

Towards the adoption of ²³⁸U(n,f) and ²³⁷Np(n,f) as primary standards for fast neutron energies

Salvador-Castiñeira, P.a, Hambsch, F.-J.b, Göök, A.b, Vidali, M.b, Hawkes, N. P.a, Roberts, N. J.a, Taylor, G. C.a and Thomas, D. J.a

a. National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK b. EC-JRC-Directorate G-Nuclear Safety & Security, Unit G.2, Retieseweg 111, 2440 Geel, Belgium

Why do we need still to study σ ?

- 1. Study of the fission process
- 2. Design of Gen-IV nuclear power plants
 - Neutron energy spectra from 0.5MeV to 20MeV
 - Highly enriched U to function
 - Improved target accuracy

Table 32. Summary of Highest Priority Target Accuracies for Fast Reactors

		Energy Range	Current Accuracy (%)	Target Accuracy (%)		
U238	σ_{inel}	6.07 ÷ 0.498 MeV	10 ÷ 20	2 ÷ 3		
0238	σ_{capt}	24.8 ÷ 2.04 keV	3 ÷ 9	1.5 ÷ 2		
Pu241	$\sigma_{ m fiss}$	1.35MeV ÷ 454 eV	8 ÷ 20	2 ÷ 3 (SFR,GFR, LFR) 5 ÷ 8 (ABTR, EFR)		
Pu239	σ_{capt}	498 ÷ 2.04 keV	7 ÷ 15	4 ÷ 7		
Pu240	σ_{fiss}	1.35 ÷ 0.498 MeV	6	1.5 ÷ 2		
Pu240	v	1.35 ÷ 0.498 MeV	4	1 ÷ 3		
Pu242	σ_{fiss}	2.23 ÷ 0.498 MeV	19 ÷ 21	3 ÷ 5		
Pu238	σ_{fiss}	1.35 ÷ 0.183 MeV	17	3 ÷ 5		
Am242m	σ_{fiss}	1.35MeV ÷ 67.4keV	17	3 ÷ 4		
Am241	σ_{fiss}	6.07 ÷ 2.23 MeV	12	3		
Cm244	σ_{fiss}	1.35 ÷ 0.498 MeV	50	5		
Cm245	σ_{fiss}	183 ÷ 67.4 keV	47	7		
Fe56	$\sigma_{\rm inel}$	2.23 ÷ 0.498 MeV	16 ÷ 25	3 ÷ 6		
Na23	σ_{inel}	1.35 ÷ 0.498 MeV	28	4 ÷ 10		
Pb206	$\sigma_{\rm inel}$	2.23 ÷ 1.35 MeV	14	3		
Pb207	$\sigma_{\rm inel}$	1.35 ÷ 0.498 MeV	11	3		
Si28	$\sigma_{\rm inel}$	6.07 ÷ 1.35 MeV	14 ÷ 50	3 ÷ 6		
3120	σ_{capt}	19.6 ÷ 6.07 MeV	53	6		

NPL Van de Graaff accelerator

NPL Van de Graaff accelerator

Low-scatter area

scatter of neutrons of 100-200keV lower energy than E_n

issue when using ²³⁵U(n,f)

Need of secondary standards with fission threshold

Fluence measurement

- (1) Fluence measurement with a Long counter
- (2) Fluence meas. with shadow cone + Long counter

Fluence per unit beam charged

Fluence measurement

Twin Frisch-Grid Ionization Chamber

Twin Frisch-Grid Ionization Chamber

Twin Frisch-Grid Ionization Chamber

Fission fragment measurement

Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

Samples	E _n (MeV)
²³⁵ U/ ²³⁷ Np	0.567, 1.2, 1.8, 2.0
235U/238U	1.8, 2.0, 2.4
²³⁸ U/ ²³⁷ Np	1.8, 2.0, 2.4
235 U _{new} / 235 U _{old}	0.565, 1.2, 1.8, 2.4
²⁴² Pu/ ²³⁵ U _{new}	0.565, 0.9, 1.0, 1.1,1.2, 1.8, 2.4
²⁴² Pu/ ²³⁷ Np	1.0, 1.1, 1.2, 1.8, 2.4

Isotope	Mass (µg)	Purity			
²³⁵ U _{old}	555 (22)	99.83%			
²³⁵ U _{new}	701 (4)	99.93%			
238U	681 (18)	>99.99%			
²³⁷ Np	489.5 (2.4)	>99.99%			
²⁴² Pu	671 (6)	99.97%			

Experimental campaigns

Two campaigns under the CHANDA project: 2016 and 2017

correlated results

Similarities:

- NPL facility (fluence determination technique)
- Some of the samples (²³⁵U_{old}, ²³⁷Np)

Differences:

- More control on:
 - proton beam spot shape and size
 - neutron producing target TFGIC distance
- new built TFGIC in 2017
- different DAQ boards
- New ²³⁵U sample in 2017

1. Fission fragment characterization

- 1. Fission fragment characterization
- 2. Absolute fluence determination

```
Flucal —> fluence at the point of the samples from point source MCNP6 —> correction for disk sample and disk neutron source MCNP6 —> correction for target can scattering MCNP6 —> correction for attenuation on the front face TFGIC
```


- 1. Fission fragment characterization
- 2. Absolute fluence determination
- 3. Neutron energy spectrum at the sample position

- 1. Fission fragment characterization
- 2. Absolute fluence determination
- 3. Neutron energy spectrum at the sample position

$$\sigma(E_n) = \frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \frac{A}{m \cdot N_A} \frac{1}{\Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}}$$

$$\sigma(E_n) = \underbrace{\frac{C_{\text{corr}} \cdot k_{\text{FF,low}}}{\epsilon} \frac{A}{m \cdot N_A} \frac{1}{\Phi_n(E_n) \cdot k_{\text{PP-DD}} \cdot k_{\text{TS}} \cdot k_{\text{AttFC}}}}$$

Corrected counts below electronic threshold (2-5%)

+

Spontaneous fission (242Pu only)

Calculations (spontaneous fission ²⁴²Pu)

$$T_{1/2,SF} = \frac{\%^{242} \text{Pu}}{A_{242}} \frac{1}{\left(\frac{C_{SF}}{t \cdot \ln 2 \cdot m_{242} \cdot N_A} - \sum_{i}^{n} \frac{\%^{i} \text{Pu}}{A_{i} \cdot T_{1/2,SF}(i)}\right)}$$

	T _{1/2,SF} (y)
Holden (2000) – Literature average	6.77 x 10 ¹⁰ (1.0%)
Chechev (2009) – Literature average	6.79 x 10 ¹⁰ (1.4%)
Salvador-Castiñeira (2013)	6.74 x 10 ¹⁰ (1.3%)
This experiment	6.76 x 10 ¹⁰ (1.3%)

Based on 5 measurements > 25000 events/each

Uncertainty evaluation

E _n (MeV)	u _{total} (%)	<i>u_m</i> (%)	u _C (%)	<i>u</i> _ε (%)	<i>u_{c<thr< sub=""></thr<>}</i> (%)	u _{SF} (%)	υ _φ (%)	u _{FF,low} (%)	<i>u_{PP-DD}</i> (%)	u _{TS} (%)	u _{AttFC} (%)
0.565	3.8-9.1	0.5-2	1.4-5.9	1	20	1.3	3.2	<1	3.2	27	1-1.4
0.9	4.0-9.4	0.5-2	1.8-6.1	1	20	1.3	3.2	0.6-1.6	2.0	30	5.8-6.1
1.0	4.4-9.2	0.5-2	1.5-5.7	1	20	1.3	3.9	0.7-2.7	4.6	30	<1
1.1	4.0-7.3	0.5-2	1.8-4.4	1	20	1.3	3.3	0-2.3	1.9	31	6.6-7.1
1.2	4.0-7.1	0.5-2	1.8-4.2	1	20	1.3	3.3	<0.5	2.2	31	6.4-6.8
1.8	3.7-5.6	0.5-2	1.5-2.8	1	20	1.3	3.2	1.2-3	2.5	32	2.2-2.7
2.4	3.7-5.3	0.5-2	1.3-2.7	1	20	1.3	3.2	0.3-3.2	0.9	33	1.3-1.8

^{*} Data from 2017, similar values for 2016

Uncertainty evaluation

E _n (MeV)	u _{total} (%)	<i>u_m</i> (%)	<i>u_C</i> (%)	<i>u</i> _ε (%)	<i>u_{c<thr< sub=""></thr<>}</i> (%)	u _{SF} (%)	υ _φ (%)	u _{FF,low} (%)	<i>u_{PP-DD}</i> (%)	u _{TS} (%)	u _{AttFC} (%)
0.565	3.8-9.1	0.5-2	1.4-5.9	1	20	1.3	3.2	<1	3.2	27	1-1.4
0.9	4.0-9.4	0.5-2	1.8-6.1	1	20	1.3	3.2	0.6-1.6	2.0	30	5.8-6.1
1.0	4.4-9.2	0.5-2	1.5-5.7	1	20	1.3	3.9	0.7-2.7	4.6	30	<1
1.1	4.0-7.3	0.5-2	1.8-4.4	1	20	1.3	3.3	0-2.3	1.9	31	6.6-7.1
1.2	4.0-7.1	0.5-2	1.8-4.2	1	20	1.3	3.3	<0.5	2.2	31	6.4-6.8
1.8	3.7-5.6	0.5-2	1.5-2.8	1	20	1.3	3.2	1.2-3	2.5	32	2.2-2.7
2.4	3.7-5.3	0.5-2	1.3-2.7	1	20	1.3	3.2	0.3-3.2	0.9	33	1.3-1.8

^{*} Data from 2017, similar values for 2016

Correction factor from 2017 data using ²³⁵U_{new} sample:

0.943

Other mmts not yet in EXFOR:

- Tsinganis, nTOF, 2012
- Marini, CENBG + CEA, 2013
- Kögler, nELBE,
 2014

Preliminary ²⁴²Pu results (threshold)

Other mmts not yet in EXFOR:

- Tsinganis, nTOF, 2012
- Marini, CENBG + CEA, 2013
- Kögler, nELBE, 2014

Summary

- Cross sections key element on reactor design → improved accuracies
- VdG environments require new reference cross sections
- Two experiments performed for ^{235,238}U(n,f), ²³⁷Np(n,f) and ²⁴²Pu(n,f)
- Uncertainties driven by counting statistics and distance between neutron producing target and detector

Reaching uncertainties <5% requires new methodologies or increased accelerator output

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy BEIS).