Measurement of the capture cross section of $^{244}\text{Cm} \& ^{246}\text{Cm}$

1V. Alcayne, 2A. Kimura, 1E. Mendoza, 1D. Cano Ott and the n_TOF Collaboration

1CIEMAT– Spain
2JAEA – Japan
Motivation

Neutron Capture Cross Sections of minor actinides (MAs) and long-lived fission products (LLFPs) are important.

- Improving the performance and safety of actual reactors.
- Designing new types of reactors, for reducing the high-level radioactive waste (transmutation).

The reported uncertainties of C.S. libraries are often questionable.

Especially, 244Cm and 246Cm are very important:

- Share nearly 40-50% of the total actinide decay heat in spent reactor fuels even after three years of cooling.
- 244Cm is one of the main neutron emitters in the irradiated nuclear fuel (fuel safety).
- Cm isotopes open the path to the production of higher Z elements: Bk, Cf…
- Both capture and fission cross sections (transmutation) are known poorly.
- Only two previous measurements available.
Only 2 sets of previous data

Experiment by Moore et al.

- 1969 Using underground nuclear explosion
- Moxon-Rae detectors
- Accuracy questionable due to systematic uncertainties
- No data under 20eV

Only 2 sets of previous data

Experiment by Moore et al. Experiment by Kimura et al.

- 1969 Using underground nuclear explosion
- Moxon-Rae detectors
- Accuracy questionable due to systematic uncertainties
- No data under 20eV

- 2010 at J-PARC
- Two cluster-Ge detectors
- Above 100 eV, the measurement required severe dead time corrections (up to 90%)
- Resonance analysis up to 30 eV

Measurement at n_TOF
Collaboration between CIEMAT, JAEA and n_TOF

~1 mg ^{244}Cm and ^{246}Cm samples with high activity (~1 GBq)
Measurement at n_TOF
Collaboration between CIEMAT, JAEA and n_TOF

~1 mg244Cm and 246Cm samples with high activity (~1 GBq)

C_6D_6 in EAR2
TED
High intensity / 20m flight path
Worse RF

TAC in EAR1
TAC
Lower intensity / 185m flight
Better RF
Information EM cascade
Measurement at n_TOF

Collaboration between CIEMAT, JAEA and n_TOF

~1 mg 244Cm and 246Cm samples with high activity (~1 GBq)

C$_6$D$_6$ in EAR2
TED
High intensity / 20m flight path
Worse RF

TAC in EAR1
TAC
Lower intensity / 185m flight
Better RF
Information EM cascade

Measure the Cross Sections of 244Cm and 246Cm for improving the uncertainty assessment and extending the energy range
Measurement at n_TOF
Collaboration between CIEMAT, JAEA and n_TOF

~1 mg\(^{244}\)Cm and \(^{246}\)Cm samples with high activity (~1 GBq)

C\(_6\)D\(_6\) in EAR2
TED
High intensity / 20m flight path
Worse RF

TAC in EAR1
TAC
Lower intensity / 185m flight
Better RF
Information EM cascade

Measure the Cross Sections of \(^{244}\)Cm and \(^{246}\)Cm for improving the uncertainty assessment and extending the energy range

Measurement during May-September 2017
Relative measurement to \(^{240}\)Pu(n,\(\gamma\))
Samples

<table>
<thead>
<tr>
<th>Element</th>
<th>Two 244Cm sample (%)</th>
<th>246Cm sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>244Cm</td>
<td>60.6±1.1 (~0.80 mg)</td>
<td>20.3±0.5 (~0.38 mg)</td>
</tr>
<tr>
<td>245Cm</td>
<td>2.38±0.30 (~0.02 mg)</td>
<td>1.03±0.29 (~0.02 mg)</td>
</tr>
<tr>
<td>246Cm</td>
<td>6.35±0.55 (~0.08 mg)</td>
<td>57.7±1.5 (~1.10 mg)</td>
</tr>
<tr>
<td>247Cm</td>
<td>-----</td>
<td>2.8±0.4 (~0.05 mg)</td>
</tr>
<tr>
<td>248Cm</td>
<td>-----</td>
<td>8.8±0.2 (~0.17 mg)</td>
</tr>
<tr>
<td>240Pu</td>
<td>31.1±0.6 (~0.40 mg)</td>
<td>9.30±0.15 (~0.17 mg)</td>
</tr>
</tbody>
</table>

Diagram:
- Mylar
- Kapton
- Al Ring
- 9 cm
- 0.5 mm
- 5 mm
- 1.2 mm

Image:
- Circular sample with Cm notation.
Neutron Capture measurement techniques

\[E_c = S_n + E_n \]
Neutron Capture measurement techniques

TED
(Total Energy Detector)

I.) Low Efficiency Detectors:

II.) Efficiency to detect a γ-ray is proportional to its energy

III.) Proportionality fulfilled with Weighting factors

$$\varepsilon_c = \sum_{i=1}^{\varepsilon_{\gamma i}} = k \sum_{i=1}^{E_{\gamma i}} = kE_c$$

The detection efficiency is proportional to $$E_c$$

J.Lerendegui (U.S.) Private communication
Neutron Capture measurement techniques

TED (Total Energy Detector)

I.) Low Efficiency Detectors:

II.) Efficiency to detect a γ-ray is proportional to its energy

III.) Proportionality fulfilled with Weighting factors

\[\varepsilon_c = \sum_{i=1}^{\sigma_\gamma} \varepsilon_{\gamma_i} = k \sum_{i=1}^{\sigma_\gamma} E_{\gamma_i} = k E_c \]

The detection efficiency is proportional to \(E_c \)

E\(_C\) = \(S_n + E_n \)

TAC (Total Absorption Calorimeter)

If intrinsic and angular efficiencies are large:

I.) Total efficiency of the cascade : \(4\pi \)

II.) Peak efficiency

The detection efficiency is constant \(\approx 1 \)

J.Lerendegui (U.S.) Private communication
C₆D₆ Setup EAR2 (~20 m)

- Three detectors
 - Efficiency proportional to energy ($\varepsilon_{\gamma i} E_{\gamma i}$) achieved using PHWT.
 - Good time resolution (~1ns).
C$_6$D$_6$ Setup EAR2 (~ 20 m)

- Three detectors
 - Efficiency proportional to energy ($\varepsilon_{\gamma i} \ E_{\gamma i}$) achieved using PHWT.
 - Good time resolution (~ 1ns).

- Experiment
 - 3 months.
 - $8 \cdot 10^{18}$ protons of 20 GeV/c.
 - $\sim 50\%$ of the beam measuring 244Cm and 246Cm rest dummy measurements and check.
C$_6$D$_6$ Setup EAR2 (\sim20 m)

- Three detectors
 - Efficiency proportional to energy ($\varepsilon_{\gamma i} E_{\gamma i}$) achieved using PHWT.
 - Good time resolution (\sim1ns).

- Experiment
 - 3 months.
 - $8 \cdot 10^{18}$ protons of 20 GeV/c.
 - \sim 50% of the beam measuring 244Cm and 246Cm rest dummy measurements and check.

- Analysis
 - Precise background subtraction.
 - Energy calibration (133Ba, 137Cs, 60Co, 88Y, AmBe and CmC).
 - Gain drifts (12 sets)
244Cm Experimental results EAR2

Counts

10^5

10^4

10^{-2} 10^{-1} 1 10 10^2

Neutron energy (eV)

Cm
Dummy
Empty
Cm activity
Total bkg.
246Cm Experimental results EAR2

![Graph showing neutron energy distribution for different conditions: Cm, Dummy, Empty, Cm activity, and Total bkg.](image-url)
Geant4 Simulations
Geant4 Simulations

![Graph showing counts vs. energy deposition](image)

- **MC**
- **Exp-Background**

Y-88
Geant4 Simulations

Comparing Cascade Cm244

- Experimental
- MC Simulated

Counts/7e12 protons

E_{dep}(MeV)

Cascade Simulation for WF correction
Preliminary capture yields

Blue → Experimental Yield

Other colors → Background + JEFF 3.3

Normalizing to 240Pu Cross Section

244Cm Bins per decade

- Total Sammy Yield
- Experimental Yield
- Pu-240 (n,γ)
- Cm-244 (n,γ)
- Cm-246 (n,γ)
- Cm-244 (n,f)
- Cm-245 (n,f)
Preliminary capture yields

Blue → Experimental Yield
Other colors →
Background + JEFF 3.3

Normalizing to 240Pu Cross Section

JEFF 3.3 C.S in 244Cm and 246Cm (1eV to 1keV) is taken from JENDL 4.0

Captured Yield + bkg 244Cm Bins per decade
Capture Yield+bkg 244Cm Bins per decade 3000

- Total Sammy Yield
- Experimental Yield
- Pu-240 (n,γ)
- Cm-244 (n,γ)
- Cm-246 (n,γ)
- Cm-244 (n,f)
- Cm-245 (n,f)
Capture Yield + bkg 246Cm Bins per decade 3000

E$_n$ (eV)

Capture Yield + bkg

- Total Sammy Yield
- Experimental Yield
- Pu-240 (n,γ)
- Cm-244 (n,γ)
- Cm-246 (n,γ)
- Cm-244 (n,f)
- Cm-245 (n,f)
- Cm-247 (n,f)
- Cm-248 (n,γ)
- Am-243 (n,γ)
TAC Setup EAR1 (~185m)

- TAC (Total Absorption Calorimeter).
 - Sphere of 40 BaF₂ crystals, 95% solid angle.
 - Detecting almost all the gammas in the cascade.
TAC Setup EAR1 (~185m)

- TAC (Total Absorption Calorimeter).
 - Sphere of 40 BaF$_2$ crystals, 95% solid angle.
 - Detecting almost all the gammas in the cascade.

- Experiment
 - 2 weeks.
 - $5 \cdot 10^{17}$ protons of 20 GeV/c.

- Analysis
 - Coincidence between the 40 detectors. Reject background.
 - Montecarlo simulations with Geant4.
244Cm Experimental results EAR1 TAC

![Graph showing neutron energy distribution with different count levels for Cm, Dummy, Cm activity, Env. bkg., and Total bkg.](image-url)
EM cascades TAC

- Background subtracted
- Different multiplicities
- Normalization

First Resonance Pu240, Neutron Energy 1 to 1.1 eV

First Resonance Cm244, Neutron Energy 7.5 to 7.7 eV

~300000 counts
~60000 counts
Summary and conclusions

- Only 2 previous difficult measurements of 244Cm and 246Cm.

- ~1 mg samples with high activity (~1 GBq) provided by JAEA.

- Radiative capture cross section of 244Cm and 246Cm were successfully measured at n_TOF in both areas with complementary set ups:
 - EAR2 with C$_6$D$_6$ (TED).
 - EAR1 with TAC.

- Preliminary results are promising and we expect to reach the proposed goals with a precise analysis.
BACKUP SLIDES
Motivation
The n_TOF Facility at CERN: a Google view
The n_TOF lead spallation target

Higher Neutron Flux

PS Protons (20 GeV/c)

Neutrons (meV to ~100 MeV)

Pb

Neutrons (meV to GeV)

185 m

tof

Better Energy Resolution

EAR-1

Graph showing neutron flux vs. neutron energy (eV) for EAR1 and EAR2.
Neutrons per Pulse at n_TOF

Experimental neutron fluence per $7 \times 10^{12} p^+$
Neutron Capture measurement techniques

\[E_c = S_n + E_n \]

TED (Total Energy Detector)
Total efficiency depends on \(E_c \) and not on the decay path

\[i=1 \varepsilon_{\gamma_i} \]

TAC (Absorption Calorimeter)

\[\sigma_\gamma \]

The gammas are ideally detected.

\[E_c = \varepsilon^p_c = 1 \]

The proportionality between efficiency and \(\gamma \)-ray energy is obtained by software (WP).
Preliminary WF Det1

\[\sum_i W_i R_{ij} / E_j \]

![Graph showing energy (MeV) vs. weight](image)

![Graph showing energy (MeV) vs. weight](image)
Energy calibrations

- 6 sources used: $^{133}\text{Ba}, ^{137}\text{Cs}, ^{60}\text{Co}, ^{88}\text{Y}, \text{AmBe}, \text{CmC}$
- Fitting MC simulation with χ^2

Calibration Detector 1

$$f(x) = \begin{cases} ax^2 + bx + c & x < x_0 \\ dx + c & x \geq x_0 \end{cases}$$
Energy resolution

- 6 sources used (\(^{133}\)Ba, \(^{137}\)Cs, \(^{60}\)Co, \(^{88}\)Y, Ambe, CmC)
- Fitting MC simulation with \(\chi^2\) method varying gain and

\[
\sigma^2 = b_0 E + b_1 E^2
\]

\textbf{results01/2/Data2Det1.txt}
Gain Drifts

- 10 calibration measurements
- Source always in the same position.
MC Simulations Source Response

Cs Det1

Y_12 Det1

Ba Det1

Co Det1
CALIBRATIONS

red:exp -- green:MC -- blue:fit region

red:exp -- green:MC -- blue:fit region
Alpha/gamma discrimination and energy and time calibration

- Alpha discrimination
- Calibrations, Gaussian fitting
- Gain drift correction. Using alpha spectra

Two techniques:
- Gaussian fit of last peak
- χ^2–Method using reference run