Examples of Monte Carlo techniques applied for nuclear data uncertainty propagation

a) Oscar Cabellos
 oscar.cabellos@upm.es

b) Luca Fiorito
 luca.fiorito@oecd.org

5th Int. Workshop On Nuclear Data Evaluation for Reactor Applications (WONDER-2018), 8-12 October 2018
Abstract

The aim of this work is to review different Monte Carlo (MC) techniques used to propagate nuclear data uncertainties.

1. Uncertainty Quantification (UQ) studies
 - Required in safety calculations of large scale systems ~ PWR
 - ND uncertainty propagation on the main design parameters
 - Decomposition of uncertainty in: $^{235}\text{U} - ^{238}\text{U} - ^{239}\text{Pu}$ & XS-ν-PFNS

2. Bayesian Monte Carlo approaches for data adjustment
 - Multivariate Normal Bayesian model relying on NUDUNA/SANDY codes
 - TMC + Bayesian MC Approach (BMC)
 - Selection of Benchmarks
 - BMC apply for Criticality + Shielding/Transmission
1. MC techniques to perform Uncertainty Quantification (UQ)

- Uncertainty Quantification (UQ) analysis in large scale systems

 e.g. the core design in a 3-loop PWR Westinghouse unit

 - In this work, we use our SEANAP system developed and applied for 3-D PWR core analysis which has demonstrated a very good agreement with the broad sets of parameters and cycles analysed at the Spanish PWR units.

- Methodologies for UQ:

 - Monte Carlo approaches which uses random samples of nuclear data libraries and perform a separate reactor calculation for each random sample

 - S/U method is based on first order perturbation theory approaches, which makes use of available covariance files.
1.1 S/U to perform to UQ in reactor calculations

- **S/U method** is based on first order perturbation theory approaches, which makes use of available covariance files.
 - Sensitivity coefficients -> sandwich rule
 - Easy decomposition of uncertainty in isotopic partial cross-section components
 - Low CPU time
 - Different theories [1]:
 - Standard Perturbation Theory (SPT) - > keff uncertainties
 - Generalized Perturbation Theory (GPT) -> power distribution uncertainty

- **S/U Weaknesses**
 1) low efficiency for a large number of response functions
 2) applicability for small uncertainties - > it is based on linear-approach
 3) severe limitations as consequence of the non-linearity of multi-physics calculations (neutronics, thermohydraulic, depletion, …) in reactor calculations
The Monte Carlo approaches which uses random samples of nuclear data libraries and perform a separate reactor calculation for each random sample.

- Large CPU time to perform enough sampling
 - The low execution times of SENAP code for a full scheme of PWR core cycle indicates that the parallelization of Monte Carlo sampling is reliable.
 - Nuclear data are sampled at the beginning of the simulation
 - Statistics of all SEANAP simulations yields the desired uncertainty quantification
 - SEANAP solves coupled multi-physics at different levels of approximation

- Different approaches by their nuclear data uncertainty input
 - “Total Monte Carlo” (TMC) relies on model parameter covariances
 - NUDUNA and SANDY take as input the information provided by ND evaluations
 - XSUSA takes the form of covariance matrices in multigroups
1.3 UQ in reactor calculations: SEANAP-SANDY

Scheme of the PWR Core Analysis SEANAP System

- Ref.: “Validation of PWR Core Analysis system SEANAP-86 with measurements in test and operation”, C. Ahnert et al., M&C87

SEANAP is integrated by 4 subsystems:

1. **MARIA** system for assembly calculations
2. **COBAYA** system for a detailed (pin-by-pin) core calculations at reference conditions
3. **SIMULA** system for 3D 1 group corrected-nodal core simulation
4. **CICLON** system for fuel management analysis of reload cycles

CPU Time/cycle ~ 5-10 min / i7 870@2.93GHz
1.3 UQ in reactor calculations: SEANAP-SANDY

Validation of SEANAP in PWR Core Analysis

- SEANAP system has been developed and implemented as an on-line simulator ~20 cycles of three PWRs (Vandellós-II, Ascó-I and Ascó-II).

Figure: Measured and Simulated Power vs Delta-I in return to Power after a Short Shutdown

Ref: “Upgraded SEANAP-PWR core simulator with JEFF-3.3: Impact of Nuclear Data Uncertainties for PWR cycle operation”, O. Cabellos, JEFFDOC-1917, April 2018

Fig. Scheme of SEANAP: WIMS-D5 (JEFF-3.3) + COBAYA + SIMULA
1.3 UQ in reactor calculations: SEANAP-SANDY

- SANDY: Numerical tool for nuclear data uncertainty quantification.
- Based on Monte Carlo sampling

Figure: First 20 JEFF-3.3 random files processed with NJOY/GROUPR in 69 energy groups at 293K with infinite dilution
1.4 Design and acceptance criteria for start-up and operation

<table>
<thead>
<tr>
<th>Core parameter</th>
<th>Design criteria</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical boron concentration ARO</td>
<td>$</td>
<td>(C_B)^M_{ARO} - (C_B)^C_{ARO}</td>
</tr>
<tr>
<td>Isothermal temperature coefficient ARO at HZP</td>
<td>$</td>
<td>(a_{ISO_T})^M_{ARO} - (a_{ISO_T})^C_{ARO}</td>
</tr>
<tr>
<td>Moderator temperature coefficient ARO at HZP</td>
<td>$(a^{CTM})^{HZP}_{ARO} < 9$ pcm/°C</td>
<td></td>
</tr>
<tr>
<td>Boron Worth Coefficient at HZP</td>
<td>$</td>
<td>(aC_B)^M - (aC_B)^C</td>
</tr>
<tr>
<td>Control banks worth for Reference Bank</td>
<td>$</td>
<td>(I_{REF})^M - (I_{REF})^C</td>
</tr>
<tr>
<td>Control Bank Worth value for other Banks using Rod Swap Technique</td>
<td>$</td>
<td>(I_{CBW})^M - (I_{CBW})^C</td>
</tr>
<tr>
<td>Total Control Bank Worth</td>
<td>$1.10 \times (I_{TOT})^C > (I_{TOT})^M > 0.9x(I_{TOT})^C$</td>
<td>$(I_{TOT})^M > 0.9x(I_{TOT})^C$</td>
</tr>
<tr>
<td>Axial Offset</td>
<td>$</td>
<td>(AO)^M - (AO)^C</td>
</tr>
<tr>
<td>Max. Relative Assembly Power (P_A)</td>
<td>$%</td>
<td>(P_A)^M - (P_A)^C / (P_A)^C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$< 15% if P<90%$</td>
</tr>
</tbody>
</table>
1.5 UQ for Core Measurements: Boron Concentration (ppm)

<table>
<thead>
<tr>
<th>Core parameter</th>
<th>Design criteria</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical boron concentration ARO</td>
<td>$</td>
<td>(C_B)^M_{ARO} - (C_B)^C_{ARO}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power (%)</th>
<th>Burnup (GWd/THM)</th>
<th>Boron Meas. (ppm)</th>
<th>WIMS-D4 + ND-1981</th>
<th>WIMSD5 + JEFF-3.3</th>
<th>Uncertainties in ppm (Boron Concentration) due to JEFF-3.3 covariance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.015</td>
<td>1200</td>
<td>1150 -50</td>
<td>1165 -35</td>
<td>18 14 9 27 46 9 24</td>
</tr>
<tr>
<td>75</td>
<td>0.031</td>
<td>1113</td>
<td>1071 -42</td>
<td>1085 -28</td>
<td>18 15 9 27 46 10 24</td>
</tr>
<tr>
<td>100</td>
<td>0.134</td>
<td>985</td>
<td>1000 15</td>
<td>1011 26</td>
<td>19 15 9 27 46 10 25</td>
</tr>
<tr>
<td>100</td>
<td>1.340</td>
<td>870</td>
<td>897 27</td>
<td>896 26</td>
<td>22 16 9 25 47 10 24</td>
</tr>
<tr>
<td>100</td>
<td>2.487</td>
<td>779</td>
<td>806 27</td>
<td>797 18</td>
<td>24 17 9 24 45 10 24</td>
</tr>
<tr>
<td>100</td>
<td>2.842</td>
<td>755</td>
<td>778 23</td>
<td>768 13</td>
<td>25 19 9 24 43 10 24</td>
</tr>
<tr>
<td>100</td>
<td>3.591</td>
<td>688</td>
<td>714 26</td>
<td>701 13</td>
<td>27 19 9 24 44 10 24</td>
</tr>
<tr>
<td>100</td>
<td>4.441</td>
<td>604</td>
<td>645 41</td>
<td>629 25</td>
<td>28 20 9 23 41 10 24</td>
</tr>
<tr>
<td>100</td>
<td>5.549</td>
<td>504</td>
<td>544 40</td>
<td>526 22</td>
<td>30 21 9 22 40 10 24</td>
</tr>
<tr>
<td>100</td>
<td>6.692</td>
<td>412</td>
<td>439 27</td>
<td>420 8</td>
<td>32 22 9 22 39 10 23</td>
</tr>
<tr>
<td>100</td>
<td>7.716</td>
<td>319</td>
<td>340 21</td>
<td>321 2</td>
<td>34 23 9 21 38 10 23</td>
</tr>
<tr>
<td>100</td>
<td>8.823</td>
<td>227</td>
<td>239 12</td>
<td>219 -8</td>
<td>35 24 9 21 37 10 23</td>
</tr>
<tr>
<td>100</td>
<td>10.284</td>
<td>101</td>
<td>100 -1</td>
<td>79 -22</td>
<td>37 25 9 20 35 10 23</td>
</tr>
<tr>
<td>100</td>
<td>11.351</td>
<td>4</td>
<td></td>
<td></td>
<td>39 26 9 20 34 10 23</td>
</tr>
</tbody>
</table>

C = Calculated (ppm Boron)
M = Measured (ppm Boron)
1.5 UQ for Core Measurements: Axial Offset (%)

<table>
<thead>
<tr>
<th>Core parameter</th>
<th>Design criteria</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Offset</td>
<td>(AO)M-(AO)C < 3%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core parameter</th>
<th>Design criteria</th>
<th>Acceptance criteria</th>
<th>Uncertainties in A.O. % due to JEFF-3.3 covariance data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P9-XS</td>
</tr>
<tr>
<td>Power (%)</td>
<td>Burnup</td>
<td>Meas.</td>
<td>WIMS-D4 + ND-1981</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>50</td>
<td>0.015</td>
<td>7.7</td>
<td>5.6</td>
</tr>
<tr>
<td>75</td>
<td>0.031</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>100</td>
<td>0.134</td>
<td>-0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>1.340</td>
<td>-1.6</td>
<td>-1.2</td>
</tr>
<tr>
<td>100</td>
<td>2.487</td>
<td>-2.4</td>
<td>-2.9</td>
</tr>
<tr>
<td>100</td>
<td>2.842</td>
<td>-2.8</td>
<td>-3.0</td>
</tr>
<tr>
<td>100</td>
<td>3.591</td>
<td>-3.8</td>
<td>-4.9</td>
</tr>
<tr>
<td>100</td>
<td>4.441</td>
<td>-3.2</td>
<td>-3.8</td>
</tr>
<tr>
<td>100</td>
<td>5.549</td>
<td>-3.9</td>
<td>-4.4</td>
</tr>
<tr>
<td>100</td>
<td>6.692</td>
<td>-4.2</td>
<td>-4.4</td>
</tr>
<tr>
<td>100</td>
<td>7.716</td>
<td>-4.7</td>
<td>-5.1</td>
</tr>
<tr>
<td>100</td>
<td>8.823</td>
<td>-3.6</td>
<td>-2.8</td>
</tr>
<tr>
<td>100</td>
<td>10.284</td>
<td>-3.5</td>
<td>-1.6</td>
</tr>
<tr>
<td>100</td>
<td>11.351</td>
<td>3.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- C = AO Calculated (%)
- M = AO Measured (%)
1.5 UQ for Core Measurements: Control Bank Worth (ppm)

<table>
<thead>
<tr>
<th>Core parameter</th>
<th>Design criteria</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control banks worth for Reference Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Bank Worth value for other Banks using Rod Swap Technique</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Bank Worth (ppm Boron)</th>
<th>WIMS-D4 + ND-1981</th>
<th>WIMSD5 + JEFF-3.3</th>
<th>Uncertainties in ppm Boron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pu9-XS</td>
<td>Pu9-ν</td>
<td>Pu9-χ</td>
</tr>
<tr>
<td>D-IN (REF)</td>
<td>113</td>
<td>114</td>
<td>0.4</td>
</tr>
<tr>
<td>C-IN</td>
<td>90</td>
<td>87</td>
<td>1.5</td>
</tr>
<tr>
<td>B-IN</td>
<td>132</td>
<td>135</td>
<td>0.4</td>
</tr>
<tr>
<td>A-IN</td>
<td>81</td>
<td>90</td>
<td>2.3</td>
</tr>
<tr>
<td>SB-IN</td>
<td>91</td>
<td>86</td>
<td>1.9</td>
</tr>
<tr>
<td>SA-IN</td>
<td>112</td>
<td>120</td>
<td>1.7</td>
</tr>
<tr>
<td>D+C-IN</td>
<td>224</td>
<td>221</td>
<td>1.6</td>
</tr>
<tr>
<td>D+C+B-IN</td>
<td>399</td>
<td>400</td>
<td>2.3</td>
</tr>
<tr>
<td>D+C+B+A-IN</td>
<td>526</td>
<td>542</td>
<td>1.7</td>
</tr>
<tr>
<td>D+C+B+A+SB-IN</td>
<td>657</td>
<td>664</td>
<td>1.2</td>
</tr>
<tr>
<td>ARI</td>
<td>868</td>
<td>884</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. Location of control rod banks

![Control Rod Bank Location Diagram](image-url)
2. Bayesian MC techniques to perform Data Adjustment

- **“Integral benchmarks are used for data validation, but should be avoided for the adjustment of general-purpose libraries“**

 - Why? This can lead to potential compensating effects due to both the impact of other isotopes included in the benchmark and defects in calculations attributed by complicated multi-physics.

- **“However, it is known that such integral data have been used to perform tune or fine adjustment of specific nuclear data to improve the overall performance of an entire general-purpose library”**

 - Nuclear data adjustments should rely on high-fidelity experiments that can be used as simple (e.g. one single isotope), well-understood and so-called clean benchmarks.
 - Consequently, these assumptions discharge other benchmarks (e.g. reactor calculations) for nuclear data adjustment into the evaluation procedure.

- **In this work, experimental data is referred to integral information**

 - Criticality integral benchmarks (e.g. k_{eff} and spectral indices) in the ICSBEP
 - Shielding/transmission benchmarks (e.g. neutron leakage) in SINBAD/other databases
 - Delayed neutrons (e.g. beta), reactivity coefficients, etc…
2. Bayesian MC techniques to perform Data Adjustment

- Two distinct methods of nuclear data adjustment methodologies:
 - **Deterministic**
 - Generalized Linear Least Squares (GLLS)
 \[
 (E - C'(\sigma'))^T V_E^{-1} (E - C'(\sigma')) + (\sigma' - \sigma_0)^T V_\sigma^{-1} (\sigma' - \sigma_0) = \chi^2_{min}
 \]
 Assumptions:
 - Experimental and nuclear data are normally distributed
 - Linear approximations between all observables
 - Model and experimental data are uncorrelated

 - **Stochastic/Monte Carlo methods**
 - Bayesian MC techniques -> direct application of Bayes’ Theorem
 \[
 (\sigma|E) \propto p_0(\sigma|\sigma_C, V_C) \times L(y_E, V_E|\sigma)
 \]
 - To avoid the need to linearize non-linear models
 - To handle model which are not necessarily normally distributed
Generalized Linear Least Squares (GLLS)

- First-order Taylor series approximation
 \[C(\sigma) \approx C(\sigma_0) + S(\sigma - \sigma_0) \]
 \[V_C \approx SV_{\sigma_0}S^T \]

- “A posteriori” mean and variance-covariance matrix

\[\sigma' = \sigma_0 + V_{\sigma_0}S^T [SV_{\sigma_0}S^T + V_E]^{-1} [E - C(\sigma_0)] \]

\[V_{\sigma'} = V_{\sigma_0} - V_{\sigma_0}S^T [SV_{\sigma_0}S^T + V_E]^{-1} SV_{\sigma_0} \]

\[C'(\sigma') \approx C(\sigma_0) + S(\sigma' - \sigma_0) = C(\sigma_0) + SV_{\sigma_0}S^T [SV_{\sigma_0}S^T + V_E]^{-1} [E - C(\sigma_0)] \]

\[V_C' \approx SV_{\sigma'}S^T = SV_{\sigma_0}S^T - SV_{\sigma_0}S^T [SV_{\sigma_0}S^T + V_E]^{-1} SV_{\sigma_0}S^T \]

\[V_E' = V_E - V_E [SV_{\sigma_0}S^T + V_E]^{-1} V_E \]

\[V_{E-\sigma}' = V_E [SV_{\sigma_0}S^T + V_E]^{-1} SV_{\sigma_0} \]

GLLS: “This approach is a Bayesian approach in the sense that experimental data are used to adjust prior values. Although probability density functions are not considered explicitly.”
Bayesian MC techniques

- “Prior probability” \(p_0(\sigma | \sigma_C, V_C) \) and “likelihood” \(L(y_E, V_E | \sigma) \) are independent \(pdfs \)
- The principle of maximum entropy -> normal distributions
 - Note: “In case the normality assumption is not acceptable, \(\sigma \) may be mapped onto an approximately normally distributed vector by an invertible transformation” \([10,16]\)
- Bayes’ Theorem: “posterior” normal distribution: \(p(\sigma | E) \sim N(\sigma', V_{\sigma'}) \)

Multivariate Normal Bayesian model

<table>
<thead>
<tr>
<th>(\sigma' = \sigma_C + M_{\sigma,C} [M_C + V_E]^{-1} [E - \bar{C}])</th>
<th>(\sigma' = \sigma_0 + V_{\sigma_0} S^T [SV_{\sigma_0} S^T + V_E]^{-1} [E - C(\sigma_0)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\sigma'} = V_C - M_{\sigma,C} [M_C + V_E]^{-1} V_{\sigma,C}^T)</td>
<td>(V_{\sigma'} = V_{\sigma_0} - V_{\sigma_0} S^T [SV_{\sigma_0} S^T + V_E]^{-1} SV_{\sigma_0})</td>
</tr>
<tr>
<td>(C'(\sigma') = \bar{C} + M_C [M_C + V_E]^{-1} [E - \bar{C}])</td>
<td>(C'(\sigma') = C(\sigma_0) + SV_{\sigma_0} S^T [SV_{\sigma_0} S^T + V_E]^{-1} [E - C(\sigma_0)])</td>
</tr>
<tr>
<td>(V_{\bar{C}}' = M_C - M_C [M_C + V_E]^{-1} V_C)</td>
<td>(V_{\bar{C}}' = SV_{\sigma_0} S^T - SV_{\sigma_0} S^T [SV_{\sigma_0} S^T + V_E]^{-1} SV_{\sigma_0} S^T)</td>
</tr>
</tbody>
</table>

... or MOCABA equations \([10]\)
2.2 Bayesian + MC Techniques

- **Bayesian MC (BMC) techniques** [3,4,5,6,7,8,9]
 - Provide many samples of nuclear data files, for each sampled nuclear data file simulation is performed

- **Methodologies for randomly sampled “σ”**
 - **NUDUNA and SANDY + Bayesian Approach**
 - Samples of ND files for “a priori” $p_0(\sigma|\sigma_C, V_C)$ evaluated files
 - Based on normal (or log-normal) distributions because no further information on the distribution of the nuclear data are provided in evaluated files [11,12]
 - **“Total Monte Carlo” (TMC) + Bayesian MC Approach** [3,4,7,8]
 - Sampling performed at the level of nuclear parameters in nuclear reaction codes (e.g. TALYS or EMPIRE)
 - $p_0(\sigma|\sigma_C, V_C)$ will NOT be normal!?. Then, lost of information about the prior function if it is approximated by a normal pdf
2.3 Bayesian + Monte Carlo: MOCABA

- NUDUNA and SANDY + Bayesian Approach
 - NUDUNA/SANDY provides samples of nuclear data files
 \[
 \bar{\sigma}_i = \frac{\sum_{k=1}^{N} \sigma_{i,k}}{N}
 \]
 \[
 V_{\sigma_{ij}} = \frac{\sum_{k=1}^{N} (\sigma_{i,k} - \bar{\sigma}_i)^T (\sigma_{j,k} - \bar{\sigma}_j)}{N}
 \]
 \[
 \bar{C}_m = \frac{\sum_{k=1}^{N} C_m(\sigma_k)}{N}
 \]
 \[
 M_{C_{mn}} = \frac{\sum_{k=1}^{N} (C_m(\sigma_k) - \bar{C}_m)^T (C_n(\sigma_k) - \bar{C}_n)}{N}
 \]
 \[
 M_{\sigma_{i-c_m}} = \frac{\sum_{k=1}^{N} (\sigma_{i,k} - \bar{\sigma}_i)^T (C_m(\sigma_k) - \bar{C}_m)}{N}
 \]

- Multivariate Normal Bayesian model
 \[
 \sigma' = \sigma + M_{\sigma,C} [M_C + V_E]^{-1} [E - \bar{C}]
 \]
 \[
 V_{\sigma'} = \sigma' - M_{\sigma,C} [M_C + V_E]^{-1} V_{\sigma,C}^T
 \]
 \[
 C'(\sigma') = \bar{C} + M_C [M_C + V_E]^{-1} [E - \bar{C}]
 \]
 \[
 V_C' = M_C - M_C [M_C + V_E]^{-1} V_C
 \]

... or MOCABA equations
2.4 Bayesian Monte Carlo: BMC

- TMC + Bayesian MC Approach (BMC)
 - “The requirement of a well-defined prior pdf is a serious limitation of the previous approach if non-informative prior distributions are known [3,4]“
 - e.g. model parameters \(x \) which lead through a model transformation \(\sigma = \mathcal{M}(x) \)
 - BMC approach will use TMC method to generate “a priori” random files which are not explicitly well-defined normal pdfs
 - BMC incorporates integral “a priori” information through **likelihood factors**

\[
L(y_E, V_E | \sigma) \sim e^{-\chi^2_k/2} \quad \text{with:} \quad \chi^2_k = [E - C(\sigma_k)]^T V_E^{-1} [E - C(\sigma_k)]
\]

- One can calculate a “weight” for any k-sample set: \(\omega_k = e^{-\chi^2_k/2} \)

- “A posteriori” moments:

\[
\sigma_i' = \frac{\sum_{k=1}^{N} \omega_k \times \sigma_{i,k}}{\sum_{i=k}^{N} \omega_k} \quad V'_{\sigma_{ij}} = \frac{\sum_{k=1}^{N} \omega_k \times (\sigma_{i,k} - \sigma_i')^T (\sigma_{j,k} - \sigma_j')}{\sum_{k=1}^{N} \omega_k}
\]
2.4 Bayesian Monte Carlo: BMC

- **TMC + Bayesian MC Approach (BMC)**
 - “A posteriori” moments:

 \[
 \sigma'_i = \frac{\sum_{k=1}^{N} \omega_k \times \sigma_{i,k}}{\sum_{i=k}^{N} \omega_k} \\
 V'_{\sigma_{ij}} = \frac{\sum_{k=1}^{N} \omega_k \times (\sigma_{i,k} - \sigma'_i)^T (\sigma_{j,k} - \sigma'_j)}{\sum_{k=1}^{N} \omega_k}
 \]

 \[
 C'_m = \frac{\sum_{k=1}^{N} \omega_k \times C_m(\sigma_k)}{\sum_{k=1}^{N} \omega_k} \\
 V'_{C_{mn}} = \frac{\sum_{k=1}^{N} \omega_k \times (C_m(\sigma_k) - C'_m)^T (C_n(\sigma_k) - C'_n)}{\sum_{k=1}^{N} \omega_k}
 \]

 - Other “weights” definitions
 - Simpler definitions of \(\omega_k \) values can lead to very low small weights
 - So-called BFMC method, renormalization of \(\omega_k \)

 \[
 \omega_k = e^{-\chi_k^2 / \chi_{min}^2} \\
 \omega_k = e^{-\left(\frac{\chi_k^2}{\chi_{min}^2}\right)^2}
 \]
 - *Lost of normality assumption!? ... still Bayesian?* pre-requisite (not limitation) of any Bayesian to have a well-defined prior distribution and a well-defined likelihood function
2.5 Selection of Benchmarks

- **Scope of nuclear data adjustment (DA)**
 - Criticality Benchmarks
 - Nuclear data evaluations have used mainly criticality benchmarks to match C/E
 - However, \textit{keff} is a global parameter that can be achieved through many possible combinations of nuclear data -> inherent compensating effects in DA
 - Other sources of integral data
 - Spectral index measurements
 - Delayed neutron fraction [14]
 - Shielding/transmission leakage neutron spectra [14]

- **Exercise:** BMC with criticality and transmission benchmarks jointly!!
 5000 random files 235U/TENDL2014
 Calculations with MCNP6.1.1

- LLNL-235U pulsed sphere
 - U-235, 0.7 mfp, fwhm=2.0 ns, NE213-B bias=1.6, FP=945.54 cm, 26-deg

Fig. Dimensions of the small 235U solid spherical target, Report: LLNL UCID-17332

Total $\chi^2=3.54$

- HMF1 – Godiva Benchmark

- Sensitivity Analysis
 - HMF1 (DICE database)
 - Large values for nubar and fission
 - Elastic and inelastic 10 times lower than fission/nubar
 - En < 5 MeV

- Sensitivity Analysis: “LLNL- 235U” pulsed sphere
 - Fission mainly around 14 MeV, other terms with lower values

Note: Sensitivities predicted with MCSEN code [15]

- Sensitivity Analysis: “LLNL- 235U” pulsed sphere
 - Nu-bar mainly 14 MeV

Note: Sensitivities predicted with MCSEN code [15]

- Sensitivity Analysis: “LLNL- 235U” pulsed sphere
 - **MT91**, between 1.8-14 MeV

Note: Sensitivities predicted with MCSEN code [15]
High sensitivity in criticality for HMF1 (and LLNL-235U)

- large MT18 “motive force”… cause of the cross-section alteration

Strong reduction of uncertainty: ~1.5%
High sensitivity in LLNL-235U: +2.4%
- large MT4 "motive force"… cause of the cross-section alteration
- Reduction of uncertainty: ~0.6%
3. Conclusion

- **Bayesian MC adjustment for “HMF1- Godiva” Benchmark**

<table>
<thead>
<tr>
<th>Constraints</th>
<th>HMF1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keff (MEAN)</td>
</tr>
<tr>
<td>PRIOR....</td>
<td>0.99504</td>
</tr>
<tr>
<td>POST.... Only HMF1</td>
<td>0.99992</td>
</tr>
<tr>
<td>POST.... Only LLNL-235U</td>
<td>0.99146</td>
</tr>
<tr>
<td>POST.... Both HMF1 +LLNL-235U</td>
<td>0.99985</td>
</tr>
</tbody>
</table>

- **Bayesian MC adjustment for “LLNL-235U” Benchmark**

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Total CHI^2 LLNL- 235U/0.7mfp Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIOR....</td>
<td>3.52</td>
</tr>
<tr>
<td>POST.... Only HMF1</td>
<td>3.69</td>
</tr>
<tr>
<td>POST.... Only LLNL-235U</td>
<td>3.13</td>
</tr>
<tr>
<td>POST.... Both HMF1 +LLNL-235U</td>
<td>3.37</td>
</tr>
</tbody>
</table>
3. Conclusion

The aim of this work is to review different Monte Carlo (MC) techniques used to propagate nuclear data uncertainties.

1. Uncertainty Quantification (UQ) studies
 - Required in safety calculations of large scale systems ~ PWR
 - ND uncertainty propagation on the main design parameters
 - Decomposition of uncertainty in: 235U-238U-239Pu & XS-ν-PFNS
 - Assessing nuclear data/uncertainty trends
 - Determining contributors & uncertainty targets for a safety operation

2. Bayesian Monte Carlo approaches for data adjustment
 - Multivariate Normal Bayesian model relying on NUDUNA/SANDY codes
 - TMC + Bayesian MC Approach (BMC)
 - Selection of Benchmarks.
 - Exercise: BMC applied for Criticality + Shielding/Transmission
 - Importance of additional sensitivity analysis (…“motive force” [13] !?)
References

[16] A. Hoefer, private communication
Extra slides
<table>
<thead>
<tr>
<th></th>
<th>Bayesian MC</th>
<th>HMF1</th>
<th>HMF8</th>
<th>HMF18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>keff (MEAN)</td>
<td>Δkeff (STD)</td>
<td>keff (MEAN)</td>
</tr>
<tr>
<td>PRIOR....</td>
<td></td>
<td>0.99504</td>
<td>0.01119</td>
<td>0.99125</td>
</tr>
<tr>
<td>POST....</td>
<td>HMF1</td>
<td>0.99992</td>
<td>0.00100</td>
<td>0.99595</td>
</tr>
<tr>
<td>POST....</td>
<td>HMF1_HMF8_HMF18</td>
<td>0.99985</td>
<td>0.00099</td>
<td>0.99572</td>
</tr>
<tr>
<td>POST....</td>
<td>LLNL-235U</td>
<td>0.99146</td>
<td>0.01069</td>
<td>0.98765</td>
</tr>
<tr>
<td>POST....</td>
<td>HMF1 +LLNL-235U</td>
<td>0.99985</td>
<td>0.00099</td>
<td>0.99572</td>
</tr>
</tbody>
</table>