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MC uncertainty reduction using 

integral data

• Idea of using 
benchmarks for random-
file calibration is not 
new. 

– Petten method for 
best estimates

• Here: 

– Multiple correlated
benchmarks

– Multiple isotopes 
within one 
benchmark

– Addressing 
inconsistencies

CW 2017
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Uncertainty reduction

Prior keff distribution

Simulations: 
MCNP

Posterior

Physical models

parameters: TALYS

based system (T6)

1st level of constraint:

Differential data

A large set of 

acceptable ND libraries

2nd level of constraint:

Integral benchmarks

Assign weights to

random files

Weighted random files

Simulations: 
mcnp etc.

Applications: 
Criticality,
burnup, Fuel
cycle etc.

Random nuclear data from the

1st step is used as the prior for

the 2nd step.
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The posterior is constrained by both 

the  differential and integral data
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Rather complete on 
uncertainties,  correlations 

and higher moments. 
Improvements possible. 



Important to also include the 

calculation uncertainty

• C/E≠1 can be due to σE, σstat, an error in the isotopes that 

we are calibrating, any of the other isotopes in the 

benchmark, or other errors not accounted for.  
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Method 

• Major isotopes  are varied 
simultaneously. 

• MCNP6 and TENDL2014

• Investigated for U8 and 
U5.

• keff,i=f(U8i,U5i). 
i=randomfile number

• Intrinsically the 
uncertainty of the 
different isotopes are 
taking into account 
simultaneously
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Before and after calibration

IEU-Met-Fast and HEU-Met-Fast1

1000 TENDL2014 files
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1Curtesy of Steven Van Der Marck



Difficult to fit the experimental data

- prior correlations

8



Difficult to fit the experimental data

- inconsistent data

• Model defects. 

– E.g., ND uncertainties not taking into account1

– Models inability to reproduce the true ND

• Unaccounted experimental uncertainties or covariances.

• Underestimated  statistical uncertainties. 

• Isotopes not taken into account
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1See, e.g., Gerald Rimpaults presentation: Trends on major actinides from an Integral data assimilation.



Marginalized Likelihood Optimization 

• We add an extra uncertainty to each experiment.

• σextra found by 

maxzimizing1 L: 
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1 Here MC and integral information.  Compare with G.Schnabel’s presentation.
1G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017  

n = number of parameters 



Results
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Benchmark uncertainties [PCM] HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4

No ML: Reported uncertainties 100 160 300 170 80

Uptated uncertainties 153 204 300 580 390



Benchmark exp. errors are 

correlated

Database for the International Criticality Safety Benchmark Evaluation Project 
(DICE), https://www.oecd-nea.org/science/wpncs/icsbep/dice.html
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Adding a correlation term  

• Correlations: σE, σdefect, 

σother_isotopes

• A fully correlated 

uncertainty to all 

experiments is added.
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Results – with correlation
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Benchmark uncertainties [PCM] HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Fully correlated

No ML: Reported uncertainties 100 160 300 170 80 0

Uptated uncertainties 153 204 300 580 390 0

With correlation 267 329 333 591 409 257



Adding a prior 

βis chosen by expert judgement or in a data-driven approach1. 
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1G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017  



Results with an added prior
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Benchmark uncertainties [PCM] HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Fully correlated

No ML: Reported uncertainties 100 160 300 170 80 0

Uptated uncertainties 153 204 300 580 390 0

With correlation 267 329 333 591 409 257

With prior 232 263 366 468 228 209

Posterior HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Chi2 p_value

No ML 69 28 103 52 34 2,1 6%

Uptated uncertainties 139 131 234 183 273 0,38 86%

With correlation 264 254 313 290 351 0,4 84%

With Prior 253 214 288 256 265 0,58 72%



Posterior correlations
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How is the uncertainty reduced?

E.Bauge.”Correlations in nuclear data from integral constraints: cross-
observables and cross-isotopes ”, CW2017:

• Using integral data introduce correlations: between isotopes and 
between different parts of the ND file. 

• The integral weighing only slightly change the best estimate <1% and  
std dev < 10% D. Rochman et al., EPJ Nuclear Sci. 

Technol. 3, 14 (2017)

D. Rochman: Nuclear data correlation between 
different isotopes via integral information

Imf-7
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Same conclusion from: C. De Saint Jean 
et al., Evaluation of Cross Section 
Uncertainties Using Physical Constraints: 
Focus on Integral Experiments, Nuclear 
Data Sheets,Volume 123, Pages 178-184



Conclusion

• MC - Marginalized Likelihood maximization to 
account for discrepant integral data. 

• Results still constrained by differential data and the 
model. 

– improvements necessary (G. Schnabel’s 
presentation)
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• Include calculation uncertainties

– e.g., multiple isotopes (and 
observables not accounted 
for).  

• The correlation between the 
benchmarks are important.

• Outlook: sampling of L1 + 
validation / transposition. 

1G.Schnabel, Fitting and analysis technique for inconsitent data,MC2017  



THANK YOU FOR YOUR 

ATTENTION!
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https://tendl.web.psi.ch/bib_rochman/correlation.eric.3.pdf


Cross-isotope correlations

Imf-7

D. Rochman: 
Nuclear data 
correlation 
between 
different 
isotopes via 
integral 
information
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Posterior HMF1_1 HMF8 IMF2 IMF3_2 IMF7_4 Chi2 priori(exp) Chi2_post(exp) Chi2_prior(tot) Chi2_post(tot) p_value-post

No ML 69 28 103 52 34 28 2,3 1,81 2,1 6%

Uptated uncertainties 139 131 234 183 273 6,42 0,46 0,68 0,38 86%

With correlation 264 254 313 290 351 1,66 0,48 0,74 0,4 84%

With Prior 253 214 288 256 265 3,7 0,68 1,06 0,58 72%


