halflives of 1st-6th group of a certain reactor configuration change
- By mixing 6-g and 8-g DN data for ²³⁵U and ²³⁸U can lead to absurd core averaged results: the 6th group can have shorter half-life than the 7th group

VENUS-F CC9 core					DN	grou	p		
DN data	library	1st	2nd	3rd	4th	5th	6th	7th	8th
235U	238U		T 1/2 [s]						
JEFF-3.1.2	JEFF-3.1.2	55.6	24.5	16.3	5.21	2.37	1.04	0.424	0.195
ENDF/B-VII.1	JEFF-3.1.2	52.2	21.6	5.96	2.41	1.05	0.374	0.424	0.195

Impact of DN data on β^{i}_{eff} in VENUS-F

 Core averaged delayed neutron fractions calculated using different libraries difficult to compare because of different group half-lives

=> impact is best visible on reactivity effects

Table of Contents

- I. Motivation
- II. VENUS-F reactor
- III. Delayed neutron data
- IV. C/E results
- V. Summary & Outlook

Impact of DN data on experimental results (I.)

Example – rod worth

$$-\frac{\rho}{\beta_{\rm eff}} = \frac{n_0 \sum_{i=1}^G \frac{\alpha_i}{\lambda_i}}{\int_0^\infty n(t) dt}$$
 measured count rates delayed neutron parameters

- JEFF-3.1.2 and JENDL-4.0 (also tested for JEFF-3.2)
 - always lead to almost the same exp. results
 - calculations usually underestimate such exp. results (up to ~10%)
- ENDF/B-VII.1 (also JEFF-3.3T2)
 - leads to about 15% smaller experimental value than when JEFF-3.1.2 is applied
 - calculations usually overestimate such exp. results (~10%, may be up to 25%)

XS+DN library	EXP			MCNP			C/E		
JEFF-3.1.2	194	±	6	178	±	2	0.92	±	0.03
JENDL-4.0	192	±	6	181	±	2	0.94	±	0.03
ENDF-B/VII.1	164	±	5	174	±	2	1.06	±	0.03

Impact of DN data on experimental results (II.)

- Example rod worth, JEFF-3.1.2 reference
- Replacement of JEFF-3.1.2 ²³⁵U DN data by:
 - ENDF => exp. results significantly change
 - JENDL => exp. results slightly change
- Replacement of JEFF-3.1.2 238 U DN data by:
 - ENDF => exp. results significantly change and lead to C/E \approx 1
 - JENDL => exp. results slightly change and lead to $C/E \approx 1$

XS library	DN data		Rod	wo	rth	
	235U	2384			C/E	
	JEFF-3.1.2			0.92	/±	0.03
	ENDF/B-VII.1	\	/ /	1.13	±	0.05
JEFF-3.1.2	ENDF/B-VII.1	JEFF-3.1.2	2\	1.09	±	0.03
JEFF-3.1.2	JEFF-3.1.2	ENDF/B-VI	I. 1 \	0.99	±	0.03
	JENDL-4.0		/	0.91	±	0.04
JEFF-3.1.2	JENDL-4.0	JEFF-3.1.2	2	0.95	±	0.03
JEFF-3.1.2	JEFF-3.1.2	JENDL-4.0)	1.00	±	0.03

²³⁵U delayed neutron multiplicity

- <10 keV: JENDL and ENDF give nubar 2-3% smaller than JEFF</p>
- 50 keV-1 MeV: ENDF gives nubar 2% bigger than JEFF and JENDL

Incident neutron data / / U235 / MT=455 : nubar delayed / Neutron production

²³⁵U delayed neutron multiplicity – covariance data

© 2018 SCK•CEN

Neutron production

1E-6

1E-5

1E-4

0.001

Incident energy (MeV)

Uncertainty in ²³⁵U delayed neutron multiplicity

- <20 keV: 3.5% uncertainty</p>
- 20 keV-3 MeV: ≈ 7 % uncertainty

Incident neutron data / / U235 / MT=455 : nubar delayed /

²³⁸U delayed neutron multiplicity

- JENDL and ENDF have by 3% and 5% smaller nubar than JEFF
- 3.5% uncertainty

Incident neutron data / / U238 / MT=455 : nubar delayed /

Summary

- Exp. campaign on Bi nuclear data validation at VENUS-F completed
- Up to 140 pcm variation in $k_{\rm eff}$ when various Bi σ applied
- Core averaged DN parameters (λ_i , β_i) from JEFF(8-g), ENDF (6-g), JENDL (6-g) applied in analysis of measured data lead to considerably different experimental reactivity effects
- JEFF-3.1.2 and JENDL-4.0 lead to C/E < 1
- ENDF/B-VII.1 leads to C/E > 1
- These trends observed in other VENUS-F configurations as well
- Although the best agreement of experiments and calculations with JEFF-3.1.2 235 U DN data combined with either JENDL-4.0 or ENDF/B-VII.1 238 U DN data, mixing 6-g and 8-g DN data can lead to strange λ_i
- Uncertainty in ²³⁵U DN nubar (JENDL 3-7%) is bigger than the differences between nubar of different libraries (2-3%)

28

Outlook

- Publish all experimental data measured in the Bi core
- Next week: new critical core configuration loading
- Experimental campaign until beginning of 2019:
 - IPS reactivity effects
 - spectral indices
 - fuel Doppler
- Beginning of 2019: new sub-critical core
- Later in 2019: back to the thermal VENUS configuration

29

Backup slides

Fission yields

Incident neutron data / JENDL-4.0 / / Fission data / Parent independent fission yields Mass distribution

