

Monte Carlo integral adjustment of nuclear data libraries – experimental covariances and inconsistent data

Henrik Sjöstrand¹, Georg Schnabel, Petter Helgesson

Uppsala University, Department of Physics and Astronomy

¹henrik.sjostrand@physics.uu.se

MC uncertainty reduction using integral data

Progress in Nuclear Energy 88 (2016) 43-52

- Idea of using benchmarks for randomfile calibration is not new.
 - Petten method for best estimates
- Here:
 - Multiple correlated benchmarks
 - Multiple isotopes within one benchmark
 - Addressing inconsistencies

Contents lists available at ScienceDirect

Progress in Nuclear Energy

journal homepage: www.elsevier.com/locate/pnucene

On the use of integral experiments for uncertainty reduction of reactor macroscopic parameters within the TMC methodology

E. Alhassan ^{a, *}, H. Sjöstrand ^a, P. Helgesson ^a, M. Österlund ^a, S. Pomp ^a, A.J. Koning ^{a, b}, D. Rochman ^c

Correlations in nuclear data from integral constraints: cross-observables and cross-isotopes

CW 2017

Eric Bauge : CEA DAM DIF, France Dimitri Rochman : PSI, Swizerland

a Division of Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

b Nuclear data Section, International Atomic Energy Commission (IAEA), Vienna, Austria

^c Paul Scherrer Inst<u>itut, 5232 Villigen, Switzerland</u>

Uncertainty reduction

Prior k_{eff} distribution

The posterior is constrained by both the differential and integral data

Important to also include the calculation uncertainty

• C/E \neq 1 can be due to σ_E , σ_{stat} , an error in the isotopes that we are calibrating, any of the other isotopes in the benchmark, or other errors not accounted for.

$$\chi_{i,J}^{2} = \sum_{B} \frac{(C_{B,i} - E_{B})^{2}}{\sigma_{B,J}^{2}}, i = randomfile, J = isotopes, B = benchmark$$

$$\sigma_{B,J}^{2} = \sigma_{E}^{2} + \sigma_{C,J}^{2} = \sigma_{E}^{2} + \sigma_{stat}^{2} + \sigma_{defects}^{2} + \sigma_{other}^{2} + \sum_{\substack{\text{overall p} \\ \text{where p} \neq J}} \sigma_{ND,p}^{2}$$

Method

- Major isotopes are varied simultaneously.
- MCNP6 and TENDL2014
- Investigated for U8 and U5.
- k_{eff,i}=f(U8_i,U5_i).
 i=randomfile number
- Intrinsically the uncertainty of the different isotopes are taking into account simultaneously

$$w_i = e^{-\frac{\chi_i^2}{2}}$$

$$\chi_i^2 = (C - E)^T COV_{B,J}^{-1} (C - E)$$

$$COV_{B,J} = COV_E + COV_{stat}$$

Before and after calibration

Difficult to fit the experimental data - prior correlations

Difficult to fit the experimental data - inconsistent data

- Model defects.
 - E.g., ND uncertainties not taking into account¹
 - Models inability to reproduce the true ND
- Unaccounted experimental uncertainties or covariances.
- Underestimated statistical uncertainties.
- Isotopes not taken into account

$$\sigma_{B,J}^{2} = \sigma_{E}^{2} + \sigma_{stat}^{2} + \sigma_{other}^{2} + \sum_{\substack{\text{overall p} \\ \text{where p} \neq J}} \sigma_{ND,p}^{2}$$

Marginalized Likelihood Optimization

We add an extra uncertainty to each experiment.

$$\sigma_{B,J}^{2} = \sigma_{E}^{2} + \sigma_{stat}^{2} + \sigma_{defects}^{2} + \sigma_{other}^{2} + \sum_{\substack{\text{overall p} \\ \text{where p} \neq J}} \sigma_{ND,p}^{2}$$

$$\sigma_{B,l,J}^2 = \sigma_E^2 + \sigma_{stat}^2 + \sigma_{extra,l}^2$$

 $\sigma_{\rm extra}$ found by maxzimizing¹ L:

$$L = \frac{1}{\sqrt{2\pi n \left| \text{cov}_{\text{exp,stat,extra}} \right|}} \sum_{i} e^{-\frac{\chi_{i}}{2}}$$

n = number of parameters

1.0

¹G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017

¹ Here MC and integral information. Compare with G.Schnabel's presentation.

Results

Benchmark uncertainties [PCM]	HMF1_1	HMF8	IMF2	IMF3_2	IMF7_4
No ML: Reported uncertainties	100	160	300	170	80
Uptated uncertainties	153	204	300	580	390

Benchmark exp. errors are correlated

Database for the International Criticality Safety Benchmark Evaluation Project (DICE), https://www.oecd-nea.org/science/wpncs/icsbep/dice.html

Adding a correlation term

- Correlations: σ_{E} , σ_{defect} , $\sigma_{\text{other_isotopes}}$
- A fully correlated uncertainty to all experiments is added.

$$\sigma_{B,l,J}^{2} = \sigma_{E}^{2} + \sigma_{stat}^{2} + \sigma_{extra,l}^{2} + \sigma_{extra_all}^{2}$$

$$L = \frac{1}{\sqrt{2\pi n \left| \text{cov}_{\text{exp,stat,extra}} \right|}} \sum_{i} e^{-\frac{\chi_{i}}{2}}$$

$$\max(L) \rightarrow \sigma_{extra,l}^2 + \sigma_{extra_all}^2$$

Results – with correlation

Benchmark uncertainties [PCM]	HMF1_1	HMF8	IMF2	IMF3_2	IMF7_4	Fully correlated
No ML: Reported uncertainties	100	160	300	170	80	0
Uptated uncertainties	153	204	300	580	390	0
With correlation	267	329	333	591	409	257

Adding a prior

$$prior(\sigma_{extra}) = e^{-\beta\sigma_{extra}^{2}} \text{ or,}$$

$$prior(\sigma_{extra}) = e^{-\beta\sigma_{extra}^{2}} \text{ os.}$$

$$L = \frac{1}{\sqrt{2\pi n \left|\text{cov}_{\text{exp,stat,extra}}\right|}} e^{-\beta\sum\sigma_{extra}^{2}} \sum_{i} e^{-\frac{\chi_{i}}{2}} \sum_{i=0.4}^{\frac{\beta_{extra}}{2}} e^{-\beta\sum\sigma_{extra}^{2}}$$

 β is chosen by expert judgement or in a data-driven approach¹.

Results with an added prior

Benchmark uncertainties [PCM]	HMF1_1	HMF8	IMF2	IMF3_2	IMF7_4	Fully correlated
No ML: Reported uncertainties	100	160	300	170	80	0
Uptated uncertainties	153	204	300	580	390	0
With correlation	267	329	333	591	409	257
With prior	232	2 63	366	468	228	209

Posterior	HMF1_1	HMF8	IMF2	IMF3_2	IMF7_4	Chi2	p_value
No ML	69	28	103	52	34	2,1	6%
Uptated uncertainties	139	131	234	183	273	0,38	86%
With correlation	264	254	313	290	351	0,4	84%
With Prior	253	214	288	256	265	0,58	72%

Posterior correlations

How is the uncertainty reduced?

E.Bauge." Correlations in nuclear data from integral constraints: cross-observables and cross-isotopes", CW2017:

 Using integral data introduce correlations: between isotopes and between different parts of the ND file.

 The integral weighing only slightly change the best estimate <1% and std dev < 10%

D. Rochman: Nuclear data correlation between different isotopes via integral information

Uncertainties Using Physical Constraints:

Focus on Integral Experiments, Nuclear Data Sheets, Volume 123, Pages 178-184

Conclusion

- MC Marginalized Likelihood maximization to account for discrepant integral data.
- Results still constrained by differential data and the model.
 - improvements necessary (G. Schnabel's presentation)
- Include calculation uncertainties
 - e.g., multiple isotopes (and observables not accounted for).
- The correlation between the benchmarks are important.
- Outlook: sampling of L¹ + validation / transposition.

THANK YOU FOR YOUR ATTENTION!

References

- 1. Alhassan, E., et al. On the use of integral experiments for uncertainty reduction of reactor macroscopic parameters within the TMC methodology, Progress in Nuclear Energy, 88, pp. 43-52. (2016)
- 2. D. Rochman, et al. <u>Nuclear data correlation between different isotopes via integral information</u>, EPJ Nuclear Sci. Technol. 4, 7 (2018)
- 3. D. Rochman et al., EPJ Nuclear Sci. Technol. 3, 14 (2017)
- C. De Saint Jean et al., Evaluation of Cross Section Uncertainties Using Physical Constraints: Focus on Integral Experiments, Nuclear Data Sheets, Volume 123, Pages 178-184
- 5. G.Schnabel, Fitting and analysis technique for inconsistent data,MC2017

Cross-isotope correlations

D. Rochman: Nuclear data correlation between different isotopes via integral information

$$\log_{L} = c - 0.5 \cdot \left| cov_{exp} + cov_{extra} \right| + \ln \left(\sum_{e} e^{-\frac{\chi}{2}} \right)$$

Posterior	HMF1_1	HMF8	IMF2	IMF3_2	IMF7_4	Chi2 priori(exp)	Chi2_post(exp)	Chi2_prior(tot)	Chi2_post(tot)	p_value-post
No ML	69	28	103	52	34	28	2,3	1,81	2,1	6%
Uptated uncertainties	139	131	234	183	273	6,42	0,46	0,68	0,38	86%
With correlation	264	254	313	290	351	1,66	0,48	0,74	0,4	84%
With Prior	253	214	288	256	265	3,7	0,68	1,06	0,58	72%