Systematic measurements of prompt fission γ-rays and what they tell us about fission fragment de-excitation

Andreas Oberstedt

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) / Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Bucharest-Magurele, Romania

WONDER-2018, Aix-en-Provence (France), October 8 – 12, 2018
The fission process

- Scission
- 90% E_k
- Prompt n emission
- Prompt γ emission
- β^- decay delayed n and γ

Time (s): 10^{-15}, 10^{-13}, 10^{-10}, 10^{-7}

Distance (m): 10^{-6}
The fission process

For reactor applications:
- nuclear energy
- chain reaction
- heat
- reactor control

scission 90% E_k prompt n emission prompt γ emission β^- decay delayed n and γ
The fission process

Many nuclear data needs, but: our main focus of research (HPRL by OECD/NEA)

For reactor applications: nuclear energy chain reaction heat reactor control

scission $90\% E_k$ prompt n emission prompt γ emission β^- decay delayed n and γ

10$^{-9}$ 10^{-6} 10^{-15} 10^{-13} 10^{-10} 10^{-7} t (s)
d (m)
Outline

• Introduction
• Experimental setup
• Data treatment
• Results: PFGS
 • characteristics
 • dependence of compound system
 • impact of excitation energy
 • angular distribution & multipolarities
• Summary
• Outlook
Introduction

• For the past years: precise measurement of prompt fission γ-ray spectra (PFGS)
Introduction

• For the past years: precise measurement of prompt fission γ-ray spectra (PFGS)

• Determination of characteristics:
 • $< M_{\gamma}>$, $< \varepsilon_{\gamma}>$, and $<E_{\gamma,\text{tot}}>$
Introduction

• For the past years: precise measurement of prompt fission γ-ray spectra (PFGS)

• Determination of characteristics:
 • $< M_\gamma >$, $< \varepsilon_\gamma >$, and $< E_{\gamma,\text{tot}} >$

• Study of the dependence of A and Z
Introduction

- For the past years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - $< M_\gamma >$, $< \varepsilon_\gamma >$, and $< E_{\gamma,\text{tot}} >$
- Study of the dependence of A and Z
- Study of energy dependence
Introduction

- For the past years: precise measurement of prompt fission γ-ray spectra (PFGS)
- Determination of characteristics:
 - $< M_\gamma >$, $< \varepsilon_\gamma >$, and $< E_{\gamma,\text{tot}} >$
- Study of the dependence of A and Z
- Study of energy dependence
- Details about the de-excitation process of fission fragments
Experimental setup

Fission fragment – γ-ray coincidences

- (Frisch-grid) ionization chamber
 (fission trigger)

- LaBr₃:Ce and CeBr₃ scintillation detectors
 (plus BaF₂ and/or NaI:Tl/LaBr₃:Ce phoswich detectors
 (gamma rays))

- Coincidences

- Time-of-flight measurement
 (n/γ discrimination)
Experimental setup
n/γ discrimination by time-of-flight

Due to good resolving power + excellent timing resolution of LaBr₃:Ce detectors

Prompt fission γ-rays
γ-decay after inelastic neutron scattering
Intrinsic and external background
Experimental setup

\(n/\gamma \) discrimination by time-of-flight

Experimental Setup

Due to good resolving power + excellent timing resolution of LaBr\(_3\):Ce detectors

Graph:
- **Time-of-flight (ns)** vs. **Energy (keV)**
 - **n, n’**
 - **E \approx 847 \text{ keV}**
 - **E \approx 1436 \text{ keV}**
 - **E \approx 276 \text{ keV}**

Prominent Features:
- **Prompt fission \(\gamma \)-rays**
- **\(\gamma \)-decay after inelastic neutron scattering**
- **Intrinsic and external background**

Andreas Oberstedt WONDER-2018, Aix-en-Provence (France), October 8 – 12, 2018 13
Data treatment
Unfolding the detector response

measured spectrum

\[
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix}
\]

measured spectrum

\[
\begin{pmatrix}
y_1' \\
y_2' \\
\vdots \\
y_n'
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_1' \\
x_2' \\
\vdots \\
x_n'
\end{pmatrix}
\]
Data treatment
Unfolding the detector response

\[\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{pmatrix} =
\begin{pmatrix}
 r_{11} & r_{12} & \cdots & r_{1n} \\
 r_{21} & \vdots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 r_{n1} & \cdots & r_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} \]
Data treatment
Unfolding the detector response

\[\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ r_{n1} & \cdots & & r_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \]

measured spectrum

emission spectrum

response matrix

usually simulated \((\text{GEANT4}, \text{PENELOPE})\)

Counts/fission

\[E_Y \text{ (keV)} \]

Andreas Oberstedt

WONDER-2018, Aix-en-Provence (France), October 8 – 12, 2018
Data treatment

Unfolding the detector response

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{pmatrix}
=
\begin{pmatrix}
 r_{11} & r_{12} & \cdots & r_{1n} \\
 r_{21} & r_{22} & \cdots & r_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{n1} & r_{n2} & \cdots & r_{nn} \\
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{pmatrix}
\]

usually simulated (\textit{Geant4, Penelope})
Data treatment
Unfolding the detector response

measured spectrum

response matrix

emission spectrum

\[
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n \\
\end{pmatrix} =
\begin{pmatrix}
r_{11} & r_{12} & \cdots & r_{1n} \\
r_{21} \\
\vdots \\
r_{n1} & \cdots & r_{nn} \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{pmatrix}
\]

response matrix
emission spectrum

measured spectrum
Results: PFGS

Overview: studied systems so far

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf 239</td>
<td>239</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 240</td>
<td>240</td>
<td>7.59 s</td>
</tr>
<tr>
<td>Cf 241</td>
<td>241</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 242</td>
<td>242</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 243</td>
<td>243</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 244</td>
<td>244</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 245</td>
<td>245</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 246</td>
<td>246</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 247</td>
<td>247</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 248</td>
<td>248</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 249</td>
<td>249</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 250</td>
<td>250</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Cf 251</td>
<td>251</td>
<td>7.63 s</td>
</tr>
<tr>
<td>Bk 238</td>
<td>238</td>
<td>144 s</td>
</tr>
<tr>
<td>Bk 240</td>
<td>240</td>
<td>5 m</td>
</tr>
<tr>
<td>Bk 242</td>
<td>242</td>
<td>7 m</td>
</tr>
<tr>
<td>Bk 243</td>
<td>243</td>
<td>4.5 h</td>
</tr>
<tr>
<td>Bk 244</td>
<td>244</td>
<td>1.80 h</td>
</tr>
<tr>
<td>Bk 245</td>
<td>245</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 246</td>
<td>246</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 247</td>
<td>247</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 248</td>
<td>248</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 249</td>
<td>249</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 250</td>
<td>250</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Bk 251</td>
<td>251</td>
<td>5.31 h</td>
</tr>
<tr>
<td>Cm 238</td>
<td>238</td>
<td>3 h</td>
</tr>
<tr>
<td>Cm 240</td>
<td>240</td>
<td>27 d</td>
</tr>
<tr>
<td>Cm 241</td>
<td>241</td>
<td>32.8 d</td>
</tr>
<tr>
<td>Cm 242</td>
<td>242</td>
<td>162.94 d</td>
</tr>
<tr>
<td>Cm 243</td>
<td>243</td>
<td>29.1 d</td>
</tr>
<tr>
<td>Cm 244</td>
<td>244</td>
<td>18.10 d</td>
</tr>
<tr>
<td>Cm 245</td>
<td>245</td>
<td>5800 a</td>
</tr>
<tr>
<td>Cm 246</td>
<td>246</td>
<td>5800 a</td>
</tr>
<tr>
<td>Cm 247</td>
<td>247</td>
<td>5800 a</td>
</tr>
<tr>
<td>Cm 248</td>
<td>248</td>
<td>5800 a</td>
</tr>
<tr>
<td>Cm 249</td>
<td>249</td>
<td>5800 a</td>
</tr>
<tr>
<td>Am 236</td>
<td>236</td>
<td>4.4 m</td>
</tr>
<tr>
<td>Am 237</td>
<td>237</td>
<td>73.0 m</td>
</tr>
<tr>
<td>Am 240</td>
<td>240</td>
<td>11.9 h</td>
</tr>
<tr>
<td>Am 241</td>
<td>241</td>
<td>50.8 h</td>
</tr>
<tr>
<td>Am 242</td>
<td>242</td>
<td>3730 a</td>
</tr>
<tr>
<td>Am 243</td>
<td>243</td>
<td>2.05 h</td>
</tr>
<tr>
<td>Am 244</td>
<td>244</td>
<td>2.05 h</td>
</tr>
<tr>
<td>Am 245</td>
<td>245</td>
<td>2.05 h</td>
</tr>
<tr>
<td>Am 246</td>
<td>246</td>
<td>2.05 h</td>
</tr>
<tr>
<td>Am 247</td>
<td>247</td>
<td>2.05 h</td>
</tr>
<tr>
<td>Pu 235</td>
<td>235</td>
<td>25.3 m</td>
</tr>
<tr>
<td>Pu 236</td>
<td>236</td>
<td>2.858 a</td>
</tr>
<tr>
<td>Pu 237</td>
<td>237</td>
<td>45.2 d</td>
</tr>
<tr>
<td>Pu 238</td>
<td>238</td>
<td>87.74 a</td>
</tr>
<tr>
<td>Pu 239</td>
<td>239</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 240</td>
<td>240</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 241</td>
<td>241</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 242</td>
<td>242</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 243</td>
<td>243</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 244</td>
<td>244</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 245</td>
<td>245</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 246</td>
<td>246</td>
<td>143 a</td>
</tr>
<tr>
<td>Pu 247</td>
<td>247</td>
<td>143 a</td>
</tr>
<tr>
<td>Np 234</td>
<td>234</td>
<td>4.4 d</td>
</tr>
<tr>
<td>Np 235</td>
<td>235</td>
<td>1559 a</td>
</tr>
<tr>
<td>Np 236</td>
<td>236</td>
<td>7.16 a</td>
</tr>
<tr>
<td>Np 237</td>
<td>237</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 238</td>
<td>238</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 239</td>
<td>239</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 240</td>
<td>240</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 241</td>
<td>241</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 242</td>
<td>242</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 243</td>
<td>243</td>
<td>140 a</td>
</tr>
<tr>
<td>Np 244</td>
<td>244</td>
<td>140 a</td>
</tr>
<tr>
<td>U 233</td>
<td>233</td>
<td>1.5921 a</td>
</tr>
<tr>
<td>U 234</td>
<td>234</td>
<td>0.0085 a</td>
</tr>
<tr>
<td>U 235</td>
<td>235</td>
<td>0.7200 a</td>
</tr>
<tr>
<td>U 236</td>
<td>236</td>
<td>0.675 a</td>
</tr>
<tr>
<td>U 237</td>
<td>237</td>
<td>0.675 a</td>
</tr>
<tr>
<td>U 238</td>
<td>238</td>
<td>2.117 a</td>
</tr>
<tr>
<td>U 239</td>
<td>239</td>
<td>2.117 a</td>
</tr>
<tr>
<td>U 240</td>
<td>240</td>
<td>1.14 a</td>
</tr>
</tbody>
</table>

Compound systems
Results: PFGS
Overview: studied systems so far

Previous work: (sf)
Results: PFGS
Overview: studied systems so far

<table>
<thead>
<tr>
<th>Element</th>
<th>Decay</th>
<th>Half-Life</th>
<th>Isomeric</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf 239</td>
<td>39 s</td>
<td>7.63</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cf 240</td>
<td>1.06 m</td>
<td>7.79</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 241</td>
<td>3.78 h</td>
<td>7.386</td>
<td>sf</td>
<td></td>
</tr>
<tr>
<td>Cf 242</td>
<td>3.68 h</td>
<td>7.177</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 243</td>
<td>10.7 h</td>
<td>7.209</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 244</td>
<td>19.4 h</td>
<td>7.174</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 245</td>
<td>14.3 h</td>
<td>6.705</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 246</td>
<td>3.1 h</td>
<td>6.393</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 247</td>
<td>31.7 h</td>
<td>5.257</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 248</td>
<td>335.8 h</td>
<td>5.706</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 249</td>
<td>350.6 h</td>
<td>5.895</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 250</td>
<td>367.8 h</td>
<td>5.564</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 251</td>
<td>385.5 h</td>
<td>5.002</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Cf 252</td>
<td>398.1 h</td>
<td>5.018</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Bk 238</td>
<td>3.27 h</td>
<td>2.133</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Bk 240</td>
<td>5 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 242</td>
<td>7 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 243</td>
<td>4.5 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 244</td>
<td>4.35 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 245</td>
<td>4.9 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 246</td>
<td>10 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 247</td>
<td>7.5 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 248</td>
<td>5.710 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Bk 249</td>
<td>5.002 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 238</td>
<td>2.4 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 239</td>
<td>3 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 240</td>
<td>27 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 241</td>
<td>32.8 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 242</td>
<td>162.9 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 243</td>
<td>18.0 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 244</td>
<td>120.0 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 245</td>
<td>3870 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 246</td>
<td>15.3 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 247</td>
<td>5.93 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 248</td>
<td>4.67 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 249</td>
<td>5.12 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 250</td>
<td>1.001 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cm 251</td>
<td>1.001 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 236</td>
<td>4.4 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 237</td>
<td>73.0 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 238</td>
<td>1.63 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 239</td>
<td>11.9 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 240</td>
<td>50.8 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 241</td>
<td>432.2 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 242</td>
<td>79.0 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 243</td>
<td>41.5 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 244</td>
<td>2.05 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 245</td>
<td>5.9 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 246</td>
<td>11.0 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Am 247</td>
<td>1.05 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 235</td>
<td>25.3 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 236</td>
<td>2.865 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 237</td>
<td>45.2 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 238</td>
<td>87.7 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 239</td>
<td>1.17 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 240</td>
<td>6563 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 241</td>
<td>14.35 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 242</td>
<td>4.956 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 243</td>
<td>10.5 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 244</td>
<td>10.5 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 245</td>
<td>1.05 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 246</td>
<td>1.085 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pu 247</td>
<td>2.27 h</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 234</td>
<td>4.4 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 235</td>
<td>5.07 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 236</td>
<td>11.4 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 237</td>
<td>19.8 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 238</td>
<td>13.9 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 239</td>
<td>17.3 d</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 240</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 241</td>
<td>4.956 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 242</td>
<td>1.39 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 243</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 244</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 245</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 246</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Np 247</td>
<td>1.85 m</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 233</td>
<td>1.592 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 234</td>
<td>0.0085 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 235</td>
<td>0.722 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 236</td>
<td>1860 y</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 237</td>
<td>1.086 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 238</td>
<td>5.04 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 239</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 240</td>
<td>4.956 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 241</td>
<td>1.39 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 242</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 243</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 244</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 245</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 246</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>U 247</td>
<td>1.85 a</td>
<td>2.133</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Previous work: (sf), (n_{th}, f)
Results: PFGS

Overview: studied systems so far

Previous work: (sf), (n_{th}, f), (n, f)

compound systems
Results: PFGS
Overview: studied systems so far

Previous work: (sf), (n\text{th}, f), (n, f), (d, pf)
Results: PFGS
Overview: studied systems so far

Previous work: (sf), (n,th, f), (n, f), (d, pf)
Results: PFGS

Overview: studied systems so far

<table>
<thead>
<tr>
<th>System</th>
<th>Decay</th>
<th>Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf 239</td>
<td>β^-</td>
<td>29.0 m</td>
</tr>
<tr>
<td>Cf 240</td>
<td>β^-</td>
<td>1.06 m</td>
</tr>
<tr>
<td>Cf 241</td>
<td>β^-</td>
<td>3.78 m</td>
</tr>
<tr>
<td>Cf 242</td>
<td>β^-</td>
<td>3.68 m</td>
</tr>
<tr>
<td>Cf 243</td>
<td>β^-</td>
<td>10.7 m</td>
</tr>
<tr>
<td>Cf 244</td>
<td>β^-</td>
<td>19.4 m</td>
</tr>
<tr>
<td>Cf 245</td>
<td>β^-</td>
<td>43.6 m</td>
</tr>
<tr>
<td>Cf 246</td>
<td>β^-</td>
<td>35.7 m</td>
</tr>
<tr>
<td>Cf 247</td>
<td>β^-</td>
<td>31.1 h</td>
</tr>
<tr>
<td>Cf 248</td>
<td>β^-</td>
<td>333.3 d</td>
</tr>
<tr>
<td>Cf 249</td>
<td>β^-</td>
<td>350.6 a</td>
</tr>
<tr>
<td>Cf 250</td>
<td>β^-</td>
<td>13.0 a</td>
</tr>
<tr>
<td>Bk 238</td>
<td>β^-</td>
<td>144 s</td>
</tr>
<tr>
<td>Bk 240</td>
<td>β^-</td>
<td>5 m</td>
</tr>
<tr>
<td>Bk 242</td>
<td>β^-</td>
<td>7 m</td>
</tr>
<tr>
<td>Bk 243</td>
<td>β^-</td>
<td>4.5 h</td>
</tr>
<tr>
<td>Bk 244</td>
<td>β^-</td>
<td>4.9 h</td>
</tr>
<tr>
<td>Bk 245</td>
<td>β^-</td>
<td>14.0 h</td>
</tr>
<tr>
<td>Bk 247</td>
<td>β^-</td>
<td>321.7 h</td>
</tr>
<tr>
<td>Bk 249</td>
<td>β^-</td>
<td>320 d</td>
</tr>
<tr>
<td>Bk 251</td>
<td>β^-</td>
<td>321.7 h</td>
</tr>
</tbody>
</table>

Previous work:
- (sf)
- (n_{th}, f)
- (n, f)
- (d, pf)

Recent experiments:
- (sf)

compound systems
Results: PFGS

Overview: studied systems so far

<table>
<thead>
<tr>
<th>Compound Systems</th>
<th>Previous work:</th>
<th>Recent experiments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(sf), (n,<sub>th</sub>, f)</td>
<td>(sf), (n,<sub>th</sub>, f)</td>
</tr>
<tr>
<td></td>
<td>(n, f), (d, pf)</td>
<td></td>
</tr>
</tbody>
</table>
Results: PFGS

Overview: studied systems so far

Previous work: (sf), (n, f), (n, th, f), (d, pf)

Recent experiments: (sf), (n, th, f)
Results: PFGS

Overview: studied systems so far

Previous work: (sf), (n_{th}, f), (n, f), (d, pf)

Recent experiments: (n_{th}, f)

Approved proposals: (n, f)
Results: PFGS
High precision γ-ray measurements

Excellent agreement between our experimental results and those from advanced model calculations *)

*) full Hauser-Feshbach Monte Carlo simulations by
• D. Regnier et al. (code: FIFRELIN, CEA Cadarache)
• P. Talou et al. (code: CGMF, LANL)
Results: PFGS
High precision γ-ray measurements

Examples for different compound systems
Results: PFGS
High precision γ-ray measurements

Examples for different compound systems

Similar low energy peak structures!
Results: PFGS
High precision γ-ray measurements

Similar low energy peak structures!

Due to de-excitation of the (same) heavy fragments?

(J. Wagemans)
Results: PFGS
High precision γ-ray measurements

Examples for different compound systems
Results: PFGS
High precision γ-ray measurements

Examples for different compound systems

PFGS characteristics:

$$
\overline{M}_\gamma = \int N_{\gamma}(E_\gamma)dE_\gamma
$$

$$
E_{\gamma,\text{tot}} = \int E_\gamma \times N_{\gamma}(E_\gamma)dE_\gamma
$$

$$
\epsilon_\gamma = \frac{E_{\gamma,\text{tot}}}{\overline{M}_\gamma}
$$
Results: PFGS
High precision γ-ray measurements

Examples for different compound systems

PFGS characteristics:

- Systematics!

$$\overline{M}_\gamma = \int N_\gamma(E_\gamma) dE_\gamma$$

$$E_{\gamma,\text{tot}} = \int E_\gamma \times N_\gamma(E_\gamma) dE_\gamma$$

$$\epsilon_\gamma = \frac{E_{\gamma,\text{tot}}}{\overline{M}_\gamma}$$
Results: A and Z dependence
Systematics of PFGS average total energy per fission

According to Nifenecker (1972) and Valentine (2001), revised 2017: A. Oberstedt et al., PRC 96, 034612
According to Nifenecker (1972) and Valentine (2001), revised 2017: A. Oberstedt et al., PRC 96, 034612

Results: A and Z dependence
Systematics of PFGS average total energy per fission

$[E_{y,\text{tot}} (\text{MeV}) - 4.0] / n_f$ only!

$10^{-5} Z^2 A^{1/2}$

$234, 236\text{U}$, $240, 242\text{Pu}$, 252Cf

Our work
New evaluation
Experiments ≤ 1973
Valentine 2001

Andreas Oberstedt
WONDER-2018, Aix-en-Provence (France), October 8 – 12, 2018
According to Nifenecker (1972) and Valentine (2001), revised 2017: A. Oberstedt et al., PRC 96, 034612

Results: A and Z dependence
Systematics of PFGS average total energy per fission

\[\frac{[E_{y,\text{tot}} (\text{MeV}) - 4.0]}{n} \]

\[10^{-5} \cdot Z^2 \cdot A^{1/2} \]

\((n_{\text{th},f}) \) and \((sf) \) only!
Results: A and Z dependence
Systematics of PFGS average total energy per fission

Allows interpolation to unmeasured fissioning systems, here $^{238}\text{U}(n_{\text{th}},f)$: A. Oberstedt et al., PRC 96, 034612

$E_{y,\text{tot}}$ (MeV) - 4.0 vs ν_n vs $10^{-5}Z^2A^{1/2}$

(n$_{\text{th}},f$) and (sf) only!
Results: energy dependence
Average total energy per fission
From thermal to fast neutron-induced fission

- Tudora: Point-by-Point model
- CEA DAM/DIF & LICORNE: preliminary experimental results
Results: energy dependence
Average γ-ray multiplicity
From thermal to fast neutron-induced fission

- CEA DAM/DIF & LICORNE: preliminary experimental results

A. Oberstedt et al., PRC 96, 034612 (2017)
Results: energy dependence
Mean energy per photon

From thermal to fast neutron-induced fission

- CEA DAM/DIF & LICORNE: preliminary experimental results

A. Oberstedt et al., PRC 96, 034612 (2017)
Experimental setup
Frisch grid ionization chamber + LaBr$_3$ detector

Correlations between fission fragments and γ-rays
Results: angular distribution
Prompt fission γ-ray multipolarities

$W(\theta) = \frac{I_{\gamma}(\theta)}{A_0} = A_0 \left[1 + \left\{ \frac{A_2}{A_0} \right\} P_2(\cos\theta) + \left\{ \frac{A_4}{A_0} \right\} P_4(\cos\theta) \right]$
Results: angular distribution

Prompt fission γ-ray multipolarities

Fit result: $\{A_2/A_0\} = 0.13 \pm 0.03$
Results: angular distribution

Angular Distributions in 109Te

- Typically A_4/A_0 is close to zero
- And $A_2/A_0 \sim +0.3$ for a pure quadrupole ($\Delta I = 2$) transition
- Or $A_2/A_0 \sim -0.3$ for a pure dipole ($\Delta I = 1$) transition
Results: angular distribution
Prompt fission γ-ray multipolarities

Theory: $\{A_2/A_0\} = +0.3$ for quadrupole radiation
$\{A_2/A_0\} = -0.3$ for dipole radiation

Statistical + systematic uncertainties!
Results: angular distribution
Comparison with previous measurements *)

\[W(\theta) = \frac{I(\theta)}{A_0} \]

\[E_\gamma = 0.1 - 7.2 \text{ MeV} \]

*) Hoffman, Phys. Rev. 133 (1964)
Results: angular distribution
Comparison with previous measurements *)

Good agreement in dominating E2 character!

*) Hoffman, Phys. Rev. 133 (1964)

\[E_\gamma = 0.1 - 7.2 \text{ MeV} \]
Results: PFGS
Angular distributions for 500 keV energy bins

$\gamma(E, \theta)$

E_γ (MeV)

$\cos(\theta)$

$^{252}\text{Cf}(sf)$
Results: PFGS

Angular distributions for 500 keV energy bins

γ-ray angular distribution

$M_{\gamma} (E, \theta)$

E_γ (MeV)

$\cos(\theta)$

252Cf(sf)

\rightarrow consider energy range $E_\gamma = 0.1 - 1.5$ MeV
Results: angular distribution
Comparison with previous measurements

For $E_\gamma = 0.1 - 1.5$ MeV:
Results: angular distribution
Comparison with previous measurements

\[W(\theta) = \frac{I_\gamma(\theta)}{A_0} \]

\[^{252}\text{Cf}(\text{sf}) \]

For \(E_\gamma = 0.1 - 1.5 \text{ MeV} \):
\(\rightarrow \) differences!

\(\text{*) Kopach et al., Phys. Rev. Lett. 82 (1999) } \)
Results: PFGS
Angular distributions for 500 keV energy bins

$252\text{Cf}(sf)$

\rightarrow again: fit of Legendre polynomials

\rightarrow decomposition of multipolarities $L = 1$ and 2
Results: PFGS
Decomposition of multipolarities

\[252 \text{Cf(sf)} \]

\[\text{Photons} / (\text{MeV fission}) \]

\[\text{E}_\gamma (\text{MeV}) \]

\[\cdot \text{This work} \]
\[\text{binned} \]
\[L = 1 \]
\[L = 2 \]

\[\rightarrow \text{multipolarity-dependent spectra} \]
\[\rightarrow \text{multipolarity-dependent PFGS characteristics} \]
Results: PFGS
Comparison with FIFRELIN calculations *)

Good agreement between integral spectra!

*) A. Chebboubi, priv. comm.
Results: PFGS
Comparison with FIFRELIN calculations *)

Good agreement between integral spectra!
But FIFRELIN also provides multipolarity-dependent PFGS.

*) A. Chebboubi, priv. comm.
Results: PFGS
Comparison with FIFRELIN calculations *)

From our observations: unassigned transitions → L = 2,
L = 2 + unassigned → L = 2'.

*) A. Chebboubi, priv. comm.

Results: angular distribution
Comparison with FIFRELIN calculations *)

<table>
<thead>
<tr>
<th>252Cf(sf)</th>
<th>Experiment (this work)</th>
<th>Calculations (FIFRELIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{M}_γ</td>
<td>8.28 ± 0.51</td>
<td>8.28 (adjusted)</td>
</tr>
<tr>
<td>\overline{M}_γ (L = 1)</td>
<td>2.40 (29 %)</td>
<td>3.20 (39 %)</td>
</tr>
<tr>
<td>\overline{M}_γ (L = 2')</td>
<td>5.88 (71 %)</td>
<td>5.08 (61 %)</td>
</tr>
<tr>
<td>\overline{M}_γ (unassign.)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>\overline{E}_γ</td>
<td>0.81 ± 0.10 (MeV)</td>
<td>0.76 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (L = 1)</td>
<td>0.88 (MeV)</td>
<td>0.94 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (L = 2')</td>
<td>0.79 (MeV)</td>
<td>0.65 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (unassign.)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>\overline{E}_γ</td>
<td>6.75 ± 0.76 (MeV)</td>
<td>6.30 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (L = 1)</td>
<td>2.11 (MeV)</td>
<td>3.00 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (L = 2')</td>
<td>4.64 (MeV)</td>
<td>3.30 (MeV)</td>
</tr>
<tr>
<td>\overline{E}_γ (unassign.)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*) A. Chebboubi, priv. comm.
Summary I

- High precision PFGS measurements → reference for model calculations – e.g.: $^{252}\text{Cf}(sf)$
Summary I
Sequential emission of neutrons and γ-rays

Entry region for primary fragments

Entry region for secondary fragments

$^{252}\text{Cf}(sf)$

γ-rays

(dipole transitions)

(discrete levels)

(quadrupole transitions)

Statistical γ-rays
Summary I

Sequential emission of neutrons and γ-rays

$^{252}\text{Cf}(sf)$

Entry region for primary fragments

Entry region for secondary fragments

$M_\gamma \approx 8.3$

$\Delta E_\gamma \approx 6.7$ MeV

S_n

E^*

$E(\text{Yrast})$

E^*_{lim}

Statistical γ-rays (dipole transitions)

Discrete levels (quadrupole transitions)
Summary I

- High precision PFGS measurements → reference for model calculations – e.g.: 252Cf(sf)
- Revised **systematics** for spontaneous and thermal neutron-induced fission
- Predictions of PFGS characteristics for fast neutron-induced fission → rather good agreement
- Measured γ-ray **angular distribution** from 252Cf(sf) → dominant E2 character, in good agreement with previous observations + FIFRELIN calculations
- Preliminary results: \(<M_{\gamma,L=1}> \approx 2.4\) and \(<M_{\gamma,L=2}> \approx 5.9\), as well as \(<E_{\gamma,\text{tot}(L=1)}> \approx 2.1\ \text{MeV}\) and \(<E_{\gamma,\text{tot}(L=2)}> \approx 4.6\ \text{MeV}\)
Summary I
Sequential emission of neutrons and γ-rays

252\text{Cf}(sf)

Entry region for primary fragments

Entry region for secondary fragments

$\Delta E_\gamma \approx 2.1$ MeV
$\Delta E_\gamma \approx 4.6$ MeV

preliminary!

Sequential emission of neutrons and γ-rays

γ-rays

$dipole transitions$

$quadrupole transitions$

$M_\gamma \approx 2.4$

$M_\gamma \approx 5.9$

statistical γ-rays

discrete levels

$prior$
Summary I
Sequential emission of neutrons and γ-rays

$^{252}\text{Cf}(\text{sf})$

Sequential emission of neutrons and γ-rays

$S_n/2$

E^*

Entry region for primary fragments

Entry region for secondary fragments

γ

γ

n

n

n

$\Delta E_\gamma \approx 2.1 \text{ MeV}$

$\Delta E_\gamma \approx 4.6 \text{ MeV}$

$M_\gamma \approx 2.4$

$M_\gamma \approx 5.9$

Statistical γ-rays (dipole transitions)

Discrete levels (quadrupole transitions)

Preliminary!
Summary I

✚ High precision PFGS measurements → reference for model calculations – e.g.: 252Cf(sf)

✚ Revised systematics for spontaneous and thermal neutron-induced fission

✚ Predictions of PFGS characteristics for fast neutron-induced fission → rather good agreement

✚ Measured γ-ray angular distribution from 252Cf(sf) → dominant E2 character, in good agreement with previous observations + FIFRELIN calculations

✚ Preliminary results: $\langle M_{\gamma, L=1} \rangle \approx 2.4$ and $\langle M_{\gamma, L=2} \rangle \approx 5.9$, as well as $\langle E_{\gamma, \text{tot}(L=1)} \rangle \approx 2.1$ MeV and $\langle E_{\gamma, \text{tot}(L=2)} \rangle \approx 4.6$ MeV

✚ Average spin of fission fragments: $\Delta J \approx 14 \hbar$
Summary I

Sequential emission of neutrons and γ-rays

252\text{Cf}(sf)

Entry region for primary fragments

Entry region for secondary fragments

\Delta J \approx 14 \hbar

S_{n}/2

M_{\gamma} \approx 2.4

\Delta E_{\gamma} \approx 2.1 \text{ MeV}

statistical γ-rays (dipole transitions)

discrete levels (quadrupole transitions)

\Delta J \approx 14 \hbar

M_{\gamma} \approx 5.9

\Delta E_{\gamma} \approx 4.6 \text{ MeV}

preliminary!
Summary II

But:

- Discrepancies compared to Kopach et al., PRL 88 (1999)
- From angular distribution:
 \[<S_n> = 2 \times <E_{\gamma,\text{tot}(L=1)}> \approx 4.2 \text{ MeV}, \text{ while weighted with fission fragment distribution: } <S_n> \approx 5.9 \text{ MeV}! \]
 (fission fragment distributions from GEF, \(S_n(Z,A) \) according to Vogt et al., PLB 517 (2001))
- High energy quadrupole \(\gamma \) rays (of several MeV) observed, whose origin cannot be explained with rotational states

• To be continued ...
Outlook I

• New results from recent measurements
• New experiments are approved and scheduled
• Study of PFGS characteristics depending on fission fragment mass
• Study of entrance channel effects
 • \((n,f)\) vs. \((d,pf)\)
 • \((p,p’f)\) vs. \((\gamma,f)\)
 • etc.
Outlook I

• New results from recent measurements
• New experiments are approved and scheduled
• Study of PFGS characteristics depending on fission fragment mass
• Study of entrance channel effects
 • (n,f) vs. (d,pf)
 • (p,p’f) vs. (γ,f)
 • etc.
• New instruments (talk by S. Oberstedt)
Outlook I

• New results from recent measurements
• New experiments are approved and scheduled
• Study of PFGS characteristics depending on fission fragment mass
• Study of entrance channel effects
 • \((n,f)\) vs. \((d,pf)\)
 • \((p,p’f)\) vs. \((\gamma,f)\)
 • etc.
• New instruments (talk by S. Oberstedt)
• And last but not least:
 → Photo-fission at ELI-NP !
Outlook II
ELI-NP and further photo-fission physics goals

ELIADDE

8 CLOVER Ge detectors + 4 large-volume LaBr₃ detectors (3” x 3”)

ELIGANT

17 LaBr₃ + 17 CeBr₃ detectors (3” x 3”) and 33 liquid + 29 ⁶Li glass scintillation detectors
Outlook II
ELI-NP and further photo-fission physics goals

New position-sensitive twin FGIC (TU Darmstadt)
+
ELIADE
8 CLOVER Ge detectors + 4 large-volume LaBr$_3$ detectors (3” x 3”)
+
ELIGANT
17 LaBr$_3$ + 17 CeBr$_3$ detectors (3” x 3”) and 33 liquid + 29 6Li glass scintillation detectors
Outlook II

ELI-NP and further photo-fission physics goals

New position-sensitive twin FGIC (TU Darmstadt)

- ELIADE
- ELIGANT

(courtesy M. Peck)

- Study of the fission fragment de-excitation process
 - measurement of fission fragments, γ rays and neutrons
 - correlations!
The collaborators

PhD students
Thank you!