Towards the adoption of \(^{238}\text{U}\)(n,f) and \(^{237}\text{Np}\)(n,f) as primary standards for fast neutron energies

Salvador-Castiñeira, P.\(^{a}\), Hambsch, F.-J.\(^{b}\), Göök, A.\(^{b}\), Vidali, M.\(^{b}\), Hawkes, N. P.\(^{a}\), Roberts, N. J.\(^{a}\), Taylor, G. C.\(^{a}\) and Thomas, D. J.\(^{a}\)

\(^{a}\) National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
\(^{b}\) EC-JRC-Directorate G–Nuclear Safety & Security, Unit G.2, Retieseweg 111, 2440 Geel, Belgium
Why do we need still to study σ?

1. Study of the fission process

2. Design of Gen-IV nuclear power plants
 - Neutron energy spectra from 0.5MeV to 20MeV
 - Highly enriched U to function
 - Improved target accuracy

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
NPL Van de Graaff accelerator

Low-scatter area

scatter of neutrons of 100-200 keV lower energy than E_n

issue when using $^{235}\text{U}(n,f)$

Need of secondary standards with fission threshold

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Fluence measurement

(1) Fluence measurement with a Long counter
(2) Fluence meas. with shadow cone + Long counter

Fluence per unit beam charged
Fluence measurement

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Towards the adoption of $^{238}\text{U(n,f)}$ and $^{237}\text{Np(n,f)}$ as primary standards for fast E_n
Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n.
Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

<table>
<thead>
<tr>
<th>Samples</th>
<th>E_n (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{235}\text{U}/^{237}\text{Np}$</td>
<td>0.567, 1.2, 1.8, 2.0</td>
</tr>
<tr>
<td>$^{235}\text{U}/^{238}\text{U}$</td>
<td>1.8, 2.0, 2.4</td>
</tr>
<tr>
<td>$^{238}\text{U}/^{237}\text{Np}$</td>
<td>1.8, 2.0, 2.4</td>
</tr>
<tr>
<td>$^{235}\text{U}{\text{new}}/^{235}\text{U}{\text{old}}$</td>
<td>0.565, 1.2, 1.8, 2.4</td>
</tr>
<tr>
<td>$^{242}\text{Pu}/^{235}\text{U}_{\text{new}}$</td>
<td>0.565, 0.9, 1.0, 1.1, 1.2, 1.8, 2.4</td>
</tr>
<tr>
<td>$^{242}\text{Pu}/^{237}\text{Np}$</td>
<td>1.0, 1.1, 1.2, 1.8, 2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass (µg)</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{235}\text{U}_{\text{old}}$</td>
<td>555 (22)</td>
<td>99.83%</td>
</tr>
<tr>
<td>$^{235}\text{U}_{\text{new}}$</td>
<td>701 (4)</td>
<td>99.93%</td>
</tr>
<tr>
<td>^{238}U</td>
<td>681 (18)</td>
<td>>99.99%</td>
</tr>
<tr>
<td>^{237}Np</td>
<td>489.5 (2.4)</td>
<td>>99.99%</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>671 (6)</td>
<td>99.97%</td>
</tr>
</tbody>
</table>

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n...
Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

correlated results

Similarities:
• NPL facility (fluence determination technique)
• Some of the samples (235U$_{old}$, 237Np)

Differences:
• More control on:
 • proton beam spot shape and size
 • neutron producing target – TFGIC distance
• new built TFGIC in 2017
• different DAQ boards
• *New* 235U sample in 2017

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
1. Fission fragment characterization

2. Absolute fluence determination

- Flucal \rightarrow fluence at the point of the samples from point source
- MCNP6 \rightarrow correction for disk sample and disk neutron source
- MCNP6 \rightarrow correction for target can scattering
- MCNP6 \rightarrow correction for attenuation on the front face TFGIC
Data analysis

1. Fission fragment characterization

2. Absolute fluence determination

3. Neutron energy spectrum at the sample position

Main Bay geometry thanks to G. Taylor
Data analysis

1. Fission fragment characterization

2. Absolute fluence determination

3. Neutron energy spectrum at the sample position

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Calculations (cross sections)

\[
\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \cdot \frac{A}{m \cdot N_A \Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}} \quad 1
\]
Calculations (cross sections)

\[
\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \frac{A}{m \cdot N_A \Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}} \frac{1}{1}
\]

Corrected counts below electronic threshold (2-5%)

+ Spontaneous fission (^{242}Pu only)

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Calculations (cross sections)

\[
\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \cdot \frac{A}{m \cdot N_A \Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}} \cdot 1
\]

Corrected counts below electronic threshold (2-5%)

+ Spontaneous fission (\(^{242}\)Pu only)

Reaction rate due to \(E'_n < E_n\) (4-10%)

Towards the adoption of \(^{238}\)U(n,f) and \(^{237}\)Np(n,f) as primary standards for fast \(E_n\)
\[\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \cdot \frac{A}{m \cdot N_A \Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}} \]

Corrected counts below electronic threshold (2-5%)

+ Spontaneous fission (\(^{242}\text{Pu}\) only)

Point-to-point to disk-to-disk correction (2-4%)

Reaction rate due to \(E'_n < E_n\) (4-10%)

Towards the adoption of \(^{238}\text{U}(n,f)\) and \(^{237}\text{Np}(n,f)\) as primary standards for fast \(E_n\)
Calculations (cross sections)

\[\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \cdot \frac{A}{m \cdot N_A \Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}} \]

Corrected counts below electronic threshold (2-5%)

+ Spontaneous fission (\(^{242}\)Pu only)

Reaction rate due to \(E'_n < E_n\) (4-10%)

Point-to-point to disk-to-disk correction (2-4%)

Target can scatter correction (2-3%)

Towards the adoption of \(^{238}\)U(n,f) and \(^{237}\)Np(n,f) as primary standards for fast \(E_n\)
Calculations (cross sections)

$$\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \cdot \frac{A}{m \cdot N_A \Phi_n(E_n)} \cdot \frac{1}{k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}}$$

Corrected counts below electronic threshold (2-5%)

+ Spontaneous fission (^{242}Pu only)

Point-to-point to disk-to-disk correction (2-4%)

Reaction rate due to $E'_n < E_n$ (4-10%)

Target can scatter correction (2-3%)

Attenuation of neutrons in the front face TFGIC (1.5-2%)

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Calculations (cross sections)

\[\sigma(E_n) = C_{\text{corr}} \cdot k_{\text{FF,low}} \cdot \frac{A}{\epsilon m \cdot N_A} \Phi_n(E_n) \cdot \frac{1}{k_{\text{PP-DD}}} \cdot \frac{1}{k_{\text{TS}}} \cdot \frac{1}{k_{\text{AttFC}}} \]

- Attenuation of neutrons in the front face TFGIC (1.5-2%)
- Corrected counts below electronic threshold (2-5%)
- Spontaneous fission (242Pu only)
- Reaction rate due to $E_n < E_n$ (4-10%)
- Point-to-point to disk-to-disk correction (2-4%)
- Target can scatter correction (2-3%)

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Calculations (spontaneous fission 242Pu)

$$T_{1/2, SF} = \frac{\%^{242}\text{Pu}}{A_{242}} \left(\frac{1}{C_{SF} t \ln 2 \cdot m_{242} \cdot N_A} - \sum_i^n \frac{\%^{i}\text{Pu}}{A_i \cdot T_{1/2, SF(i)}} \right)$$

<table>
<thead>
<tr>
<th>Source</th>
<th>Literature average</th>
<th>This experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holden (2000)</td>
<td>6.77 x 10^{10} (1.0%)</td>
<td>6.76 x 10^{10} (1.3%)</td>
</tr>
<tr>
<td>Chechev (2009)</td>
<td>6.79 x 10^{10} (1.4%)</td>
<td></td>
</tr>
<tr>
<td>Salvador-Castiñeira (2013)</td>
<td>6.74 x 10^{10} (1.3%)</td>
<td></td>
</tr>
<tr>
<td>This experiment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on 5 measurements > 25000 events/each

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Uncertainty evaluation

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>u_{total} (%)</th>
<th>u_m (%)</th>
<th>u_C (%)</th>
<th>u_{ε} (%)</th>
<th>$u_{c<\text{thr}}$ (%)</th>
<th>u_{SF} (%)</th>
<th>u_{Φ} (%)</th>
<th>$u_{\text{FF,low}}$ (%)</th>
<th>$u_{\text{PP-DD}}$ (%)</th>
<th>u_{TS} (%)</th>
<th>u_{AttFC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.565</td>
<td>3.8-9.1</td>
<td>0.5-2</td>
<td>1.4-5.9</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td><1</td>
<td>3.2</td>
<td>27</td>
<td>1-1.4</td>
</tr>
<tr>
<td>0.9</td>
<td>4.0-9.4</td>
<td>0.5-2</td>
<td>1.8-6.1</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>0.6-1.6</td>
<td>2.0</td>
<td>30</td>
<td>5.8-6.1</td>
</tr>
<tr>
<td>1.0</td>
<td>4.4-9.2</td>
<td>0.5-2</td>
<td>1.5-5.7</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.9</td>
<td>0.7-2.7</td>
<td>4.6</td>
<td>30</td>
<td><1</td>
</tr>
<tr>
<td>1.1</td>
<td>4.0-7.3</td>
<td>0.5-2</td>
<td>1.8-4.4</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.3</td>
<td>0-2.3</td>
<td>1.9</td>
<td>31</td>
<td>6.6-7.1</td>
</tr>
<tr>
<td>1.2</td>
<td>4.0-7.1</td>
<td>0.5-2</td>
<td>1.8-4.2</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.3</td>
<td><0.5</td>
<td>2.2</td>
<td>31</td>
<td>6.4-6.8</td>
</tr>
<tr>
<td>1.8</td>
<td>3.7-5.6</td>
<td>0.5-2</td>
<td>1.5-2.8</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>1.2-3</td>
<td>2.5</td>
<td>32</td>
<td>2.2-2.7</td>
</tr>
<tr>
<td>2.4</td>
<td>3.7-5.3</td>
<td>0.5-2</td>
<td>1.3-2.7</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>0.3-3.2</td>
<td>0.9</td>
<td>33</td>
<td>1.3-1.8</td>
</tr>
</tbody>
</table>

* Data from 2017, similar values for 2016
Uncertainty evaluation

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>u_{total} (%)</th>
<th>u_m (%)</th>
<th>u_C (%)</th>
<th>u_ε (%)</th>
<th>$u_{c<\text{thr}}$ (%)</th>
<th>u_{SF} (%)</th>
<th>u_Φ (%)</th>
<th>$u_{FF,\text{low}}$ (%)</th>
<th>$u_{PP-\text{DD}}$ (%)</th>
<th>u_{TS} (%)</th>
<th>u_{AttFC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.565</td>
<td>3.8-9.1</td>
<td>0.5-2</td>
<td>1.4-5.9</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td><1</td>
<td>3.2</td>
<td>27</td>
<td>1-1.4</td>
</tr>
<tr>
<td>0.9</td>
<td>4.0-9.4</td>
<td>0.5-2</td>
<td>1.8-6.1</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>0.6-1.6</td>
<td>2.0</td>
<td>30</td>
<td>5.8-6.1</td>
</tr>
<tr>
<td>1.0</td>
<td>4.4-9.2</td>
<td>0.5-2</td>
<td>1.5-5.7</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.9</td>
<td>0.7-2.7</td>
<td>4.6</td>
<td>30</td>
<td><1</td>
</tr>
<tr>
<td>1.1</td>
<td>4.0-7.3</td>
<td>0.5-2</td>
<td>1.8-4.4</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.3</td>
<td>0-2.3</td>
<td>1.9</td>
<td>31</td>
<td>6.6-7.1</td>
</tr>
<tr>
<td>1.2</td>
<td>4.0-7.1</td>
<td>0.5-2</td>
<td>1.8-4.2</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.3</td>
<td><0.5</td>
<td>2.2</td>
<td>31</td>
<td>6.4-6.8</td>
</tr>
<tr>
<td>1.3</td>
<td>3.7-5.6</td>
<td>0.5-2</td>
<td>1.5-2.8</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>1.2-3</td>
<td>2.5</td>
<td>32</td>
<td>2.2-2.7</td>
</tr>
<tr>
<td>1.8</td>
<td>3.7-5.3</td>
<td>0.5-2</td>
<td>1.3-2.7</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>3.2</td>
<td>0.3-3.2</td>
<td>0.9</td>
<td>33</td>
<td>1.3-1.8</td>
</tr>
</tbody>
</table>

* Data from 2017, similar values for 2016

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Preliminary 235U results

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n

Correction factor from 2017 data using 235U$_{\text{new}}$ sample:

0.943
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n.
Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Preliminary ^{237}Np results

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Preliminary ^{242}Pu results

Other mmts not yet in EXFOR:

- Tsinganis, nTOF, 2012
- Marini, CENBG + CEA, 2013
- Kögler, nELBE, 2014

Towards the adoption of $^{238}\text{U}(n,f)$ and $^{237}\text{Np}(n,f)$ as primary standards for fast E_n
Preliminary 242Pu results (threshold)

Other mmts not yet in EXFOR:
- Tsinganis, nTOF, 2012
- Marini, CENBG + CEA, 2013
- Kögerer, nELBE, 2014

Towards the adoption of 238U(n,f) and 237Np(n,f) as primary standards for fast E_n
Summary

- Cross sections key element on reactor design → improved accuracies

- VdG environments require new reference cross sections

- Two experiments performed for $^{235,238}\text{U}(n,f)$, $^{237}\text{Np}(n,f)$ and $^{242}\text{Pu}(n,f)$

- Uncertainties driven by counting statistics and distance between neutron producing target and detector

 Reaching uncertainties <5% requires new methodologies or increased accelerator output
The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).