DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Integral data assimilation of the MERCI-1 experiment for the nuclear data associated with the PWR decay heat computation

J. Huyghe, C. de Saint-Jean, D. Lecarpentier, C. Reynard-Carette, C. Vaglio-Gaudard, V. Vallet

CEA Cadarache, DEN, France

jordan.huyghe@cea.fr

October 12, 2018

Summary

Control of the decay heat for nuclear safety purposes

Decay heat (DH) = thermal power released by both radioactive decay of unstable fuel and material structure isotopes after reactor shutdown

MERCI-1 integral experiment (2008)¹

- Irradiation of a PWR UOX fuel rod sample ($e(^{235}U) = 3.7 \text{ wt.}\%$) in the OSIRIS reactor's reflector (CEA, Saclay, France) up to 3.6GWd/t_{HM}
- OSIRIS reactor core loaded with U_3Si_2Al plates (e(^{235}U) = 19.75wt.%)
- Measurement of the decay heat released by the sample with the MOSAIC calorimeter² (measurements from 45 minutes to 42 days of cooling time) by an enthalpy balance on the secondary system of the calorimeter (heat pipe principle)²:

MERCI device

^{1.} J.C. Jaboulay, S. Bourganel, "Analysis of MERCI decay heat measurement for PWR UO2 fuel rod", Nuclear Technology, Vol. 177, Jan. 2012

^{2.} Ch. Blandin et al., "MERCI – MOSAIC: experimental tools for residual power measurement in the OSIRIS reactor", IGORR 12, 2009

Control of the uncertainties associated with the MERCI-1 experiment

MERCI-1 experimental uncertainty

$$DH = Q_m C_p \Delta T \qquad (1)$$

Different sources of experimental uncertainties identified: $Q_{m'}$ $C_{p'}$ ΔT

- <u>Assumed independent</u> → global uncertainty on DH obtained by quadratic summation
 - \rightarrow no correlations between Q_m and C_p
 - \rightarrow no correlations between Q_m and ΔT
 - \rightarrow correlations between C_p and ΔT determined: negligible in the propagation calculation
- The different uncertainty values associated with $Q_{m'}$ C_p and ΔT were found in internal documents and the litterature^{3,4}
- Uncertainties propagated to the DH → 0.5% at 1 std for cooling times ∈ [45 min; 42 days]
 → 1.0% at 1 std for cooling times ∈ [16; 21 days] ∪ [23; 25 days]

MERCI-1 calculation uncertainty

<u>Different sources of calculation uncertainties</u> associated with the interpretation of the MERCI-1 experiment:

- Adjustment of the burnup reached at the end of irradiation:
 - → adjustment performed by minimizing the calculation/experiment (C/E) discrepancies of the Nd concentrations (145,146,148,150Nd): depends on the cumulated FY uncertainties of 235U to 1xxNd
 - → resulting uncertainty on the DH: 1.1% at 1 std
- Irradiation conditions: fuel temperature, coolant temperature and ²³⁵U initial enrichment
 - → evaluated by (separate) direct perturbations in the transport calculation
 - → resulting uncertainty: between 0.1% at 45 min and 1.1% at 42 days of cooling (at 1 std)

These different sources of calculation uncertainty + experimental uncertainty were propagated to the decay heat by quadratic summation (<u>assuming they are all independent</u>):

→ result in a global C/E decay heat uncertainty between 1.2 and 1.6% at 1 std according to the cooling time considered

Integral Data Assimilation of the MERCI-1 experiment

CONRAD code

Integral data assimilation performed with the CONRAD code⁵: **CO**de for **N**uclear **R**eaction **A**nalysis and **D**ata assimilation (developed at CEA, Cadarache)

 \rightarrow assimilation of integral experiments (C/E discrepancies + uncertainties (M_{C/E})) to provide feedback on nuclear data of interest for the decay heat

$$L(x) = (x - x_0)^T M_x^{0^{-1}} (x - x_0) + (C(x) - E)^T M_{C/E}^{-1} (C(x) - E)$$

Prior set of nuclear data x_0, M_x^0

Minimization of the GLS function L(x)

Bayesian inference

Posterior set of nuclear data x, M_x

Posterior ('updated') set of nuclear data:

$$x = x_0 - M_x^0 S^T (SM_x^0 S^T + M_{C/E})^{-1} (C(x_0) - E)$$

$$M_{x} = M_{x}^{0} - M_{x}^{0} S^{T} (SM_{x}^{0} S^{T} + M_{C/E})^{-1} SM_{x}^{0}$$

1. Assimilation of a particular MERCI-1 exp. value

Example case: standard PWR UOX fuel / BU = $15GWd/t_{HM}$ / 1 year of cooling (e.g. fuel transport issues)

- \rightarrow Assimilation of the last DH measurement of MERCI-1, *i.e.* at 42 days of cooling (C/E 1 = -0.83% ± 1.6%)
- \rightarrow DH = mainly sensitive to independent FY (iFY) of ²³⁵U to ¹⁴⁰Xe, ¹⁴⁰Cs, ⁹⁵Sr, ⁹⁵Y, ¹⁴⁴La, ¹⁴⁴Ba (42 days / 1 year)

Feedbacks on JEFF-3.1.1 independent fission yield (iFY) data after assimilation of the MERCI-1 experimental at 42 days of cooling with CONRAD and comparison to JEFF-3.3 trends

>> parameters fitted with CONRAD

- Consistent trends
 (posterior mean value + uncertainty) with JEFF
 3.3 at 1 std
- No significant change in terms of uncertainty except for iFY of ²³⁵U to ¹⁴⁰Cs and ⁹⁵Y (reduced)

2. Impact of correlations between iFY data

DH mainly sensitive to iFY // JEFF-3.1.1 does not provide covariance matrices for iFY

→ covariance matrices for both fissile systems of ²³⁵U and ²³⁹Pu produced at the CEA⁶ associated with JEFF-3.1.1 iFY data, stored in the COMAC covariance matrix database⁷

→ Same integral data used for the assimilation (i.e. MERCI-1, 42 days) → impact of correlations between iFY

- More consistent trends (posterior mean value + uncertainty) with JEFF-3.3 at 1 std (in particular for ¹⁴⁴La, ¹⁴⁰Cs, ⁹⁵Y)
- Reduced associated uncertainties
 - → 15 to 30% uncertainty reduction compared to the 'without iFY correlations' case
- → The iFY correlations will be taken into account from now on for this study

^{6.} N. Terranova, "Covariance evaluation for nuclear data of interest to the reactivity loss estimation of the Jules Horowitz Material Testing Reactor", PhD thesis, 2016

^{7.} P. Archier et al., "COMAC: Nuclear data covariance matrices library for reactor applications", Proc. Int. Conf. PHYSOR, 2014

3. Assimilation of several experimental values – Which experimental data?

Improve the data assimilation process \rightarrow several experimental data used simultaneously, *i.e.* MERCI-1 measurements at different cooling times \rightarrow which experimental data?

→ Choice: based on the relative contribution of the fission products of interest to the DH (main masses A=95, 140 and, marginally, 144)

→ The simultaneous use of several experimental values coming from the same experiment raises issues of **experimental correlations** to consider for the data assimilation → determination?

3. Assimilation of several experimental values – **Experimental correlations?**

Determination of the experimental covariances?

$$DH = Q_{m}C_{p}\Delta T \qquad (1)$$

$$cov(DH_{a}, DH_{b}) = cov(Q_{m_{a}}C_{p_{a}}\Delta T_{a}, Q_{m_{b}}C_{p_{b}}\Delta T_{b})$$

The calculation decomposition involves several terms of covariance:

- $\alpha \times cov(C_{p_a}, C_{p_b})$ $\beta \times cov(T_a, T_b)$
- $\gamma \times cov(Q_{m_a}, Q_{m_b})$
- $\rightarrow \alpha \times cov(C_{p_a}, C_{p_b})$ determined by performing a polynomial regression (3rd order in good accordance with experimental data of C_p) of C_p vs. T:

$$C_p(T) = aT^3 + bT^2 + cT + d$$

- a, b, c and d determined with associated variances and covariances \rightarrow propagation to a $\alpha \times cov(C_{p_\alpha}, C_{p_b})$
 - \rightarrow numerical applications for the nine experimental values taken: **negligible term** (given the values of α, β, γ)
- $\rightarrow cov(T_a, T_b)$, $cov(Q_{m_a}, Q_{m_b})$ could not be assessed \rightarrow lack of information thereon in the experimental process → other methods?
- → Different tests were performed (with different experimental correlation values) to measure the sensitivity of the assimilation results due to the experimental correlations considered

3. Assimilation of several experimental values – Results

 \rightarrow Different tests performed with experimental correlations of 0.1, 0.5, 0.8, 0.9

- Depending on the iFY studied, the trends get closer to JEFF-3.3
 - with lower exp. correlations for ¹⁴⁴Ba, ¹⁴⁰Xe, ⁹⁵Sr and ⁹⁵Y
 - with higher exp. correlations for $^{144}\mathrm{La}$ and $^{140}\mathrm{Cs}$

- Consistent trends with JEFF-3.3 at 1 std regardless of the experimental correlations considered between each couple of DH values
- The sensitivity of the assimilation results due to the experimental correlations considered is lower than the sensitivity due to the inclusion of correlations between iFY
- The lower the exp. correlation, the more independent each experiment is with each other, and the more restrained the trends on each iFY are → cf. C/E discrepancies

Conclusions and perspectives

- → Assimilating several correlated MERCI-1 experimental values and adding covariance information on iFY result in trends in better accordance with JEFF-3.3
- → Need to accurately assess the experimental correlations since it has a direct impact on the assimilation results

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint-Paul-lez-Durance Cedex T. +33 (0)4 42 25 34 03

DER SPRC

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019