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Problem
Nuclear data and Covariances

CEA-COMAC files (prior)

Integral experiments 

(JEZEBEL, FLATTOP…..)

[Keff (C/E): uncertainty, sensitivity]

Nuclear data and Covariances

CEA-COMAC files (posterior)

ASTRID (Concept Reactor)

[Keff: uncertainty, sensitivity]

What we have:

1. Nuclear data

2. Integral experiments

3. Adjustment method

4. Transposition: to interpolate the effect 

of ND uncertainties on ASTRID
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Problem
What we are looking for:

 Is the adjustment reliable?

 How good is the adjusted data ?

 How many integral experiments are sufficient to adjust the nuclear data?

 How many experiments are enough to represent a concept reactor?

 How is an individual experiment (or ND) impacting the posterior?

 Ways to convince: 

 Recipes to convince people about the methods: 

 Indicators for robustness of the method.

 Validation domain and demonstrations to show that we are mastering the 

impact of inputs.

3



Background
 In the final stages of a nuclear reactor design work:

 Requires a vast amount of computer simulations.

 Must be made with well-defined datasets and codes

 Well-validated versions of these datasets and codes. 

 Estimation for all sources of uncertainties. 

 Uncertainty quantification

VVUQ

 Verification: 

 Calculation scheme has no programming error.

 Sequence of different modules is performed correctly.

 Numerical Validation:  Comparing results with a standard 

calculation.

 Experimental validation:  Comparing computation values with 

experiments. 

 Uncertainty quantification: Uncertainties associated with nuclear 

data and system. 
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Transposition

 Transposition: interpolate the ability of a numerical scheme to predict the 

values (output) for a given application in terms of uncertainty.  

 For a neutron parameter p (ex: keff )

If the estimation of uncertainties obtained for a set of integral experiments {E} 

are:

Transposition is to estimate uncertainties on neutron parameter p for the concept 

R:

 Representativeness is often used to explain transposition:
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Sensitivity of p wrt ND for R
Covariance of ND
Sensitivity of p wrt ND for E



Nuclear data adjustment

 Nuclear data evaluation: neutron induced reactions, 

theoretical models.

 Model parameters are predicted theoretically and are 

uncertain  Uncertainty in ND

 Best set of parameters: comparing theory to experiments.

Adjusted set of parameters

Improved nuclear data

Adjusted (reduced) nuclear data uncertainties

Improved covariance matrices

How? 

Bayesian inference
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Approach: Bayesian inference

 y= {y1,y2,…….yN}: experimentally measured values

 x: parameters defining a model (M) to simulate y

 t: calculated values using model to compare with y

 Conditional probability for the analysis of a new data 

set y

PDF of observed 
data set knowing x

From theory
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Bayesian inference
 Assimilate measurements information to adjust, update 

or reduce uncertainties

 The minimization of the following cost function:

Only if:
Prior, posterior and likelihood 
All are Gaussian
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Mx: Cov. for x, My: Cov. for y, Xm: Prior information

C. De Saint Jean et al., Evaluation of Neutron-induced Cross Sections and their
Related Covariances with Physical Constraints, Nuclear Data Sheets, 2018.

• Alternatively, BMC method can be also used. 



Use of Integral experiments

State update

Cov. update

𝜎=Vector of nuclear data (cross sections, spectra…)
N𝜎= #isotopes X # reactions X #energy groups
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M𝝈: Cov. For ND

ME: Cov. for E
𝝈0: Prior information

S: sensitivity of int exp {E} for p wrt ND



Transposition of uncertainties

Correction due to nuclear data

Uncertainty for the reactor concept
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Where SR is the sensitivity of the reactor 
concept for parameter p wrt ND



Test case:

Pu239 Fission and Capture in 33 energy groups

Prior nuclear data: CEA-COMAC-V1 file (Corr. matrix)
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Pu239 Fission correlation

Pu239 Capture correlation

Integral experiment: JEZEBEL

Fitted parameters: 

Case1. Pu239, Pu240, Pu241

Case2. Pu239 (Cap, Dis, Elas, Fiss, Inel, Nu, NXN )



JEZEBEL experiment

 The Jezebel experiment was a 

very small spherical assembly 

of plutonium alloyed with 

gallium.

 Experiment was used to 

determine the critical mass of 

spherical and homogeneous 

Pu-alloy. 

 Pu239 is a major component 

of the core.
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Benchmark example – 239Pu Jezebel.

Picture taken from the ICSBEP Handbook



Standard deviation [%] for Pu239 Capture: before and after adjustment

Adjusted parameters: Pu239, Pu240, Pu241
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Uncertainty reduction in Pu239_Cap



Standard deviation [%] for Pu239 Fission: before and after adjustment

Adjusted parameters: Pu239, Pu240, Pu241
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Uncertainty reduction in Pu239_Fiss

More information: C. De Saint Jean et al., Evaluation of Neutron-induced Cross Sections
and their Related Covariances with Physical Constraints, Nuclear Data Sheets, 2018.



Results: Adjustment, Keff (C/E-1)
Before adjustment

Fitting 

Parameters

Pu(239, 40, 41), 

U238, Fe56, 

Na23, U235

Pu(239, Pu240, 

Pu241)

Pu239 only

Initial value 0.001 0.001 0.001

Exp. unc. 0.25% 0.25 % 0.25 % 

Initial unc. 1.4448% 1.4448% 1.4332%

After adjustment (with JEZEBEL)

Final value 2.9068e-05 2.9069e-05 2.9531e-05

Final unc. 0.24611% 0.24611% 0.24627%

Transposition (to ASTRID)

Initial value 0.001 0.001 0.001

Initial unc. 1.3639% 1.3639% 1.3639%

Final value 4.7753e-04 4.7753e-04 5.2137e-04

Final unc. 1.12848% 1.12848% 1.17286%
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Transposition
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Transposition (to ASTRID)

Initial unc. 1.3639

Final Unc (fit: Pu239) 1.1728

Individual fit effect:

PU239_Capture 1.363688

PU239_Distribution 1.35939

PU239_Elastic 1.36395

PU239_Fission 1.19518

PU239_InElastic 1.36374

PU_239_Nu 1.34499

PU_239_NXN 1.36392

• Most of the contribution in uncertainty reduction can be 
seen from Pu239_Fission and Pu239_NU data??



Issues:

 How good is the fit?

 Fitting test

 Chi square test

 Effective degree of freedom

 Cook’s distance: which ingredient is affecting the fit.

 Nuclear data (isotope, reactions….)

 Experiment 
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Cook’s distance
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• In a regression fit, if the square error is:

e’e = (Y-X𝜷)’(Y-X𝜷)

• The mean square error:  s2 = e’e/(n-p)

Where 
n: number of observation, 
P: number of fitted parameters

• The Cook’s distance for the observation i

Where f(xj)i is the fitted response when the ith

observation is excluded.

Shows the influence of a data point in least square regression analysis



Example
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X1     X2     Y

Regression fit

Cook’s distance



Test case 1: Influence of Pu isotopes 

on fit using Cook’s distance: 
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• Pu239 ND is the most influential isotope for the adjustment



Test case 2: Influence of Pu239 nuclear 

reaction using Cook’s distance
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• For Pu239 data adjustment, Fission reaction is the most influential reaction.



Test case 2 (Nu unc. in COMAC file is increased by 1%): 

Influence of Pu239 nuclear reaction using Cook’s distance
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In Pu239 fit, Fission and nu reactions are influential reactions.



Case with large Cook’s distance
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Capture data

• Adjusted data (trends) and uncertainties are plotted for all 7 sub cases.
• For case 4(All reaction–Fission) and 6 (All reaction–Nu) trends are highly 

influenced for Pu239_Capture fitted data.

Case1: all-Capture
Case2: all-Dissipation
Case3: all-Elastic
Case4: all-Fission
Case5: all-InElastic
Case6: all-Nu
Case7: all-NXN



Case with large Cook’s distance
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Fission data

• Adjusted data (trends) and uncertainties are plotted for all 7 sub cases.
• For case 4(All reaction–Fission) and 6 (All reaction–Nu) trends are highly 

influenced for Pu239_Fission fitted data.

Case1: all-Capture
Case2: all-Dissipation
Case3: all-Elastic
Case4: all-Fission
Case5: all-InElastic
Case6: all-Nu
Case7: all-NXN



Case with large Cook’s distance
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Nu data

• Adjusted data (trends) and uncertainties are plotted for all 7 sub cases.
• For case 4(All reaction–Fission) trends are highly influenced for Pu239_NU 

fitted data.

Case1: all-Capture
Case2: all-Dissipation
Case3: all-Elastic
Case4: all-Fission
Case5: all-InElastic
Case6: all-Nu
Case7: all-NXN



Conclusion

 Nuclear data uncertainties are reduced using Bayesian 

method with integral experiments.

 Reduction on the final uncertainties for the Concept 

reactor is found.

 Test for adjustment is being studied using Cook’s 

distance.

 Effect of Pu isotopes is estimated on fitting.

 Effect of Pu239 nuclear reaction is estimated on fitting.

 Pu239_Fission and Pu239_Nu are seen to be most 

influential datasets.
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Future work
 Influence of different integral experiments

 Issues 

 Fitting test: Chi Square_opt/NDOF !=1. 

 Effective degrees of freedom

 Other statistical tests

 Overfitting

 Akaike information criteria (AIC)

 Bayesian information criteria (BIC)

 Information theory
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