

Covariance Matrices for Differential and Angle-Integrated Neutron-Induced Elastic and Inelastic Scattering Cross Sections of ⁵⁶Fe

<u>Shengli Chen</u>, David Bernard, Pascal Archier, Cyrille De Saint Jean, Gilles Noguère, Pierre Tamagno

DEN/CAD/DER/SPRC
Laboratoire d'Etudes de Physique

2018-10-11 Aix-en-Provence

OUTLINE

Introduction

Methods

- > Optical model
- > Statistical model
- > Bayes' theory

Results

- > Cross sections
- > Correlation matrices

Conclusions

Reactor Pressure Vessel:

➤ Radiation damage (Displacement per Atom or recoil energy) depends on <u>neutron scatterings</u>

CEA den Angular distribution & neutron-induced damage

Legendre coefficients

Isotropic angular distribution

Neutron elastic scattering DPA cross sections of ⁵⁶Fe performed with different maximum Legendre polynomials

Angular distributions of the neutron elastic scattering reaction df ⁵⁶Fe in JEFF-3.1.1

High-order Legendre polynomials

Large influence of angular distributions on neutron-induced irradiation damage!

Ceaden Covariance matrix

Covariance matrices of $a_l(E)$ for n+56Fe elastic scattering in JEFF-3.2

- ➤ Correlations between different orders of Legendre coefficients
- \triangleright Correlations only for elastic scattering \Rightarrow Lack of complete correlation matrix!

OUTLINE

- Introduction
- Methods
 - > Optical model
 - > Statistical model
 - > Bayes' theory
- Results
 - > Cross sections
 - > Correlation matrices
- **Conclusions**

C22 den ⁵⁶Fe elastic cross section in JEFF-3.1.1

R-matrix formalism

Compound nucleus Direct reaction

Optical Model Hauser-Feshbach

Compound nucleus Pre-equilibrium Direct mechanism

Ceaden New evaluation of the "Continuum"

Optical Model Hauser-Feshbach

Compound nucleus Pre-equilibrium Direct mechanism

CEACEN Principles of the optical model calculations

Optical potential Spherical model (Morillon-Romain)

$$U(r,E) = [V_V(E) + iW_V(E)]f(r,R,a) \qquad \text{Volume}$$

$$+ [V_S(E) + iW_S(E)]g(r,R,a) \qquad \text{Surface}$$

$$+ [V_{SO}(E) + iW_{SO}(E)]\frac{1}{r}\left(\frac{h}{m_\pi c}\right)^2 \quad \text{Spin-Orbit}$$

$$\times g(r,R,a)\mathbf{1} \cdot \boldsymbol{\sigma}$$

$$f(r,R,a) = \frac{1}{1 + \exp[(r-R)/a]}$$
$$g(r,R,a) = -4a\frac{d}{dr}f(r,R,a)$$

4 free parameters + 1 marginalized parameter

ECIS

CEA DEN Principles of the statistical model calculations

Hauser-Feshbach formula for the angle-integrated partial cross sections

Blatt-Biedenharn formalism for differential elastic and inelastic scattering cross sections

Clabson Gordan coefficients

Toss sections
$$\frac{d\sigma_{nX}}{d\Omega} \propto \sum_{L=0}^{\infty} B_L P_L(\cos\theta)$$
 Clebsch-Gordan coefficients (Racah, *Phys, Rev.* 61, 186)
$$(1942)$$

$$B_{L} = \sum_{l=0}^{\infty} \sum_{l'=|l-L|}^{l+L} (2l+1)(2l'+1)[(ll'00|ll'L0)]^{2} \sin \delta_{l} \sin \delta_{l'} \cos(\delta_{l} - \delta_{l'})$$

Caden Angular distribution & Legendre coefficients

Angular distribution:

$$\sigma(\theta, \varphi, E) = \sigma(E) \mathbf{F}(\theta, \varphi, \mathbf{E})$$

Isotropic
$$\varphi$$

$$\mu = \cos \theta$$

$$\sigma(\theta, \varphi, E) \equiv \sigma(\mu, E) = \frac{\sigma(E)}{2\pi} f(\mu, E)$$

Angular distribution & Legendre polynomials:

$$f(\mu, E) = \sum_{l=0}^{NL} \frac{2l+1}{2} (a_l(E) P_l(\mu))$$
Legendre coefficients \Leftrightarrow Angular distribution

Legendre polynomials

Multi-group coefficients of Legendre polynomials:

$$a_{l,n} = a_l \left(\exp \left[\frac{\ln(E_{n,inf}) + \ln(E_{n,sup})}{2} \right] \right)$$

Ceaden Data assimilation with CONRAD

Bayes' theorem (posterior prob. density):

$$p(\vec{x}|\vec{E},U) = \frac{p(\vec{E}|\vec{x},U)p(\vec{x},U)}{\int p(\vec{E}|\vec{x},U)p(\vec{x},U)d\vec{x}}$$

 \vec{x} : parameters in physical model

 \vec{E} : experimental data

U: prior information

GLS cost function:

$$\chi^2_{GLS} = (\vec{x} - \vec{x}_0)^T M_x^{-1} (\vec{x} - \vec{x}_0) + \left(\vec{C} - \vec{E}\right)^T M_E^{-1} \left(\vec{C} - \vec{E}\right)$$

Hypothesis: Gaussian distribution of \vec{x}

$$\max_{x} p(\vec{x} | \vec{E}, U) \Leftrightarrow \min_{x} \chi^{2}(x, \vec{E})$$

OUTLINE

- Introduction
- Methods
 - > Optical model
 - > Statistical model
 - > Bayes' theory
- **Results**
 - > Cross sections
 - > Correlation matrices
- Conclusions

1st step: model parameters established with JEFF-3.1.1

- > with the aim of reproducing the uncertainties
- ➤ Covariance matrices corresponding to JEFF-3.1.1 data
 - ⇒ uncertainty quantification for calculations based on JEFF-3.1.1

2nd step: prior parameters come from 1st step + experimental data (EXFOR)

- with the aim of reevaluating cross sections
- ➤ Realistic uncertainties based on Bayes' theorem
- ➤ Complete covariance matrices

C22 den Results for the total cross section (ECIS)

- Reasonable agreement with the total cross section of JEFF-3.1.1 above 4 MeV
- Below 4 MeV, optical model not appropriate to reproduce the resonant structures
 - ⇒ However, such an approach is sufficient for producing suitable covariance information for our nuclear application

CEA den Results for the total cross section (ECIS)

- Above 6 MeV, we obtain a more realistic relative uncertainty on the total cross section which is close to 1.8% in average
- Below 6 MeV, our work need to be improved

Ceaden Comparison with experimental data

- The smooth trends of our cross sections are in good agreement with experimental data
- More realistic uncertainties are obtained (5%, discrepancies among experimental data)

Ceaden Comparison with experimental data

Total inelastic cross section

Neglecting fluctuation

Agreement with Beryer & Negret > 4 MeV

First-level-inelastic scattering cross section

- Neglecting fluctuation
- ➤ Agreement with Schmidt & Ramirez (& El-Kadi)

Ceaden Correlation matrix

Incident energy [860 keV, 20 MeV], divided into 80 groups

Correlations between different cross sections

Correlations between different **cross sections** and **angular distribution** of <u>elastic</u> scattering

Correlation between different cross sections and elastic scattering angular distributions!

S. Chen | Page 19

Ceaden Correlation matrix

Incident energy [860 keV, 20 MeV], divided into 80 groups

Correlations between different **cross sections** and **angular distribution** of <u>first-level-inelastic</u> scattering

Correlation between different cross sections and angular distributions of first-level-inelastic scattering!

Correlations between different **angular distributions** of <u>elastic</u> scattering and <u>first-level-inelastic</u> scattering

Correlation between different angular distributions!

OUTLINE

- Introduction
- **Methods**
 - > Optical model
 - > Statistical model
 - > Bayes' theory
- Results
 - > Cross sections
 - > Correlation matrices
- **Conclusions**

Ceaden Conclusions & prospects

- **Reproduction of cross sections in JEFF-3.1.1**
- New evaluations from 2 MeV to 20 MeV (ECIS and TALYS)
 - > No cross section fluctuations
 - Good agreement with experimental data
- **■** Uncertainty Quantification using Bayes' theorem (CONRAD)
- **■** Correlations between cross sections and angular distributions

Prospects:

- **R**-matrix limited evaluation in the resonance region (M. Diakaki, in progress)
- Integral validation of cross sections and angular distributions
- Uncertainty propagation to neutron fluence (CEA SERMA) & DPA (PhD subject) in reactor vessel & starting blocks

Thanks for your attention!

COO CE Angular distribution & Legendre coefficients

Angular distribution:

$$\sigma(\theta, \varphi, E) = \sigma(E) \mathbf{F}(\theta, \varphi, \mathbf{E})$$

Isotropic
$$\varphi$$

$$\mu = \cos \theta$$

$$\sigma(\theta, \varphi, E) \equiv \sigma(\mu, E) = \frac{\sigma(E)}{2\pi} f(\mu, E)$$

Angular distribution & Legendre polynomials:

$$f(\mu, E) = \sum_{l=0}^{NL} \frac{2l+1}{2} (a_l(E) P_l(\mu))$$
Legendre coefficients \Leftrightarrow Angular distribution

Legendre polynomials

Multi-group coefficients of Legendre polynomials:

$$a_{l,n} = \frac{\int_{E_{n,inf}}^{E_{n,sup}} a_l(E)\sigma(E)dE}{\int_{E_{n,inf}}^{E_{n,sup}} \sigma(E)dE} \quad \underline{\text{or}} \quad a_{l,n} = a_l \left(\exp\left[\frac{\ln(E_{n,inf}) + \ln(E_{n,sup})}{2}\right] \right)$$

CEADEN Results for the total cross section (ECIS)

- Above 6 MeV, we obtain a more realistic relative uncertainty on the total cross section which is close to 1.8% in average
- Below 6 MeV, our work need to be improved

Higher uncertainty than JEFF-3.1.1 (from elastic & inelastic scatterings)

CEA den Results for the inelastic cross sections (TALYS)

- Agreement between JEFF-3.1.1 and our TALYS calculations is difficult to improve due to the large resonant structures in the inelastic channel
- However, we succeeded to obtain relative uncertainties in good agreement with those from JEFF-3.1.1

- Good agreement with experimental data and evaluated data
- Realistic uncertainties (5%, discrepancies among experimental data)

CEA den Total & 1st level inelastic scattering cross sections

Recalculated total inelastic XS & experimental data Recalculated first-level-inelastic XS & experimental data

- Neglecting fluctuation (agree with B8.0)
- Agreement with Beryer & Negret > 4 MeV
- ➤ Neglecting fluctuation (agree with B8.0)
- ➤ Better agreement with Schmidt & Ramirez (& El-Kadi) than B8.0