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Outline

* |ntroduction and motivation

* Brosa yield model
— Parameter optimization for 2°°Cf Y (A, TKE)

* Machine Learning methods

— Probabilistic approach for Neural Networks
— Learning mass yields for spontaneous fission

« Conclusion

 Future work
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Consistency and Correlations

With tools like CGMF, we can form a
consistent picture of fission — post-
scission to prompt fragment emissions

A recent study showed that there are
inconsistencies within evaluations

P. Jaffke, NSE 190, 258 (2018)

Evaluation or
JEFF-3.1.1° JENDL-4.0u2" ENDF/B-VILI® Experiment
3'37'Np(n1h, f) 2.74 = 0.06 1.93 £0.07 1.94 £ 0.07 2.52 £ 0.016 (Ref. 53)
2-"'-‘I\I;:a(n]-, f) 2.87 =0.09 2.37£0.09 2.37+0.09 2.77 £ 0.14 (Ref. 55)
23E‘Pu(m, f) 3.09 =0.10 1.93 £0.07 1.95 £0.07 2.88 £ 0.14 (Ref. 55)
#1 Am(ny, f) 3.35 £ 0.08 2.69 £ 0.10 2.71 £0.10 3.21 +0.032 (Ref. 53)
MCm(mh, f) 3.76 = 0.09 2.75+£0.10 278 £0.10 3.43 £0.047 (Ref. 53)
#4Cm(n;, I) 4.04 =0.12 3.61 x£0.13 3.64 £0.13 3.33 £ 0.17 (Ref. 55)
#3Cm(ny, f) 4.31 =0.09 3.12+0.11 3.14 £ 0.10 3.72 £ 0.004 (Ref. 53)
[63] S.F. Mughabghab, Atlas of Nuclear Resonances: Resonance [55] R. Howerton, NSE 62, 438 (1977)

Parameters and Thermal Cross section Z=1-100 (2006)
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Fundamental Fission Information can be
Included P. Moller and T.

Ichikawa, Eur. Phys.
J.A 51,173 (2015)

1(']"'l""l""l''I"'I""'I""I""l' - :
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Brosa Modes for Y(A,TKE)

6 free parameters per mode:

Y(A,TKE) =) Y, (A)Y,(TKE|A) w — weight of mode
A — mean heavy mass

o — width of mass

B m (A—A,,)? (A — Aon + Arn)? distribution
Ymld) = 8mwo?, [exp ( 202 +exp 252

m m

d™%* — most probable

fission semilength

200 \ ° dmar _ gmin T (A)  (dmer — gmin)2\ dmin — semilength below

m) eXp (2 Jdec ~Jdec T (A)ddec ) which fission will not occur
m " " " d?ec — length scale for

exponential decay

Y,,(TKE|A) = (

(ch/Acn)2 (Acn o A)A€2
T'KE

mn
_ dm

T’m(A) —

U. Brosa, et. al., Phys. Rep. 197, 167 (1990)
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iIous work related to Brosa modes
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A. Gook, et. al., PRC 90, 064611 (2014) 10>

Parameterization from the
Master’s thesis of A. Carter,
University of Michigan,
Sensitivity Analysis and
Optimization of Cf-252(sf)
Observables in CGMF
LA-UR-17-31022

v = 3.82
TKE = 184.91 MeV
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Markov Chain Monte Carlo
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In this context, the parameters are
those of the Brosa modes, and we
7

X|+4

R <

calculate the y?with respect to ®) Xi+3
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Three Brosa Modes: S2, S1, SL

Data: A. Gook, et. al., PRC 90, 064611 (2014)
Austin, et. al., Master’s Thesis (2017)
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Including the S3 Mode
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Data: A. Gook, et. al., PRC 90, 064611 (2014)
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Including the SX mode

102
< 103
>
104
10—5 4 = * 10—8 ' '
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A TKE
The SX mode is orders of magnitude lower than There is still a tail of the TKE distribution that we
everything else, it has no noticeable effect are not reproducing

Data: A. Gook, et. al., PRC 90, 064611 (2014)
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Comparison of Fission Observables

Calculation <TKE>

Default CGMF 185.77 8.966 3.758 Itis important to be able to
reproduce <v> since this
82, S1 : and SL 184.46 10.20 3.956 value is very well known;
Including S3 184.16 10.74 3.946 the discrepancy Is most
_ likely due to the value of
Including SX 184.27 10.71 3.948 <TKE>
Experiment 184.1 10.85 3.76

Experimental values from:
A. Carlson, et. al., Nucl. Data Sheets 148, 143 (2018)
C. Wagemans, The Nuclear Fission Process, CRC-Press (09 1991)

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Slide 13

Constraining with Y(A,TKE) in CGMF

Gook
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Sensitivity Analysis
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Machine Learning Goals

 The problem has been broken down into two parts:
— constructing the complete yields in A, Z, and KE
— calculating the prompt neutron and gamma observables
* For the first, we want to construct yields based on experimental

data

— If this is done systematically, we have a way to fill in missing information from
the table and make predictions for any fissioning system

* Forthe second, we want to calculate prompt neutron and gamma
observables given a fissioning system

— This will require a significant amount of data to capture the complex correlations
between these observables
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Neural Networks

* Aneural network attempts to approximate a nonlinear mapping of y = f(x) using large
scale, data-driven optimization over hundreds/thousands/millions of parameters

Input Artificial neuron
LS K.

l
X

x Sy fF
Xr Lr lb1
S W )

_______________________

neuron

Credit: https://hackernoon.com/artificial-neural-network-a84 3ff8 70338

Input level
I hidden
level
k" hidden
level
Output level
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Probabilistic Approach to Neural
Networks

» Weights w; and b; for a standard NN are optimized based on Maximum Likelihood Estimation (MLE) -
does not properly account for uncertainties in data (assumes all output are weighted equally).

» Our data — fission yields — and nuclear data in general consists of probability distributions and
uncertainties (from experiment or model)

« Standard NN approach: Given A, predict a single value for Y(A). However, data contains true Y(A) mixed
with an error € - direct prediction can be erroneous/misleading.

 If the data has uncertainty, our predictions should also have uncertainty (and confidence bounds) >
probabilistic predictions are necessary.

» Our approach: Mixture Density Networks (MDN) = predicts Y(A) as a mixture of Gaussians.

Y(A) = a1G(uq, 09) + Gz, 07) + ... + a;G(u;, 07)

Parameters u;, g; of the Gaussians G and their combination coefficients «; are predicted by the MDN -
not the absolute values of Y(A). User has control over number of Gaussians in the mixture.
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Task 1: MDN to reproduce 2°2Cf yields

20 training data . ) 20
sets were

simulated from . 15
CGMF
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Training dataset 252Cf MDN Prediction

MDN can capture features of the data and samples multiple values for a single data
point = can be used to understand confidence intervals in predictions and outliers.

UNCLASSIFIED /%37

 Los Alamos
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA NATIONAL LABORATORY




Slide 19

Task 2: MDN Transfer learning from Cf - Pu

* We use just 3 % of the data to train MDN with Transfer learning.
» Methodology: In 3 layer network, we use weights from the Cf-252 trained. Model in

the 1st layer and train only the other 2 layers with the sparse data.

05 20 ° .
* ° . °
L ]
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L ]
151 .
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05 ~ e '
. .
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. . . '
f : 001 ) 3 $ 1
e e * . ~.
’ 05 . | * 'o. i !
1.0 # ’ ' . . L
Y s . ,
: ) : -. Transfer Learning - Predicted dense dataset Direct Learning - Predicted dense dataset
y A '-.\ Structural similarities in Cf makes learning Network struggles to learn full Pu
- "" - | faster + interpolate gaps in sparse data! distribution without information from Cf
3% sparse dataset
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Variance in MDN Predictions
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Summary and Conclusions

* We have started using the Brosa parameterization of Y(A,TKE) for
spontaneous fission of 252Cf.

« Markov Chain Monte Carlo has been successfully used to optimize
the parameters of this model.

* The response of several observables to changes in these
parameters have been calculated in preparation for a global
optimization.

* Probabilistic approach to machine learning along with transfer

learning show considerable promise in building efficient and fast

emulators for fission yields.
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Future Work

 The Brosa modes are being implemented into CGMF in order to
optimize the parameters with respect to the prompt neutron and
gamma observables.

* We are working with others at LANL to use more sophisticated
optimization techniques to constrain these parameters.

* We are working on stability issues in MDN training, allowing us to
study its characteristics and add physics based constraints
(symmetry, normalization, etc.).

« Use MDN with transfer learning for to fill in missing nuclear data
across isotopes and energies.
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