

Energy dependence of Delayed-Neutron Data

D. Foligno, P. Leconte

DEN/CAD/DER/SPRC/LEPh

WONDER 2018

October 9th, 2018

OUTLINE:

- Context
- State of the art
- Alternative method
- Results: v_d
- Results: a_i , $<T_{1/2}>$
- Conclusions
- Open questions

ContextPhysics of Delayed Neutrons

Delayed neutrons are emitted by β^- - decay of fission fragments

The neutron emission (from the *emitter*) is almost instantaneous. The delay in the appearence of the **delayed neutron** is therefore linked to the half-life of the *precursor*!

Context The importance of delayed-neutron data

$$\rho = \frac{\Lambda}{T} + \beta_{eff} \sum_{i} \frac{a_{i}}{1 + \lambda_{i}T} \approx \beta_{eff} \frac{T_{1/2}}{T}$$

$$\beta_{eff} = \frac{\sum_{k} \int_{0}^{\infty} \Phi^{+}(E') \chi_{d,k}(E') dE' \int_{0}^{\infty} \nu_{d,k}(E) \Sigma_{f,k}(E) dE}{\sum_{k} \int_{0}^{\infty} \Phi^{+}(E') \chi_{t,k}(E') dE' \int_{0}^{\infty} \nu_{t,k}(E) \Sigma_{f,k}(E) dE}$$

$$\overline{T_{1/2}} = \sum_{i} \frac{a_{i}}{\lambda_{i}}$$

Quantities of interest:

- Average DN yield $v_{d,k}(E)$
- ullet DN group kinetic parameters $a_i\left(E
 ight) \lambda_i$
- DN specra $\chi_{d,k}(E')$

OUTLINE:

- ~
- Context
- State of the art
 - Alternative method
 - Results: v_d
 - Results: a_i , $<T_{1/2}>$
 - Conclusions
 - Open questions

State of the artJEFF evaluated library

State of the art from JEF-2 ...

LIBRARY, DUMMY TAPE HEADER

MF=1 MT=452 NU. SYSTEMATICS. (REF. 5) MT=458 ENERGY OF FISSION. SYSTEMATICS OF SHER (REF. 6)

→ No info about MT=455

In producing the JEF-2.2 evaluations for ²³⁵U and ²³⁹Pu Fort and Long (1989) calculated the energy dependence using the theoretical model of Lendel *et al* (1986).

A. D'angelo and J. Rowlands Conclusions concerning the delayed neutron data for the major actinides (2002)

State of the art ... to JEFF-3.1.2

JEF2 LIBRARY, DUMMY TAPE HEADER

JEFF-3.0 file header. Release April 2002

JEFF-3.1 General Purpose Neutron File, May 2005.

JEFF-3.1.1 general purpose neutron file update release Jan. 2009

JEFF-3.1.2 general purpose neutron file update released Oct.2011

MF=1

SYSTEMATICS. (REF. 5) MT=452 NU.

MT=458 ENERGY OF FISSION. SYSTEMATICS OF SHER (REF. 6)

File 1 Descriptive and Nubar Information

MT=455 Delayed neutron yields from England [EN89]

[En89] T.R. England et al, Los Alamos National Laboratory reports: LA-11151-MS(88)

LA-11534T(89)

LAUR-88-4118 to be published in Nucl.Sci.Eng. (1989)

State of the artRecursive reference

JEF2 LIBRARY, DUMMY TAPE HEADER

JEFF-3.0 file header. Release April 2002

JEFF-3.1 General Purpose Neutron File, May 2005.

JEFF-3.1.1 general purpose neutron file update release Jan. 2009

JEFF-3.1.2 general purpose neutron file update released Oct.2011

JEFF-3.2 Release - Neutron File March 2014

JEFF-3.3 Incident Neutron File

MF=1

MT=452 NU. SYSTEMATICS. (REF. 5)

MT=458 ENERGY OF FISSION. SYSTEMATICS OF SHER (REF. 6)

File 1 Descriptive and Nubar Information

MT=455 Delayed neutron yields from England [EN89]

MF=1 General Information

MT=455 Delayed Neutron Yields : JEFF-3.1

MF 1 MT 452,455: restoring delayed neutron data from JEFF-311 total is modifed accordinly (CEA/DEN)

State of the art ENDF/B evaluated library

State of the artNeed for a change

Can't we do better than recycling over and over again the same data?

OUTLINE:

- ~
- ~
- ~

- Context
- State of the art
- Alternative method
- Results: v_d
- Results: a_i , $<T_{1/2}>$
- Conclusions
- Open questions

Alternative method Summation calculations

There is another way to compute macroscopic quantities:

Summation Calculations

$$v_d = \sum_{i}^{N} CY_i \cdot P_{n,i} \cdot x_i$$

$$\frac{n_d(t)}{n_d(t_{\infty})} - \sum_{i=1}^{8} \left(1 - \sum_{\substack{j=1 \ j \neq i}}^{8} a_j\right) \left(1 - e^{-\lambda_i t_{irr}}\right) e^{-\lambda_i (t - t_{irr})} = 0$$

$$\overline{T_{1/2}} = \frac{\sum_{i}^{8} a_{i} \cdot T_{1/2,i}}{\sum_{i}^{8} a_{i}}$$

Alternative method Summation calculations – 3 points only

Alternative method GEF energy dependence

Use GEF to compute JEFF

The idea is to apply the GEF energy dependence to JEFF

$$FY_{JEFF}(E) = \frac{FY_{GEF}(E)}{FY_{GEF}(E_{ref})} FY_{JEFF}(E_{ref})$$

Fissioning System	E _{ref}
235U, 239Pu	0,0253 eV
238U	400 keV

OUTLINE:

- ~
- ~
- ~
- ~

- Context
- State of the art
- Alternative method
- Results: v_d
- Results: a_i , $<T_{1/2}>$
- Conclusions
- Open questions

Results: v_d GEF-6.1 versus the « corrected » JEFF-3.1.1

Results: v_d GEF-6.1 versus the « corrected » JEFF-3.1.1

- 238U: visible second-chance fission effect
- 238U, 239Pu: agreement with experiments

Seems weird: - 235U, 239Pu: bump after 15 MeV

- 235U, 239Pu: uneven behavior below 4 MeV

- 235U: different slope

OUTLINE:

- ~
- ~
- ~
- ~
- ~

- Context
- State of the art
- Alternative method
- Results: v_d
- Results: a_i , $<T_{1/2}>$
- Conclusions
- Open questions

Results: a_i, <T_{1/2}> Abundances' sensitivity to an energy change

Results: a_i, <T_{1/2}> ²³⁵U – Mean precursors' half-life

V.M. Piksaikin et al. Energy Dependence of Relative Abundances and Periods of Delayed Neutrons from neutron-induced fission of 235U, 238U, 239Pu in 6- and 8-group model representation (2002)

OUTLINE:

- ~
- ~
- ~
- ~
- ~

- Context
- State of the art
- Alternative method
- Results: v_d
- Results: a_i , $<T_{1/2}>$
- Conclusions
- Open questions

Conclusions

- DN data does not always has clear origins
- There is an evident need of a new evaluation
- The method seems promising for the estimation of $<T_{1/2}>$

 Up to 5 MeV, the first two abundances are better estimated with the corrected JEFF-3.1.1 than with the original JEFF-3.1.1

Conclusions

- Up to 5 MeV, the first two abundances are better estimated with the corrected JEFF-3.1.1 than with the original JEFF-3.1.1
- The short-lived groups are very badly estimated by both calculations, which means that a considerable effort should be done for improving short-lived precursors' FY

OUTLINE:

- **.**
- Context
- ~
- State of the art
- ~
- Alternative method
- ~
- Results: v_d
- ~
- Results: a_i , $<T_{1/2}>$
- ~
- Conclusions
- ~
- Open questions

Open questions

- How to compute the uncertainty in the modified FY?
- What else could we do for investigating/improving the energy dependence of delayed-neutron data?

Thank you!

Questions?

Back-up

$$FY_{JEFF}(E) = \frac{FY_{GEF}(E)}{FY_{GEF}(E_{ref})} FY_{JEFF}(E_{ref})$$

$$FY_{JEFF}(E) = FY_{JEFF}(E_{ref})$$

GEF(Eref)	GEF(E)	JEFF(E)	
≠ O	≠ 0	Eq. 1	
≠ O	= O	Eq. 1	
= O	≠ 0	Eq. 2	
miss	Eq. 2		

V.M. Piksaikin et al. Energy Dependence of Relative Abundances and Periods of Delayed Neutrons from neutron-induced fission of 235U, 238U, 239Pu in 6- and 8-group model representation (2002)

V.M. Piksaikin et al. Energy Dependence of Relative Abundances and Periods of Delayed Neutrons from neutron-induced fission of 235U, 238U, 239Pu in 6- and 8-group model representation (2002)

V.M. Piksaikin et al. Energy Dependence of Relative Abundances and Periods of Delayed Neutrons from neutron-induced fission of 235U, 238U, 239Pu in 6- and 8-group model representation (2002)

Semi-empirical Lendel model

$$\nu_d(E) = Y_1(E) + \varphi(A_f, Z_f) \cdot \psi(E)$$

Direct macroscopic DN yield

It describes the competition with prompt neutron emission

Correction

It takes into account the energy dependence of the odd-even effect in the first chance fissioning system

Title GEF61

Title GEF61

New Bateman Solver Complete system of differential equations

Delayed-neutron activity [DN/s]

$$n_d(t) = \sum_{i=1}^{n} x_i N_i(t) P_{n,i}$$

$$\frac{dN_{1}(t)}{dt} = -\lambda_{1}N_{1}(t) + S_{1}$$

$$\frac{dN_{2}(t)}{dt} = -\lambda_{2}N_{2}(t) + S_{2} + \lambda_{1}BR_{2\to 1}N_{1}(t)$$

$$\vdots$$

$$\frac{dN_{i}(t)}{dt} = -\lambda_{i}N_{i}(t) + S_{i} + \lambda_{i-1}BR_{(i-1)\to i}N_{i-1}(t)$$

$$\vdots$$

$$\frac{dN_{n}(t)}{dt} = -\lambda_{n}N_{n}(t) + S_{n} + \lambda_{n-1}BR_{(n-1)\to n}N_{n-1}(t)$$

New Bateman Solver Analytical solution

Individual precursor build-up and decay

$$N_n(t) = \sum_{i=1}^{i=n} \left[\left(\prod_{j=i}^{j=n-1} \lambda_j \cdot P_{j \to (j+1)} \right) \cdot \sum_{j=i}^{j=n} \left(\frac{N_i^0 \cdot e^{-\lambda_j \cdot t}}{\prod\limits_{\substack{p=i \\ p \neq j}} (\lambda_p - \lambda_j)} + \frac{P_i \cdot (1 - e^{-\lambda_j \cdot t})}{\lambda_j \cdot \prod\limits_{\substack{p=i \\ p \neq j}} (\lambda_p - \lambda_j)} \right) \right]$$

Skrable K. et al. A general equation for the kinetics of Linear first order phenomena and suggested applications (1974)

New Bateman Solver Input data

Validation with DARWIN®

- 1. Nuclear Data: Fission Yields and Radioactive Decay Data from JEFF-3.1
- 2. Fissioning System: 1 g (2.563E+21 at) of ²³⁵U
- 3. Thermal Flux: Constant thermal (E_n<0.1 eV) flux of 1 n·cm⁻²·s⁻¹
- **4. Irradiation Durations:** 0.001 s, 10 s, 600 s
- **5. Decay Duration:** 600 s
- **6. Comparison:** 22 points of the decay-curve

```
(0, 0.001, 0.01, 0.1, 0.5, 1, 2, 3, 5, 8, 10, 20, 30, 50, 70, 100, 150, 200, 300, 400, 500, 600 seconds after the end of the irradiation)
```

Thanks to Jean-François Lebrat for the DARWIN simulations

San-Felice L. et al. Experimental validation of the DARWIN2.3 Package for fuel cycle applications (2013)

New Bateman Solver Comparison in the precursors' concentration

Table 1: Discrepancies in the concentration at the end of the irradiation. The results are given in percentage. [1], [2] and [3] refer to an irradiation length of 0.001 s, 10 s and 600 s, respectively. The precursors are shown in order of importance with respect to the delayed-neutron emission

Z	A	Ι	Symbol	$(C-C_{ref})/C_{ref}$ [1]	$(C-C_{ref})/C_{ref}$ [2]	$(C-C_{ref})/C_{ref}$ [3]
53	137	0	I	0.002~%	0.008~%	-0.004 %
35	89	0	Br	-0.005 %	-0.009 %	-0.015 %
37	94	0	Rb	-0.003 %	-0.021 %	-0.023 %
35	88	0	Br	0.007 %	0.007~%	-0.003 %
35	90	0	Br	-0.031 %	-0.032 %	-0.036 %
53	138	0	Ι	-0.009 %	-0.005 %	-0.012 %
39	98	1	Y	-0.033 %	-0.032 %	-0.033 %
53	139	0	I	-0.028 %	-0.025 %	-0.029 %
37	95	0	Rb	-0.172 %	-0.178 %	-0.178 %
35	87	0	Br	0.007 %	0.013~%	-0.001 %
37	93	0	Rb	-0.001 %	-0.004 %	-0.009 %
39	99	0	Y	-0.031 %	-0.043 %	-0.043 %
33	85	0	As	-0.032 %	-0.031 %	-0.033 %
35	91	0	Br	-0.128 %	-0.125 %	-0.124 %
51	135	0	Sb	-0.040 %	-0.038 %	-0.039 %
55	143	0	CS	-0.029 %	-0.035 %	-0.036 %
33	86	0	AS	-0.071 %	-0.071 %	-0.072 %
37	96	0	RB	-0.169 %	-0.230 %	-0.230 %
55	145	0	CS	-0.118 %	-0.115 %	-0.114 %
53	140	0	I	-0.076 %	-0.077 %	-0.080 %
55	144	0	CS	-0.028 %	-0.044 %	-0.044 %

New Bateman Solver Irradiation of 0.001 s

Irradiation of 0.001 s

New Bateman Solver Irradiation of 10 s

Irradiation of 10 s

New Bateman Solver Irradiation of 600 s

Irradiation of 600 s

New Bateman Solver Conclusions

Conclusions:

- 1. The code has been written to study the delayed-neutron-precursors' behavior
- Discrepancies larger than 1% are present for irrelevant precursors (first occurrence is the 79th precursors in the sorted-by-importance ranking)
- 3. Only IT, β^- , β^-_n , β^-_{2n} , β^-_{3n} , β^-_{4n} are considered (no transmutation or absorption)
- 4. The solver is validated for estimating delayed-neutron precursors' concentration

