Constraining Fission Yields Using Machine Learning

Amy E. Lovell

In collaboration with: Arvind Mohan, Patrick Talou, and Michael Chertkov

WONDER 2018, Aix-en-Provence
October 11, 2018
Outline

• Introduction and motivation
• Brosa yield model
 – Parameter optimization for $^{252}\text{Cf} \ Y(A,TKE)$
• Machine Learning methods
 – Probabilistic approach for Neural Networks
 – Learning mass yields for spontaneous fission
• Conclusion
• Future work
Consistency and Correlations

A recent study showed that there are inconsistencies within evaluations

P. Jaffke, NSE 190, 258 (2018)

With tools like CGMF, we can form a consistent picture of fission – post-scission to prompt fragment emissions

<table>
<thead>
<tr>
<th></th>
<th>JEFF-3.1.1^{a}</th>
<th>JENDL-4.0u2^{b}</th>
<th>ENDF/B-VII.1^{c}</th>
<th>Evaluation or Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>237Np(n_{th},γ)</td>
<td>2.74 ± 0.06</td>
<td>1.93 ± 0.07</td>
<td>1.94 ± 0.07</td>
<td>2.52 ± 0.016 (Ref. 53)</td>
</tr>
<tr>
<td>238Np(n_{th},γ)</td>
<td>2.87 ± 0.09</td>
<td>2.37 ± 0.09</td>
<td>2.37 ± 0.09</td>
<td>2.77 ± 0.14 (Ref. 55)</td>
</tr>
<tr>
<td>238Pu(n_{th},γ)</td>
<td>3.09 ± 0.10</td>
<td>1.93 ± 0.07</td>
<td>1.95 ± 0.07</td>
<td>2.88 ± 0.14 (Ref. 55)</td>
</tr>
<tr>
<td>241Am(n_{th},γ)</td>
<td>3.35 ± 0.08</td>
<td>2.69 ± 0.10</td>
<td>2.71 ± 0.10</td>
<td>3.21 ± 0.032 (Ref. 53)</td>
</tr>
<tr>
<td>243Cm(n_{th},γ)</td>
<td>3.76 ± 0.09</td>
<td>2.75 ± 0.10</td>
<td>2.78 ± 0.10</td>
<td>3.43 ± 0.047 (Ref. 53)</td>
</tr>
<tr>
<td>244Cm(n_{th},γ)</td>
<td>4.04 ± 0.12</td>
<td>3.61 ± 0.13</td>
<td>3.64 ± 0.13</td>
<td>3.33 ± 0.17 (Ref. 55)</td>
</tr>
<tr>
<td>245Cm(n_{th},γ)</td>
<td>4.31 ± 0.09</td>
<td>3.12 ± 0.11</td>
<td>3.14 ± 0.10</td>
<td>3.72 ± 0.004 (Ref. 53)</td>
</tr>
</tbody>
</table>

UNCLASSIFIED
CGMF

(Ac, Zc, En)

Hauser-Feschbach statistical decay

Compound nucleus \(\Rightarrow \) yields \(\Rightarrow \) prompt fission observables

P. Talou, et. al., Comp. Phys. Comm. in preparation
Fundamental Fission Information can be Included

Brownian Motion: Mass and charge

Langevin: Also give TKE
Brosa Modes for $Y(A, TKE)$

$Y(A, TKE) = \sum_m Y_m(A) Y_m(TKE | A)$

$Y_m(A) = \frac{w_m}{\sqrt{8\pi\sigma^2_m}} \left[\exp \left(-\frac{(A - \bar{A}_m)^2}{2\sigma^2_m} \right) + \exp \left(-\frac{(A - A_{cn} + \bar{A}_m)^2}{2\sigma^2_m} \right) \right]$

$Y_m(TKE | A) = \left(\frac{200}{TKE} \right)^2 \exp \left(2\frac{d^\text{max}_m - d^\text{min}_m}{d^\text{dec}_m} - \frac{T_m(A)}{d^\text{dec}_m} - \frac{(d^\text{max}_m - d^\text{min}_m)^2}{T_m(A)d^\text{dec}_m} \right)$

$T_m(A) = \frac{(Z_{cn}/A_{cn})^2 (A_{cn} - A) A e^2}{TKE} - d^\text{min}_m$

6 free parameters per mode:

- w – weight of mode
- \bar{A} – mean heavy mass
- σ – width of mass distribution
- d^max – most probable fission semilength
- d^min – semilength below which fission will not occur
- d^dec – length scale for exponential decay

Previous work related to Brosa modes

A. Gook, et. al., PRC 90, 064611 (2014)

$^{252}\text{Cf}(sf)$

$\bar{v} = 3.82$

$\overline{TKE} = 184.91\ MeV$
In this context, the parameters are those of the Brosa modes, and we calculate the χ^2 with respect to experimental $Y(A, TKE)$.
Three Brosa Modes: S2, S1, SL

Data: A. Gook, et. al., PRC 90, 064611 (2014)
Austin, et. al., Master’s Thesis (2017)
Including the S3 Mode

Data: A. Gook, et. al., PRC 90, 064611 (2014)
Including the SX mode

The SX mode is orders of magnitude lower than everything else, it has no noticeable effect

There is still a tail of the TKE distribution that we are not reproducing

Data: A. Gook, et. al., PRC 90, 064611 (2014)
Comparison of Fission Observables

<table>
<thead>
<tr>
<th>Calculation</th>
<th><TKE></th>
<th>σ_{TKE}</th>
<th><ν></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default CGMF</td>
<td>185.77</td>
<td>8.966</td>
<td>3.758</td>
</tr>
<tr>
<td>S2, S1, and SL</td>
<td>184.46</td>
<td>10.20</td>
<td>3.956</td>
</tr>
<tr>
<td>Including S3</td>
<td>184.16</td>
<td>10.74</td>
<td>3.946</td>
</tr>
<tr>
<td>Including SX</td>
<td>184.27</td>
<td>10.71</td>
<td>3.948</td>
</tr>
<tr>
<td>Experiment</td>
<td>184.1</td>
<td>10.85</td>
<td>3.76</td>
</tr>
</tbody>
</table>

It is important to be able to reproduce <ν> since this value is very well known; the discrepancy is most likely due to the value of <TKE>.

Experimental values from:
Constraining with $Y(A,TKE)$ in CGMF

- $\bar{\nu}(Data) = 3.948$
- $\bar{TKE}(Data) = 184.27\text{ MeV}$
- $\sigma_{TKE}(Data) = 10.71\text{ MeV}$

- $\bar{\nu}(CGMF) = 3.767$
- $\bar{TKE}(CGMF) = 185.85\text{ MeV}$
- $\sigma_{TKE}(CGMF) = 8.85\text{ MeV}$
Sensitivity Analysis

\[S = \frac{x \frac{\partial R}{\partial x}}{R} \]

\(<\text{TKE}>, \sigma_{\text{TKE}}, <\nu>, <\nu(\nu-1)>, <\nu(\nu-1)(\nu-2)>, <\nu_1>, <\nu_1(\nu_1-1)>, <\nu_1(\nu_1-1)(\nu_1-2)>\)
Machine Learning Goals

- The problem has been broken down into two parts:
 - constructing the complete yields in A, Z, and KE
 - calculating the prompt neutron and gamma observables
- For the first, we want to construct yields based on experimental data
 - If this is done systematically, we have a way to fill in missing information from the table and make predictions for any fissioning system
- For the second, we want to calculate prompt neutron and gamma observables given a fissioning system
 - This will require a significant amount of data to capture the complex correlations between these observables
Neural Networks

- A neural network attempts to approximate a nonlinear mapping of $y = f(x)$ using large scale, data-driven optimization over hundreds/thousands/millions of parameters.

Credit: https://hackernoon.com/artificial-neural-network-a843ff870338
Probabilistic Approach to Neural Networks

• Weights w_i and b_i for a standard NN are optimized based on Maximum Likelihood Estimation (MLE) → does not properly account for uncertainties in data (assumes all output are weighted equally).
• Our data – fission yields – and nuclear data in general consists of probability distributions and uncertainties (from experiment or model)
• **Standard NN approach:** Given A, predict a single value for $Y(A)$. However, data contains true $Y(A)$ mixed with an error ϵ → direct prediction can be erroneous/misleading.
• If the data has uncertainty, our predictions should also have uncertainty (and confidence bounds) → probabilistic predictions are necessary.
• **Our approach:** Mixture Density Networks (MDN) → predicts $Y(A)$ as a mixture of Gaussians.

\[
Y(A) = \alpha_1 G(\mu_1, \sigma_1) + \alpha_2 G(\mu_2, \sigma_2) + \ldots + \alpha_i G(\mu_i, \sigma_i)
\]

Parameters μ_i, σ_i of the Gaussians G and their combination coefficients α_i are predicted by the MDN → not the absolute values of $Y(A)$. User has control over number of Gaussians in the mixture.
Task 1: MDN to reproduce \(^{252}\text{Cf}\) yields

20 training data sets were simulated from CGMF

MDN can capture features of the data and samples multiple values for a single data point = can be used to understand confidence intervals in predictions and outliers.
Task 2: MDN Transfer learning from Cf \rightarrow Pu

- We use just 3% of the data to train **MDN with Transfer learning**.
- **Methodology:** In 3 layer network, we use weights from the Cf-252 trained. Model in the 1st layer and train only the other 2 layers with the sparse data.

Full dataset

Transfer Learning - Predicted dense dataset
Structural similarities in Cf makes learning faster + interpolate gaps in sparse data!

3% sparse dataset

Direct Learning - Predicted dense dataset
Network struggles to learn full Pu distribution without information from Cf
Variance in MDN Predictions

- Each point in the predicted domain can be analyzed for MDN's confidence in prediction.
- Further processing of these variances can estimate overall uncertainty in predictions.
- Acknowledges there are uncertainties in input data.
Summary and Conclusions

- We have started using the Brosa parameterization of $Y(A,\text{TKE})$ for spontaneous fission of ^{252}Cf.
- Markov Chain Monte Carlo has been successfully used to optimize the parameters of this model.
- The response of several observables to changes in these parameters have been calculated in preparation for a global optimization.
- Probabilistic approach to machine learning along with transfer learning show considerable promise in building efficient and fast emulators for fission yields.
Future Work

• The Brosa modes are being implemented into CGMF in order to optimize the parameters with respect to the prompt neutron and gamma observables.

• We are working with others at LANL to use more sophisticated optimization techniques to constrain these parameters.

• We are working on stability issues in MDN training, allowing us to study its characteristics and add physics based constraints (symmetry, normalization, etc.).

• Use MDN with transfer learning for to fill in missing nuclear data across isotopes and energies.
Acknowledgements

• Ionel Stetcu, Samuel Jones, Harsha Nagarajan, LANL

• NNSA

• Center for Non-Linear Studies