

Simulation of Correlated Fission Data

Patrick Talou

X Computational Physics Division, LANL

WONDER 2018

Aix-en-Provence, France – Oct. 8-12, 2018

UNCLASSIFIED

The nuclear fission process is complex and rich

Fission Yields, prompt fission neutrons (PFN) and γ rays (PFG) are all **correlated**.

Event-by-Event Monte Carlo Simulations of the Decay of Fission Fragments

The **CGMF** code follows the sequential emissions of prompt neutrons and γ rays from the excited primary fission fragments, event-by-event. Similar codes (FREYA, FIFRELIN, GEF) are being developed as well.

Review paper & Integration into MCNP-6.2: Talou, Vogt, Randrup, Rising, Pozzi et al, EPJ A 54, 9 (2018)

Complete reconstruction of (post-scission) fission events

- Hauser-Feshbach statistical theory of nuclear reactions
 - Neutron and γ-ray emission probabilities calculated and sampled at each stage of the decay
 - Weisskopf-Ewing approximation
 → no n-γ competition
 → no (J,π) conservation
- CGMF: Monte Carlo implementation of Hauser-Feshbach deexcitation in FF
- Full kinematic reconstruction of fission fragments, neutrons and gammas emitted

$$A, Z, KE, U_i, J_i, \pi_i, \nu_n, \nu_{\gamma}$$
 $\vec{p}_F(\text{pre}), \vec{p}_F(\text{post}) \text{ in LAB frame}$
 $\{\vec{v}_{n_i}, E_{n_i}\}_{i=1,\nu_n}, \{\vec{v}_{\gamma_j}, E_{\gamma_j}\}_{j=1,\nu_{\gamma}}$

Prompt Fission Neutrons & γ Rays

- Until recently, models were limited to average observables only
- We can now model prompt neutrons and γ rays on an eventby-event basis and infer:
 - Multiplicity Distributions: P(v), P(N_v)
 - Angular Distributions: Θ_{n-n} , Θ_{n-FF}
 - **Exclusive data:** $\phi(\varepsilon_n|\nu=3)$, $\phi(\varepsilon_\nu|\gamma-\gamma-\gamma)$, ...
 - Correlations: n-n, n-γ, γ-γ, n-γ-FF
 - Time-dependent emissions: N_ν(t)
 - Correlations with emitting fission fragments (A,Z,KE,J)
 - ...

Many important physics input needed for neutron-rich fission fragments

- Global optical model calculations
- γ -ray strength functions for E1, M1 and E2 transitions
- Nuclear structure of neutron-rich nuclei
- Level densities

And intriguing fission physics questions

- Excitation energy sorting at scission? → P(v|A,TKE;E_{inc})
- Pre-fission neutron emission? "scission neutrons", pre-scission neutrons, multi-chance fission, pre-equilibrium neutrons
- Relations between fission cross sections, fission fragment angular distributions and prompt fission data? → fission paths/channels/barriers

Specific Studies

- 1. Role of fission fragment isomers
- 2. Influence of the entrance channel on γ -ray observables
- Theoretical calculations of primary fission fragments for predicting prompt fission data
- 4. From γ -ray intensities to Independent Fission Yields (IFY)
- 5. Sensitivity & Optimization Studies (with FREYA team)
- 6. Integration into transport simulations with MCNP6.2
- 7. A consistent model for post-scission observables (see Okumura's talk)

1 – Fission Fragment Isomers

Populating ns to sec isomers in fission fragments delays the emission of prompt γ rays.

Talou et al, PRC 94, 064613 (2016)

More recent results from DANCE+NEUANCE

G. Rusev, I. Stetcu

Analysis in progress

Experimental conditions: E_n =0.6 MeV, Δt =50 ns - 2 μs

2 - Entrance Channel

Chyzh, Jaffke, Wu et al., Phys. Lett. B 782, 652 (2018)

 DANCE measurements of prompt fission γ spectra show differences between spontaneous fission and neutron-induced fission reactions

Theory explains this effect (fission yields, angular momentum) only qualitatively

3 - Model-calculated FY for CGMF

- Use macroscopic-microscopic description of nuclear shapes
 Möller and Ichikawa, EPJ A 51, 173 (2015)
- Brownian motion on potential energy surface Randrup and Möller, PRL 106, 132503 (2011)
- Langevin simulations
 Sierk, PRC 96, 034603 (2017)
 Usang, Ivanyuk, Ishizuka, Chiba, PRC 94, 044602 (2016)

P. Möller, C. Schmitt, EPJ A 53, 7 (2017)

Calculations for ²³⁵U and ²³⁹Pu thermal neutron-induced fissions

Jaffke, Möller, Talou, Sierk, Phys. Rev. C 97, 034608 (2018)

Thermal neutron-induced fission of ²³⁵U

One can assess the quality of the calculated prompt fission data starting from calculated FY

Fotiades, Jaffke et al. (submitted to PRC)

- Several assumptions that require simulations
 - How many γ lines are in the energy window considered?
 - How much of the "flux" passes through 2⁺→0⁺ and 4⁺→2⁺ transitions?
 - Corrections when performing $\gamma \gamma$ or $\gamma \gamma \gamma$ coincidences (multiplicity)

- CGMF Developments
 - Stetcu, Jaffke, Kawano, Lovell
- Fission Fragment Isomers
 - Stetcu, Rusev, Lestone, McKigney, Chadwick
- Entrance Channel
 - Chyzh, Wu, Jaffke, et al.
- Macro-micro fission yields
 - Jaffke, Möller, Sierk
- γ rays to FPY
 - Fotiades, Devlin, Jaffke

