

Development of a Gaseous Proton-Recoil Detector for neutron flux measurements between 0.2 and 2 MeV neutron energy

P. Marini, L. Mathieu, M. Aïche, S. Czajkowski, B. Jurado, I. Tsekhanovich

Centre d'Etudes Nucléaires de Bordeaux Gradignan, CNRS/IN2P3, Université de Bordeaux, FRANCE

Cross section measurement

²⁴²Pu(n,f) measurement in the [200 keV; 2 MeV] energy range

Ludovic MATHIEU

Neutron flux measurement

Useful to normalize the cross section measurement (as well as for neutron beam line characterization, or dosimetry investigations...)

Usually, standard reactions are used : ²³⁵U(n,f), ²³⁸U(n,f), ²³⁷Np(n,f)

These standards are known with an accuracy of few % (from 0.5% to 10%)

An independent measurement

Evaluators require independent measurements

 $^1\text{H}(n,p)$ reaction is a primary standard known with an accuracy around 0.2% in the MeV region

Especially, its application and detection are **completely different** from the other standards (e.g. recoil proton detection VS fission fragments detection)

A real improvement in term of independence

* CENBG

Principle

Usual background :

The Si detector may see other signals which have to be subtracted

Need for a background measurement (masking H-rich foil)

To obtain a precise neutron flux ($\Delta N_{\text{proton}} {\sim} 1\%$), the background has to be small enough

* CENBG

A tremendous background

At low energy, the background is **hundred times** higher than the proton peak

Background source

An experiment was carried out @AIFIRA to investigate this background :

- present as soon as the beam is ON
- present even when the Si detector is masked

Background source

An experiment was carried out @AIFIRA to investigate this background :

- present as soon as the beam is ON
- present even when the Si detector is masked

Main features

Low sensitivity to electrons: thickness adapted to proton range

Background events rejection

segmented detector to perform track analysis

Well defined efficiency

a collimator is placed inside the detector => two chambers 100% efficiency required for good tracks ("no missed event")

The Gaseous Proton Recoil Detector (GPRD)

Constraint : as low material as possible to avoid interference with cross section measurement (e.g fission)

The Gaseous Proton Recoil Detector (GPRD)

Segmented detector (CEA/Irfu)

well defined efficiency (collimated sample)

Picture of the GPRD prototype (test experiment)

> rotating sample disk

64 pads

divided in two chambers: △E-E smaller pads in △E region (lower e- generation)

collimators

Energy calibration

- signal amplitude:

Due to $\epsilon_{\text{collection}},$ it is very hard to determine the proton energy via the signal amplitude

Energy calibration

- track length:

obtained thanks to the segmentation \implies proton energy

Issue: smooth end-of-track \implies energy deposition reconstruction

Issue: no information on the z-axis \implies very poor energy resolution

Efficiency

- detector dead time:
 - a high counting rate could lead to missed events
 - . the recoil proton counting rate is usually quite low
 - . OK if there is not a lot of background events

Test experiment on the AIFIRA facility in 2016

- irradiation with neutrons (E_n down to 300 keV)
- same conditions than previous experiments (distance, reaction)

Validations

- track measurement

« straight » tracks using the whole length of the GPRD

track for $E_n = 1 \text{ MeV}$

- irradiation with neutrons (E_n down to 300 keV)
- same conditions than previous experiments (distance, reaction)

Validations

- track measurement
- very low sensitivity to e- or γ \checkmark

test without H-film **gives no signal** (each pad is not sensitive enough to see signal from background electrons)

only few cosmic rays seen

- irradiation with neutrons (E_n down to 300 keV)
- same conditions than previous experiments (distance, reaction)

Validations

- track measurement
- very low sensitivity to e- or γ \checkmark
- discrimination between direct and scattered neutrons

shorter "AE-E" tracks rejected

(protons from neutrons with lower energy / higher angle)

- irradiation with neutrons (E_n down to 300 keV)
- same conditions than previous experiments (distance, reaction)

Validations

- track measurement
- very low sensitivity to e- or γ \checkmark
- discrimination between direct and scattered neutrons
- low detection energy limit: 300 keV (at least)

track for $E_n = 300 \text{ keV}$

no test carried out below 300 keV

- irradiation with neutrons (E_n down to 300 keV)
- same conditions than previous experiments (distance, reaction)

Validations

- track measurement
- very low sensitivity to e- or γ \checkmark
- discrimination between direct and scattered neutrons
- low detection energy limit: 300 keV (at least)

- general functioning (electronics, acquisition, gas regulation, rotating disk...)

- ε_{intr} = 100% not proven X

need a quantitative and accurate experiment

Issues

- Static sparks

CF₄ gas at few 10 mbars => Paschen regime => drop of the breakdown voltage

removal of some conductive pieces

hence the adhesive !

- Non homogeneous electric field

Weak signal on the side pads + perturbation due to the collimator

future addition of a field cage to constraint the electric field

WONDER 2018

October 8-12th 2018

Issues

- Signal loss after few minutes of irradiation

Charge accumulation on insulators (from e- coming « from » the beam) => electric field distortion

future addition of a field cage to constraint the electric field

Electric field simulations

With the OPERA code (ex-Tosca)

IV- A new detector, phase II * CENBG **Electric field simulations** With the OPERA code (ex-Tosca) Equipotential lines : top view of the GPRD 2/févr./2018 15:23:47 collimators micromegas detector aluminum electric field distortion ! (-500V) structure round) ground ring (ground) macor structure sample disk Map contours: V -2.000000E+03 to 7.465452E-0 Integral = -1.097855E+05cathode **Opera** (-2000V)motor axis (ground)

Ludovic MATHIEU

Electric field simulations

With the OPERA code (ex-Tosca)

Electric field simulations

With the OPERA code (ex-Tosca)

A different gas

With very good insulating properties: 70% $N_{\rm 2}$ – 30% $CO_{\rm 2}$

- used in accelerator tank (as is SF_6)
- very cheap

- irradiation with neutrons (E_n down to 200 keV)
- same conditions than usual experiments (distance, reaction)

Validations

- good static electric field behavior

Test experiments on the AIFIRA facility in 2018

- irradiation with neutrons (E_n down to 200 keV)
- same conditions than usual experiments (distance, reaction)

Validations

- good static electric field behavior
- good electric field behavior under irradiation

no loss of signal amplitude with irradiation !

-03-22T13:16:57.184_0000 - Frame no. 51 - Event no. 0 CoBo no. 0 - AsAd no. 0 - AGET no. 0

Test experiments on the AIFIRA facility in 2018

- irradiation with neutrons (E_n down to 200 keV)
- same conditions than usual experiments (distance, reaction)

Validations

- good static electric field behavior
- good electric field behavior under irradiation
- 3D tracks reconstruction

lower drift velocity => significant time difference depending on z-axis

Test experiments on the AIFIRA facility in 2018

- irradiation with neutrons (E_n down to 200 keV)
- same conditions than usual experiments (distance, reaction)

Validations

- good static electric field behavior
- good electric field behavior under irradiation
- 3D tracks reconstruction
- low detection energy limit: 200 keV (at least)

track for $E_n = 200 \text{ keV}$

limitation due to the H-rich sample thickness (0,5µm max at 200keV)

- irradiation with neutrons (E_n down to 200 keV)
- same conditions than usual experiments (distance, reaction)

Validations

- good static electric field behavior
- good electric field behavior under irradiation
- 3D tracks reconstruction
- low detection energy limit: 200 keV (at least)
- ε_{intr} = 100% not proven

need a quantitative and accurate experiment

Next experiment

- Goals better understanding of the detector
 - prove ε_{intr} = 100%
 - determine the detector rate limit

Direct proton beam experiment

- A new chamber has been designed:
- direct proton micro beam (few p/s to few 10 p/s)
- GPRD shift in (x;y)
 to irradiate different parts
- Si detector

to monitor the counting rate

A difficult energy range for recoil proton

- very high background due to $n \gamma e^{-\gamma}$
- prevent an accurate counting of recoil protons

The Gaseous Proton Recoil Detector

- built in 2016
- designed for a low sensitivity to γ/e^- background
- test experiments @AIFIRA facility :
 - . good behaviour under irradiation
 - . validation of the low sensitivity to background
 - . track reconstruction
 - . low energy limit of 200 keV (limited by the thinness of the H-film)
- a direct proton experiment planned to investigate the efficiency

Perspectives : The GPRD will be completed and used to measure the ²⁴²Pu(n,f) cross section below 1 MeV (submitted to EURATOM WP2018)

Thank you for your attention

Ludovic MATHIEU

WONDER 2018

October 8-12th 2018