Unified approach for multiband optical model in soft deformed even-even and odd-A nuclides

D.Martyanov*, E.Soukhovitskii, R.Capote, J.M.Quesada Molina, S.Chiba

*Joint Institute for Power and Nuclear Research – Sosny, Minsk, Belarus
Outline

• Intro
 • General issues on multiband coupling (PRC2016)
 • Effective deformations: fitting params, calc using structure model
 • SRM
• Problem: odd nuclides
• Idea
 • Collectivity – even-even core
 • Spins assignment
• Results
 • XS, total ratios
 • Multiband coupling: CN ratios, direct XS
 • Stretching
 • Volume conservation
• Conclusions
Optical model for soft deformed nuclei

But actinides are both considerably deformed in GS and soft for vibrations

Explicit deformations \rightarrow vibrations
bad convergence for big deformations

Good convergence for big static deformations
no explicit deformations \rightarrow no vibrations!
Solution: Taylor expansion near axial static form

\[R_i(\theta', \varphi') \]

\[= R_{0i} \left\{ 1 + \sum_{\lambda=2,3; \text{even } \mu} \beta_{\lambda \mu} Y_{\lambda \mu}(\theta', \varphi') + \sum_{\lambda=4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\} \]

\[= R_i^{\text{zero}}(\theta') + \delta R_i(\theta', \varphi'; \delta \beta_2, \gamma, \beta_3) \]

\[= R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\} \]

\[\begin{align*}
\beta_2 &= \beta_{20} + \delta \beta_2 \\
\langle \delta \beta_2^2 \rangle, \langle \gamma^2 \rangle, \langle \delta \beta_3^2 \rangle &\ll \beta_{20}^2
\end{align*} \]

\[+ R_{0i} \left\{ \beta_{20} \left[\frac{\delta \beta_2}{\beta_{20}} \cos \gamma + \cos \gamma - 1 \right] Y_{20}(\theta') \right. \\
+ \left(\beta_{20} + \delta \beta_2 \right) \sin \gamma \left[Y_{22}(\theta', \varphi') + Y_{2-2}(\theta', \varphi') \right] \right. \\
+ \beta_3 Y_{30}(\theta') \right\} \]
Potential expansion near axially deformed shape

\[V(r, R(\theta', \varphi')) \approx V(r, R^{\text{zero}}(\theta')) + \frac{\partial}{\partial R} V(r, R(\theta', \varphi')) \bigg|_{R^{\text{zero}}(\theta')} \delta R(\theta', \varphi'; \delta \beta_2, \gamma, \beta_3) \]

\[\approx V(r, R^{\text{zero}}(\theta')) + \frac{v_2(r)}{R_0 \beta_2} \delta R(\theta', \varphi'; \delta \beta_2, \gamma, \beta_3) \]

\[R^{\text{zero}}(\theta') = R_{0i} \left\{ 1 + \sum_{\lambda=2,4,6} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\} \]

\[v_2(r) = 2\pi \int_0^\pi V(r, R^{\text{zero}}(\theta')) Y_{20}(\theta') \sin \theta' \, d\theta' \]

E.S. Soukhovitskiï et al, PRC 94 (2016) 64605
Coupled channels matrix elements

\[
\langle i | V(r, \theta, \varphi) | f \rangle = \sum_{K} \sum_{K'} A_K^l A_{K'}^{l'} \left\{ \sum_{\alpha=0,2,4,...} \nu_\alpha(r) \langle IK || D_\alpha^2 || I'K' \rangle A \left(ljI; l'j'I'; \alpha J \frac{1}{2} \right) \delta_{KK'}
+ \nu_2(r) \left[[\beta_2]_{\text{eff}} + [\gamma_{20}]_{\text{eff}} \right] \langle IK || D_0^2 || I'K' \rangle A \left(ljI; l'j'I'; 2J \frac{1}{2} \right) \delta_{KK'}
+ \left[\gamma_{22} \right]_{\text{eff}} \langle IK || D_2^2 + D_{-2}^2 || I'K' \rangle A \left(ljI; l'j'I'; 2J \frac{1}{2} \right)
+ [\beta_3]_{\text{eff}} \langle IK || D_0^3 || I'K' \rangle A \left(ljI; l'j'I'; 3J \frac{1}{2} \right) \delta_{KK'}
+ [\beta_0]_{\text{eff}} \delta_{KK'} \delta_{l'l'} \delta_{jj'} \delta_{ll'} \right\}
\]

- **Rigid rotor**
- **\(\beta\)- and \(\gamma\)-vibrations and stretching**
- **\(K = 2\) band coupling**
- **Octupole coupling (negative parity band)**
- **Volume conservation correction**
Effective deformations

\[
\begin{align*}
[\beta_2]_{\text{eff}} &= \langle n_i(\beta_2) | \frac{\delta \beta_2}{\beta_{20}} | n_f(\beta_2) \rangle \\
[\beta_3]_{\text{eff}} &= \langle n_i(\beta_3) | \frac{\beta_3}{\beta_{20}} | n_f(\beta_3) \rangle \\
[\gamma_{20}]_{\text{eff}} &= \langle n_i(\gamma) | \cos \gamma - 1 | n_f(\gamma) \rangle \\
[\gamma_{22}]_{\text{eff}} &= \langle n_i(\gamma) | \frac{\sin \gamma}{\sqrt{2}} | n_f(\gamma) \rangle \\
[\beta_2^2]_{\text{eff}} &= \langle n_i(\beta_2) | \frac{\delta \beta_2^2}{\beta_{20}^2} | n_f(\beta_2) \rangle \\
[\beta_3^2]_{\text{eff}} &= \langle n_i(\beta_3) | \frac{\beta_3^2}{\beta_{20}^2} | n_f(\beta_3) \rangle \\
[\beta_0]_{\text{eff}} &= -\frac{\beta_{20}}{\sqrt{4\pi}} \left[2[\beta_2]_{\text{eff}} + [\beta_2^2]_{\text{eff}} + [\beta_3^2]_{\text{eff}} \right]
\end{align*}
\]
Softness effects

• Multiband coupling (for bands, corresponding to collective excitations)

• Nucleus stretching due to rotation (centrifugal forces)

• Additional monopole coupling due to account of volume conservation in vibrating nucleus
Approach to effective deformations

Effective deformations as fitting parameters

- Rough model to keep minimal number of parameters, only multiband coupling accounted (rigid rotor coupling within each band)
- No additional knowledge needed

Direct calculation

- Nuclear structure model needed
- Gives all model effects

For even-even nuclides using SRM:

E.S. Soukhovitskii et al, PRC 94 (2016) 64605

Towards odd nuclides

No appropriate nuclear model (describing softness), but...

- Nuclear softness – collective effect, determined mainly by the even-even core, and varies smoothly from nucleus to nucleus
- \(\langle \psi_{\text{odd}} | \beta | \psi_{\text{odd}} \rangle \approx \langle \psi_{\text{core}} | \beta | \psi_{\text{core}} \rangle \)
- We may try to couple levels for bands built on single-particle state same as in GS
- We need to build appropriate core states
Core states assignment (233U)

Band (A): $5/2^+[633]$, $\alpha=+1/2$ band

Band (a): $5/2^+[633]$, $\alpha=-1/2$ band

Core state: no vibrational excitation, only rotation

Core I^π

- GS band
- Octupole band

Core states assignment (233U):

- **Core I^π**
 - First octupole excitation, rotation
 - In fact, we have also two subbands here!

- **Core I^π**
 - 2+
 - 6+
 - 4+
 - 2+
 - 0+

- **Core I^π**
 - 8+
 - 6+
 - 4+
 - 2+
 - 0+

Core I^π

- 2+
- 8+
- 6+
- 4+
- 2+
- 0+
Calculation algorithm

1. Build new regional OMP on ^{238}U and ^{232}Th experimental data

2. Use ^{233}U experimental data to fit its deformations with resulting OMP

3. Calculate all model predictions for ^{233}U, ^{238}U, and ^{232}Th for full and restricted (some options disabled or truncated coupling scheme) model
Coupling scheme

238U

- GS band
- NAX band
- γ-band
- β-band
- negative parity band

233U

- GS band
- Γ/2+
- β-band
- negative parity band
- γ-band
- 7/2+
OMP figure of merit: symmetrized total XS ratio for different nuclei $R(A, B) = \frac{1}{2} \frac{\sigma_A - \sigma_B}{\sigma_A + \sigma_B}$

$p_{233}U$ to $p_{238}U$

$p_{232}Th$ to $p_{238}U$
Multiband coupling: Direct level excitation X_S

![Graphs showing the excitation cross-sections for 233U and 238U](image)

- For 233U, the graphs display excitation cross-sections for various bands and states, including Octupole band, Beta band, GS $7/2^+$, GS $9/2^+$, GS $11/2^+$, GS $13/2^+$, GS $15/2^+$, GS $17/2^+$.
- For 238U, the graphs show excitation cross-sections for Octupole band, Beta band, Gamma band, Abnormal band, GS 2^+, GS 4^+, GS 6^+, GS 8^+.
Multiband coupling: CN XS change

![Graph showing the change in CN XS with different band states for 238U and 233U.](image)

- **R(CN)** for 238U without the β-band and with all bands.
- **R(CN)** for 238U without the octupole band and with all bands.
- **R(CN)** for 238U GS band and with all bands.

![Graph showing the change in CN XS with different band states for 233U.](image)

- **R(CN)** for 233U without the β-band and with all bands.
- **R(CN)** for 233U without the octupole band and with all bands.
- **R(CN)** for 233U GS band and with all bands.
Nucleus stretching: CN XS change

\[
\begin{array}{cccc}
10^{-3} & 10^{-2} & 10^{-1} & 10^0 \\
10^1 & 10^2 & \end{array}
\]

\[R_{\text{CN}}(\text{soft, rigid})\]

\[E_n (\text{MeV})\]

\[233\text{U, no VC}\]

\[238\text{U, axial, no VC}\]
Volume conservation: CN XS change

\[R_{\text{CN}}(\text{no VC; full}) \]

\[10^{-3}, 10^{-2}, 10^{-1}, 10^{0}, 10^{1}, 10^{2} \]

\[E_n (\text{MeV}) \]

\[^{233}\text{U}, ^{238}\text{U} \]
Summary

• Softness and multiband coupling are important to reach accurate CCOM calculations results for odd nuclides

• We can build and use fully functional regional OMP for actinides, both even-even and odd!

• Have to look thoroughly to band assignment in odd actinides: very few rotational bands built on GS single-particle state + core vibration! (e.g. none for ^{235}U)
Software

All calculations performed by two FORTRAN codes which have been being developed E. Soukhovitskii and coworkers for many years:

• optical model code **OPTMAN** (optical potential fitting, cross-section calculations)

• nuclear structure code **SHEMMAN** (soft-rotator model parameters fitting and levels prediction)

OPTMAN

• recommended to use with latest version of IAEA reference input parameter library (RIPL-3) for nuclear data evaluation

• used with the EMPIRE – nuclear reaction model code, one of the most used tools for basic research and evaluation of nuclear data

Thank you for the attention!
Comparison with the GS-band-only potential