Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

M. Estienne, M. Fallot, L. Giot, V. Guadilla, L. Le Meur & A. Porta

Aix-en-Provence - October 8.-12. 2018
Outline

- General Physics Motivations & Experimental Issues
- Reactor Antineutrinos
- Decay Heat
- Delayed Neutrons
- Conclusions and Perspectives
In Pressurized Water Reactors, thermal power mainly induced by 4 isotopes:
- Burn-up effect => unit GWd/t

Fission process gives thermal energy:
\[n + ^{235}U \rightarrow ^{236}U^* \rightarrow \text{FP1} + \text{FP2} + \text{neutrons} (200\text{MeV}) \]

The fission products (FP) after the fissions are neutron-rich nuclei undergoing β and β-n decays:
The exploitation of the products of the beta decay is threefold:

- The antineutrinos escape and can be detected → reactor monitoring, potential non-proliferation tool and essential for fundamental physics
- The released γ and β contribute to the “decay heat” → critical for reactor safety and economy
- β-n emitters: delayed neutron fractions → important for the operation and control of the chain reaction of reactors
Before the 90s, conventional detection techniques: high resolution γ-ray spectroscopy

- Excellent resolution but efficiency which strongly decreases at high energy
- Danger of overlooking the existence of β-feeding into the high energy nuclear levels of daugther nuclei (especially with decay schemes with large Q-values)

Incomplete decay schemes: overestimate of the high-energy part of the FP β spectra

Phenomenon commonly called « pandemonium effect** » by J. C Hardy in 1977

Strong potential bias in nuclear databases and all their applications (indirect effect on neutrino energy spectra computation)
TAGS: a Solution to the Pandemonium Effect

Total absorption γ-ray spectroscopy (TAGS)
- A TAS is a calorimeter
- It contains big crystals covering 4π
- Instead of detecting the individual gamma rays, absorbs the full gamma energy released by the gamma cascades in the β-decay process

First TAS developed in the 70’s but too small detectors to be efficient. Development of the TAGS method efficient and systematic since the 90’s (Greenwood & al.)

Calculation of level energy feeding through the resolution of the inverse problem by deconvolution
- $R_{ij} =$ matrix detector response
- $d_i =$ measured data
- Extract f_j the level feeding by deconvolution

$$d_i = \sum_{j=1}^{m} R_{ij} \cdot f_j$$

$$I_i = \frac{f_i}{\sum_k f_k}$$

J. L. Tain & D. Cano-Ott, NIMA 571 (2007) 728
2 TAS Campains at IGISOL Jyväskylä in 2009 and 2014

IGISOL@Jyväskylä:
- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams

2 (segmented) TAS campains:

ROCINANTE (IFIC Valencia/Surrey):
- 12 BaF$_2$ covering 4π
- Detection efficiency of γ ray cascade >80% (up to 10 MeV)
- Coupled with a Si detector for β
- 7 nuclei (4 delayed neutron emitters) measured (6 for DH and 2 for anti-ν)

DTAS (IFIC Valencia):
- 18 NaI(Tl) crystals of 15cm×15cm×25 cm
- Individual crystal resolutions: 7-8%
- Total efficiency: 80-90%
- Coupled with plastic scintilllator for β
- 12 nuclei for anti-ν measured & 11 for DH

B. Rubio, J. L. Tain, A. Algora et al., Proceedings of the Int. Conf. For nuclear Data for Science and technology (ND2013)

J.L. Tain et al., NIMA 803 (2015) 36
V. Guadilla et al., submitted to NIMA (2018)
2014 campaign (23 nuclei):

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Priority U/Pu</th>
<th>Priority Th/U</th>
<th>Priority $\bar{\nu}_e$</th>
<th>Nuclide</th>
<th>Priority U/Pu</th>
<th>Priority Th/U</th>
<th>Priority $\bar{\nu}_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>95Rb</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>102mNb</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>95Sr</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>103Tc</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>95Y</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>103Mo</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>96gsY</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>108Tc</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96mY</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>108Mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>99Y</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>137Xe</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>99Zr</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>137Xe</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>98gsNb</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>138Cs</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>98mNb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>138Cs</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>100gsNb</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>140Cs</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>100mNb</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>142Cs</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

So far, 15 nuclei analyzed and under the process of publication in V. Guadilla’s PhD thesis (9 nuclei Valencia) and L. Le Meur’s PhD thesis (3 nuclei Subatech) + 6/7 nuclei being analyzed in Subatech.
An Example: the Case of 99Y

PhD Thesis work:
Loïc Le Meur (Subatech, Nantes)

99Y β^- 99Zr ($T_{1/2} = 1.484\text{s}$)

- Experimental spectrum β tagged -> cleaned from background
- Daughter contaminant 99Zr subtracted
- Comparison to ENSDF
 - Clear pandemonium case

\[d_i = \sum_j R_{ij} f_j \quad \implies \quad R_j = \sum_{k=0}^{j-1} b_{jk} g_{jk} \otimes R_k \]

- Deconvolution (Inverse problem) algorithms
- Monte Carlo simulations + Nuclear statistical model

T=1.484s
$Q_\beta = 6971\text{keV}$
$S_n = 4403\text{keV}$
Beta Decay and Applications: Reactor Antineutrinos
Reactor Antineutrinos & Fundamental Physics

- **Measurement of the θ_{13} oscillation param** by Double Chooz, Daya Bay, Reno
 - Independent computation of the anti-ν spectra using nuclear DB: conversion method

- **Sterile neutrino measurement to explain the “reactor anomaly”**
 - 6% deficit of the absolute value of the measured flux compared to the best prediction ILL data
 - Bump (spectrum distortion) in the full spectrum (btw 4.8-7.3 MeV)
 - Daya Bay PRL points-out a pb in the converted antineutrino spectra from 235U measured beta spectrum @ILL

- **Next generation reactor neutrino experiments** like JUNO or background for other multipurpose experiment
 - Putting integral beta measurement of 235U of Scheckenbach et al. and sterile neutrinos into question.
 - Growing interest in summation method to calculate anti-ν spectra

12

M. Estienne - WONDER2018 - Oct. 9. 2018
Measurement of the θ_{13} oscillation param by Double Chooz, Daya Bay, Reno
- Independent computation of the anti-ν spectra using nuclear DB: conversion method

Sterile neutrino measurement to explain the “reactor anomaly”
- 6% deficit of the absolute value of the measured flux compared to the best prediction ILL data
- Bump (spectrum distortion) in the full spectrum (btw 4.8-7.3 MeV)
- Daya Bay PRL points-out a pb in the converted antineutrino spectra from 235U measured beta spectrum @ILL

Next generation reactor neutrino experiments like JUNO or background for other multipurpose experiment

- Putting integral beta measurement of 235U of Scheckenbach et al. and sterile neutrinos into question.
- Growing interest in summation method to calculate anti-ν spectra
Antineutrinos for Peace

Use the discrepancy between antineutrino flux and energies from U and Pu isotopes to infer reactor fuel isotopic composition and power

- Reactor monitoring, non-proliferation and interest for the IAEA
- Idea born in the 70s, demonstrated in the 80s/90s but developed lately

The IAEA Nuclear Data section includes the measurements for reactor antineutrino spectra in their Priority lists (CRP meetings, TAGS consultant meetings...)

About 6 antineutrinos emitted per fission → About 10^{21} antineutrinos/s emitted by a 1 GW$_e$ reactor
SM first developed in 2011 (Mueller et al.) and improved in 2012 (Fallot et al.)
Computation of antineutrino spectra for which no beta spectrum was measured. The SM is independent from the integral beta measurement of Schreckenbach et al. @ ILL
One of the only alternatives to ILL data!

Reactor anti-ν energy spectrum can be computed with the SM as the DH, for one isotope k:

$$S_k(Z,A,E) = \sum_{f_p=1}^{N_{fp}} A_{fp} \times \left(\sum_{b=1}^{N_{bp}} I_{\beta_{fp}}^b \right) \times S_{fp}^b (Z_{fp}, A_{fp}, E_{0_{fp}}^b, E)$$

S_{fp} theoretically computable but our approach different:
- Exploit all data available on β-branches in modern nuclear databases in order to reduce the input of nuclear models
- Strongly depends on nuclear databases: the choice of the DB cocktail is essential

Coupled with reactor simulations: predictions for innovative fuels (Th, MA, ...) and future reactor designs

Propagation of uncertainties under study
- Necessity to have the covariance matrices of the fission yields, and possibly of decay data ...
An example of summation calculation from Phys. Rev. Lett. 109, 202504 (2012) Taking into consideration the TAS data of the $^{102;104–107}$Tc, 105Mo, and 101Nb isotopes measured @ Jyväskylä

- ~850 nuclei included
- Noticeable deviation from unity (1.5 to 8% decrease)
- Change in the flux (presented later)
Summation calculations give the following priority list of nuclei, with a large contribution to the PWR antineutrino spectrum in the high energy bins.

The number of contributors in these bins is small enough to give the hope to produce summation calculations with reduced systematic errors due to decay data at a relatively short time scale.

Involvement in IAEA TAGS’ Consultant meetings for priority list of nuclei identification.
Comparison of the individual antineutrino energy spectra between DTAS and ENSDF.

- Strong pandemonium bias in previous nuclear databases
- Impact the total antineutrino spectrum
- First measurement of 102mNb

V. Guadilla’s PhD thesis
Comparison of the individual antineutrino energy spectra between DTAS, the preferred nuclear database that was used for our previous calculation and JEFF 3.1.1.

- Non pandemonium free data in JEFF 3.1.1
- Rudstam β spectra converted
- Shift towards low energy in TAS: apparent biases in Rudstam measurement but large error bars

Impact the total antineutrino spectrum

Data: L. Le Meur’s PhD thesis
Summation calculation including the 3 nuclei compared to our previous preferred databases.

Ratio of summation antineutrino spectra including the new TAS data over the same spectra but with the previous preferred database cocktail.

Impact on the spectrum
- Deviation up to 6% for 241Pu and between 3 and 4% for the 3 other nuclei

Data: L. Le Meur’s PhD thesis
2012 Ratio between spectra calculated with summation method and converted spectra from ILL measurements

- For 235U: the summation is 5 to 10% below the conversion. Goes in the direction of Daya Bay’s new 2017 result on the reactor anomaly: pb is in the 235U spectrum!!!

- Summation spectra still not pandemonium free requiring new TAS measurements.

M. Fallot et al., PRL 109, 202504 (2012)
Beta Decay and Applications: Decay Heat
Reactor Decay Heat (DH)

Definition: following the shut-down of the chain reaction in a reactor, the nuclear fuel continues to release energy called decay heat.

Emitters: essentially made up of the radioactive decays of FP and actinides
- DH: residual power of 6-12% of the nominal power of the reactor just after its shut-down

Why studying it? Evaluation of the reactor safety (design, operation, shielding, management of radioactive waste products, etc.) as well as various economic aspects of nuclear power generation requires a good knowledge of the DH

Estimate through the only predictive method for future reactors: the « summation method »

Summation of all the fission product and actinide contributions inventoried for specific conditions of reactor operation and subsequent cooling period:

\[
f(t) = \sum_i (\bar{E}_{\beta,i} + \bar{E}_{\gamma,i})\lambda_i N_i(t)
\]

\[
\begin{align*}
\bar{E}_{\gamma} &= \sum_i I_\beta(E_i)E_i \\
\bar{E}_{\beta} &= \sum_i I_\beta(E_i) <E_{\beta,i}>
\end{align*}
\]
Decay Heat: Issues with Nuclear Data

- In the 1970s: important discrepancies observed comparing DH calculation and benchmark experiments ("pandemonium effect")

- Inclusion of mean beta and gamma energies derived from Gross Theory of Beta Decay to compensate the missing beta-strengths

- Since the 1990s: temporary solution step by step replaced by the use of measured data with total absorption spectrometers TAGS

Conclusion from CCFC report on total and γ DH:

- Integral measurements not in agreement for several cooling times of the most well-known nuclide

- Discrepancy between data and simulations using different DB for γ heat

- Total heat better than γ heat => probably comes from a compensation on ELP and EEM but still not fully understood

Mean gamma and beta energies from beta intensities:

\[
\bar{E}_\gamma = \sum_i I_\beta(E_i) E_i
\]

\[
\bar{E}_\beta = \sum_i I_\beta(E_i) < E_{\beta i} >
\]

Comparison to nuclear data bases ENDF-B-VII.1 and JEFF3.3 pandemonium biased

Issue with uncertainties in nuclear data bases:

- Example of \(^{138}\text{I}^\):
 \[\Delta E_\beta (\text{JEFF3.3-TAS}) \sim 250 \text{keV} \ (\sim 2x \sigma (\text{JEFF}))\]
 \[\Delta E_\beta (\text{ENDF/B7-TAS}) \sim 600 \text{keV} \ (\sim 2x \sigma (\text{ENDF}))\]

Collaboration with the CEA Cadarache to study the impact of reevaluated uncertainties in nuclear databases based on the differences observed between TAGS and JEFF 3.1.1 on the total uncertainty associated to DH
Impact of 99Y, 138I and 142Cs on Total DH

Summation calculations performed by L. Giot using Serpent 2 code.

Impact of the sum of the 3 nuclei lower than 1% in both DB on the total DH below 10s
Impact of ^{99}Y, ^{138}I and ^{142}Cs on ELP/EEM DH

^{235}U fission pulses

- The 2 ELP and EEM compensate
- 1% to 2% impact on ELP
- 2% to 3% (ENDF) / 4% (JEFF3.3) on EEM

^{142}Cs (not shown) which was of priority 3 in the IAEA list of priority nuclei to measure for DH contributes to ~2% on EEM in both NDB

^{99}Y (not shown) not listed as priority has also a not negligible impact of ~1.5%

Calculations: giot@subatech.in2p3.fr
Data: L. Le Meur’s PhD thesis

Light particle component

Electromagnetic component
Impact of 99Y, 138I and 142Cs on Total DH

Similar behaviour than for 235U fission pulses comparing JEFF3.3 and ENDF-BVII for both the total DH and the EEM and ELP.

Impact less than 0.5% on total DH for both libraries which comes from the compensation of EEM and ELP.

Similar impacts of 142Cs and 99Y on ELP (~0.5%) and EEM (~1-1.5%) in both DB

Knowing that these nuclei were not of priority 1 for DH in our list, these results are encouraging and the effort to measure and study the impact of TAS data has to be sustained.
Beta Decay and Applications: bDN
IAEA and β-Delayed Neutron (bDN) Emission

Paraskevi (Vivian) Dimitriou
Nuclear Data Section,
Division of Physical and Chemical Sciences,
International Atomic Energy Agency,
Vienna, Austria

INDC International Nuclear Data Committee

Summary Report of
2$^{\text{nd}}$ Research Coordination Meeting
Development of a Reference Database for Beta-Delayed Neutron Emission
IAEA Headquarters, Vienna, Austria
23 – 27 March 2015
« Delayed neutron data are essential for reactor kinetics and safety where excessively large uncertainties in the data used in reactor calculations can lead to costly conservatism in the design and operation of reactor control systems. They are also necessary for applications involving non-invasive monitoring of nuclear reactors and for nuclear sciences in general. Since the last compilation of beta-delayed neutron data was published in 2002, progress has been made in the production/identification of delayed neutron precursors, and a wealth of data has been published which however, is not included in any database. bDN is a coordinated effort to create a Reference Database for beta-delayed neutron emission. »
With the summation calculation tools developed, we contribute to the development of a reference database for beta-delayed neutron emission:

- Inter-comparison of summation calculations between groups for the 4 major actinides
- Total delayed neutron yield $\bar{\nu}_d$ and associated uncertainties
- Most important contributors to $\bar{\nu}_d$ for thermal and fast neutron-induced fission
- Evaluated databases compared: JEFF3.1.1, ENDF/B-VIII.0 and JENDL/DDF-2015

See D. Foligno’s presentation for more details about bDN!

To be published in Nuclear Data Sheets, P. Dimitriou et al.
TAS technique: a solution to the Pandemonium effect

Measurements of many nuclei of interest for nuclear database, anti-\(\nu\), DH and a few \(\beta\)-delayed n emitters during the past years => we are going in the right direction!

The Summation method allows to identify the nuclei of interest and to quantify their impacts both on DH and anti-n from reactors.

Inclusion of recent TAS data in antineutrino spectrum and DH calculations. It shows again non negligible effects

Next steps:
- Continue to Assess impact of new TAS experimental results (end 2018);
- New TAS experiment programmed in 2019 in Jyväskylä;
- Propagation of uncertainties including FY correlations, work on Decay Data correlations…;
- Future outcomes from \(\beta\)-shape measurements, impact on DH & anti-\(\nu\) > 2019…

U. Surrey: W. Gelletly

CIEMAT Madrid: T. Martinez, L.M. Fraile, V. Vedia, E. Nacher

IPN Orsay: M. Lebois, J. Wilson

BNL New-York: A. Sonzogni

Istanbul Univ.: E. Ganioglu

Special thanks to the young researchers working in the project: J.A. Briz, V. Guadilla, E. Valencia, S. Rice, A. -A. Zakari-Issoufou

Discussions with and slides from: A. Algora, J. L. Tain, B. Rubio, A. Cucoanes, M. Fallot, L. Giot, A. Porta, T. Shiba, A. Sonzogni are acknowledged
Thank you !