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Abstract. Correlations between neutron inelastic scatterings angular 

distributions are not included in the Joint Evaluated Fission and Fusion 

(JEFF) nuclear data library, while they are key quantities for uncertainty 

propagation of nuclear data. By reproducing the angle-integrated cross 

sections and uncertainties of JEFF-3.1.1, the present work obtains 

covariance matrix between high energy model parameters using the least 

square method implemented in the CONRAD code. With this matrix, it is 

possible to generate correlations between angle-integrated cross sections and 

angular distributions, which are usually presented by Legendre coefficients. 

As expected, strong correlations are found, for example, between the 

Legendre coefficients of elastic and first-level-inelastic scatterings and the 

angle-integrated total, elastic, total inelastic cross sections. 

1. Introduction 

In the nuclear industry, both Reactor Pressure Vessels (RPVs) for Pressurized Water Reactors 

(PWRs) and fuel cladding in Sodium-cooled Fast Reactors (SRFs) are Stainless Steel (SS), 

which is also a candidate cladding material for PWR Accident Tolerant Fuel (ATF) [1], [2]. 

SS is mainly constituted with iron, in which the abundance of 56Fe is 91.8%. Therefore, the 

analyses of covariance matrices of 56Fe are necessary for both neutronic investigations and 

studies of neutron irradiation in materials.  

The angular distribution of scattering reactions, called also as the differential scattering 

cross section, is one of the most important quantities in nuclear data evaluation. The angular 

distribution of neutrons determines directly the neutron spectrum. On the other hand, the 

recoil energy of a Primary Knock-on Atom (PKA) is deduced from the angular distributions, 

while the former is the basis for investigating the irradiation damage of materials.  

However, the complete covariance matrices of differential scattering cross sections in the 

Joint Evaluated Fission and Fusion (JEFF) nuclear data libraries are not given. The present 

work focuses on the determination of the covariance matrix between high energy model 

parameters for 56Fe. This matrix can be used to calculate complete covariance matrix between 

angle-integrated cross sections and Legendre coefficients. 
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2. Methods  

The neutron inelastic scattering threshold is 862 keV for 56Fe in both JEFF-3 libraries and 

ENDF/B-VII libraries. The second level of inelastic scattering of 56Fe starts at 2.1 MeV. Due 

to few experimental data for each level of inelastic scattering, the R-matrix theory [3] is no 

longer the best choice for neutron energy above 2 MeV. Therefore, the Optical Model (OM) 

and the Statistical Model (SM) are used in the present work. The Bayes’ theorem is used to 

determine the optimized model parameters and the corresponding covariance matrix. 

2.1 Optical Model 

In high energy region, the OM is usually used to calculate cross sections. Morillon and 

Romain proposed parameters for a Dispersive Optical Model Potential (DOMP) for neutrons 

with incident energies from 1 keV to 200 MeV [4]: 

𝑈(𝑟, 𝐸) = [𝑉𝑉(𝐸) + 𝑖𝑊𝑉(𝐸)]𝑓(𝑟, 𝑅, 𝑎) + [𝑉𝑆(𝐸) + 𝑖𝑊𝑆(𝐸)]𝑔(𝑟, 𝑅, 𝑎) 

+[𝑉𝑆𝑂(𝐸) + 𝑖𝑊𝑆𝑂(𝐸)]
1

𝑟
(

ℎ

𝑚𝜋𝑐
)
2

𝑔(𝑟, 𝑅, 𝑎)𝟏 ∙ 𝝈,                  ( 1 ) 

where V and W respectively represent the real and imaginary terms of potential, the subscript 

V, S, SO respectively refer to the Volume, Surface, and Spin-Orbit parts in the DOMP. The 

volume shape function f is a Wood-Saxon form and g is its partial deviation to position r: 

𝑓(𝑟, 𝑅, 𝑎) =
1

1+exp[(𝑟−𝑅)/𝑎]
.                     ( 2 ) 

𝑔(𝑟, 𝑅, 𝑎) = −4𝑎
𝑑

𝑑𝑟
𝑓(𝑟, 𝑅, 𝑎).              ( 3 ) 

The same radius in Woods-Saxon form is used for different parts in the DOMP. For 56Fe, the 

radius and the diffuseness proposed by Morillon and Romain are [4]: 

𝑅 = 1.268𝐴1/3(fm),                  ( 4 ) 

𝑎 = 0.566 + 5 × 10−9𝐴3(fm),              ( 5 ) 

where A is the nuclear mass number. 

All prior parameters in the DOMP can be found in the Reference Input Parameter Library 

(RIPL) [5]. The OM and SM calculations are performed with the nuclear reaction code 

TALYS [6], in which the OM code ECIS [7] is included. 

2.2 Optimization and Uncertainties of Parameters 

The COde for Nuclear Reaction Analysis and Data assimilation (CONRAD) [8] is used in 

the present work for the data assimilation. The Bayes’ theorem implicates that the posterior 

probability density is: 

𝑝(�⃗�|�⃗⃗�, 𝑈) =
𝑝(�⃗⃗�|�⃗�, 𝑈)𝑝(𝑥,𝑈)

∫𝑝(�⃗⃗�|�⃗�, 𝑈)𝑝(𝑥,𝑈)𝑑𝑥
,              ( 6 ) 

where vector �⃗� represents the parameters in physical model, �⃗⃗� denotes the experimental data, 

and U refers to the prior information. Under the hypothesis of Gaussian distribution for the 

probability density of �⃗�, maximization of the posterior probability density is equivalent to 

minimization of the Generalized Least Square (GLS) cost function: 

𝜒𝐺𝐿𝑆
2 = (�⃗� − �⃗�0)

𝑇𝑀𝑥
−1(�⃗� − �⃗�0) + (𝐶 − �⃗⃗�)

𝑇
𝑀𝐸

−1(𝐶 − �⃗⃗�),  ( 7 ) 

where �⃗�0 represents the vector containing prior values, 𝐶 and �⃗⃗� denote the calculated and 

experimental data, respectively. 𝑀𝑥 (𝑀𝐸 resp.) stands for the covariance matrix of �⃗� (�⃗⃗� resp.). 

In the present work, the cross sections in JEFF-3.1.1 [9] are used as the experimental data in 
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order to obtain the results corresponding to other information in JEFF-3.1.1. The Gauss-

Newton scheme (known as Newton method for one-dimension solution) is used to find the 

minimum of the GLS cost function by iteration. The criterion of the convergence judgment 

is the relative variation of 𝜒𝐺𝐿𝑆
2 . It is set to 10-5 in the present work. 

The parameters contained in the vector �⃗� are observable parameters. Posterior �⃗� and 𝑀𝑥 

are determined in the fitting procedure by iteration. On the other hand, nuisance parameters 

have also contributions to the posterior covariance matrix between observable parameters �⃗�. 

The posterior covariance matrix between observable parameters can be expressed by [10]: 

Σ11 = 𝑀𝑥 + (𝐺𝑥
𝑇𝐺𝑥)

−1𝐺𝑥
𝑇𝐺𝜃𝑀𝜃𝐺𝜃

𝑇𝐺𝑥(𝐺𝑥
𝑇𝐺𝑥)

−1.    ( 8 ) 

where the matrices G contain partial derivation of calculated values. For 𝑘 = 𝑥, 𝜃, 

𝐺𝑘,(𝑖,𝑗) = 𝜕𝐶𝑖 𝜕𝑘𝑗⁄ .      ( 9 ) 

More information about the data assimilation applied in the generation of covariance matrices 

for nuclear data can be found in Ref. [10]. 

An important remark is that the elastic cross sections from 850 keV up to 3.905 MeV in 

JEFF-3.1.1 are direct interpolations of experimental data of natural iron (Kinney’s 

measurements [11] between 850 keV and 2.5 MeV and Smith’s results [12] from 2.5 MeV 

to 3.905 MeV) [13]. Therefore, the OM and the SM cannot reproduce the structure in the 

angle-integrated cross sections of JEFF-3.1.1. The least square method implemented in 

CONRAD code permits to determine high energy model parameters that “mimic” the JEFF-

3.1.1 evaluation. 

2.3 Angular Distribution 

In ENDF-6 format, the angular distribution is given by: 

𝜎(𝜇, 𝐸) =
𝜎(𝐸)

2𝜋
𝑓(𝜇, 𝐸),       ( 10 ) 

where 𝜎(𝐸)  is the angle-integrated cross section at incident neutron energy E, and the 

normalized probability distribution is expressed by: 

𝑓(𝜇, 𝐸) = ∑
2𝑙+1

2

𝑁𝐿
𝑙=0 𝑎𝑙(𝐸)𝑃𝑙(𝜇),            ( 11 ) 

where 𝜇 is the cosine of neutron emission angle, Pl is the l-th order Legendre polynomial, al 

is the coefficient of Legendre polynomial stored in the ENDF, NL (≤64) is the highest order 

of Legendre polynomial. NL increases with incident energy due to more forward-oriented 

angular distribution for higher energy (e.g. 4 at low incident energy and up to 20 at high 

energy in JEFF-3.1.1). Because the integral of Pl (l > 0) over [-1,1] is null and that of P0 is 2, 

one can conclude that 𝑎0(𝐸) = 1. It is not necessary to store 𝑎0 or to analyze its uncertainty.  

3. Results and Discussion 

3.1 Reproduction of cross sections 

Figure 1 shows the 56Fe total and first-level-inelastic scattering cross sections of JEFF-3.1.1 

(dashed line) and the results with corresponding uncertainties calculated by the OM and the 

SM with optimized parameters. The fluctuations from experimental data of JEFF-3.1.1 

cannot be reproduced by the OM and the SM, but the global correspondence between our 

results and JEFF-3.1.1 is ensured, especially for incident energy above 6 MeV. It is noticeable 

that the OM parameters should be improved to compute the cross sections below 4 MeV for 
56Fe. However, such an approach is sufficient for producing suitable covariance information 

for nuclear applications on atomic displacement and fast neutron flux in RPVs. 
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Figure 1. Total (left) and first-level-inelastic scattering (right) cross sections of JEFF-3.1.1 (dashed 

line) and the cross sections with corresponding uncertainties obtained in the present work 

3.2 Correlation matrices 

The correlation matrices presented in the present work are from neutron energy of 860 keV 

up to 20 MeV with logarithm scale. Figure 2 shows the correlation matrices between angle-

integrated cross sections, including the total cross section (MT1), elastic scattering cross 

section (MT2), total inelastic scattering cross sections (MT4), first- to third-level-inelastic 

scattering cross sections (MT51 to MT53), and the continuum inelastic scattering (MT91). 

Figure 3 (Figure 4 resp.) illustrates the correlations between angle-integrated cross sections 

and the Legendre coefficients of elastic (first-level-inelastic resp.) scattering. Figure 5 

presents the correlations between Legendre coefficients from the 1st order to the 5th order for 

MT51. Figure 6 reveals the correlations of Legendre coefficients between MT2 and MT51. 

 
Figure 2. Correlation matrices between different angle-integrated cross sections denoted by the 

corresponding MT numbers 

In Figure 2, the existence of correlations with MT91 at low energy is due to the low 

incident threshold energy of the MT91 reaction in TALYS. It has no influence on the 

application because of the negligible MT91cross sections between the threshold in TALYS 
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and that in evaluated libraries. The results are in agreement with the expectation because: (a) 

MT1 is the sum of all cross sections and MT2 is predominant at low energy; (b) MT4 is the 

sum of MT51 to MT80 plus MT91, while MT51 has the most important contribution at low 

energy and MT91 dominates at high energy. 

 
Figure 3. Correlation matrices between cross sections and Legendre coefficients of elastic scattering 

 
Figure 4. Correlation matrices between angle-integrated cross sections and Legendre coefficients of 

first-level-inelastic scattering 

Strong correlations are found between angle-integrated cross sections and low-order 

Legendre coefficients for MT2 (Figure 3). The correlations of Legendre coefficients of MT2 

and angle-integrated cross sections of MT4 are important within the OM and the SM. 

However, weak correlations exist between MT2 and MT91 for both differential and angle-

integrated cross sections (Figure 2 and Figure 3). Comparing with MT2 (Figure 3), the 
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Legendre coefficients of MT51 have less strong correlations with angle-integrated cross 

sections (shown in Figure 4). 

 
Figure 5. Correlation matrices between Legendre coefficients from the 1st to the 5th order for the first-

level-inelastic scattering 

 
Figure 6. Correlation matrices of Legendre coefficients between the elastic scattering and the first-

level-inelastic scattering 

From Figure 5, one can conclude that the correlations between Legendre coefficients are 

of great importance for the first-level-inelastic scattering. It is noticeable that the correlations 

between Legendre coefficients for elastic scattering is even stronger.  Figure 6 shows the 

strong correlations between low-order Legendre coefficients of MT2 and those of MT51. 

Therefore, correlations between differential and angle-integrated cross sections should be 
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considered in nuclear applications, such as the uncertainty quantification for fast neutron 

fluence investigated in Ref. [14]. 

4. Conclusions  

Thanks to the least square method implemented in the CONRAD code, we succeed to 

reproduce the n+56Fe angle-integrated cross sections and uncertainties of JEFF-3.1.1 with the 

optical model (ECIS) and the statistical model (TALYS). Correlations between all angle-

integrated cross sections and differential scattering cross sections are obtained. Strong 

correlations are found between angle-integrated cross sections and differential cross sections. 

The obtained covariance matrices between differential and angle-integrated cross sections 

are useful for further applications on uncertainty quantification of neutron fluence in reactor 

pressure vessels and neutron-induced irradiation damage of materials containing 56Fe. 
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