Gauged flavour symmetries and Z' for $b \rightarrow sll$

Peter Cox

Kavli IPMU

Based on work with Rodrigo Alonso, Chengcheng Han, Tsutomu Yanagida

(arXiv:1704.08158, arXiv:1705.03858)

Anomalies in $b \rightarrow sll$

 \triangleright Fits to the $b \to s l l$ data suggest new physics contributions in \mathcal{C}_9^{μ} and \mathcal{C}_{10}^{μ}

$$
\mathcal{O}_9^l = \frac{\alpha}{4\pi} \left(\bar{s} \gamma_\mu b_L \right) \left(\bar{l} \gamma_\mu l \right)
$$

$$
\mathcal{O}_{10}^l = \frac{\alpha}{4\pi} \left(\bar{s} \gamma_\mu b_L \right) \left(\bar{l} \gamma_\mu \gamma^5 l \right)
$$

$b \rightarrow sll$ with a Z'

 \triangleright One of the simple, tree-level choices to UV complete the effective operators is a Z'

Necessary ingredients:

- Symmetry that involves both quarks and leptons
- Non-trivial structure in flavour space

Models must also be self-consistent (e.g. anomalies cancel)

What is the underlying motivation / flavour structure?

Gauged flavour symmetries

 \triangleright An obvious way forward is gauged horizontal/flavour symmetries

$G_{SM} \times G'$

 \triangleright Take a minimal approach and assume only chiral fermions are SM+3 v_R

What is the largest, anomaly-free local symmetry?

Gauged flavour symmetries

 \triangleright An obvious way forward is gauged horizontal/flavour symmetries

$G_{SM} \times G'$

 \triangleright Take a minimal approach and assume only chiral fermions are SM+3 v_R

What is the largest*, anomaly-free local symmetry?

$$
SU(3)_Q \times SU(3)_L \times U(1)_{B-L}
$$

*largest does *not* mean it contains them all

Connecting quarks and leptons

 $SUSU(3)_Q \times SU(3)_L \times U(1)_{B-L}$ doesn't directly connect quarks and leptons in flavor space

 \triangleright A natural starting point is the diagonal subgroup:

 $SU(3)_H \times U(1)_{B-L}$

 \triangleright Fits nicely with Pati-Salam quark-lepton unification $SU(4) \times SU(2)_L \times SU(2)_R \times SU(3)_H$

$$
SU(3)_H \times U(1)_{B-L} \longrightarrow U(1)_h
$$
\n
$$
\rightarrow
$$
 Breaking pattern is realised by two triplets: $\phi_1, \phi_2 \sim (3, -1)$
\n
$$
\langle \phi_1 \rangle = (v_H, 0, 0) \qquad \langle \phi_2 \rangle = v'_H(c_\alpha, s_\alpha, 0)
$$
\n
$$
\rightarrow
$$
 Can also generate Majorana masses for two RH neutrinos
\n
$$
\bar{v}_R^c \lambda_{ij} \phi_i^* \phi_j^{\dagger} v_R
$$
\n
$$
\rightarrow
$$

$$
U(1)_h: T_h = T_H^8 + \frac{1}{2\sqrt{3}} T_{B-L}
$$
\n
$$
T_Q^h = \frac{1}{2\sqrt{3}} \begin{pmatrix} \frac{4}{3} \\ \frac{4}{3} \\ -\frac{5}{3} \end{pmatrix} \qquad T_L^h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -3 \end{pmatrix} \qquad \frac{U(1)_h}{\sim \text{TeV}}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -3 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -3 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -3 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
U(1)_h = \frac{1}{2\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
U(1)_h = \
$$

Rotation to mass basis: $f_{L(R)} \rightarrow U_{L(R)} f_{L(R)}$

- \triangleright Chiral rotation to mass basis after $U(1)_h$ and EW breaking
- Potentially have many new mixing angles involving 3rd generation
- \triangleright For simplicity, assume the minimal scenario:

$$
U_{d_L} = V_{CKM} \t U_{e_L} = R^{23}(-\theta_l)
$$

\n
$$
U_{u_L} = 1 \t U_{\nu_L} = R^{23}(\theta_{23} - \theta_l)R^{13}(\theta_{13})R^{12}(\theta_{12})
$$

(no rotation of RH fermions)

$$
J_{\mu} = \sum_{f} \bar{f} U_{f}^{\dagger} T^{f} U_{f} \gamma_{\mu} f
$$

➢ Off-diagonal couplings in down sector have an MFV structure:

$$
\bar{d}^i \gamma_\mu V_{ti}^* V_{tj} d_j
$$

$U(1)_h$ phenomenology $T_Q \sim$ 4 3 , 4 3 , − 5 $\frac{3}{3}$, $T_L \sim (0, 0, -3)$

Remaining parameter space should be covered by high-pT searches at HL-LHC [talk by A. Greljo]

What other symmetries could we have?

Recall, the largest local symmetry is

$$
SU(3)_Q \times SU(3)_L \times U(1)_{B-L}
$$

- \triangleright What other breaking patterns could we have?
- \triangleright Many possible U(1) subgroups to consider

Can reduce the number of possibilities by imposing some 'phenomenological' constraints…

Reducing the possibilities

In quark sector, need to avoid dangerous FCNC mediated by Z' i.e. $K - \overline{K}$ and $D^0 - \overline{D}{}^0$ mixing

1) Assume same charges for 1st & 2nd generation

$$
Q_q = (a, a, b)
$$

Potentially have more freedom in lepton sector

2) Impose requirement that two RH neutrinos can obtain large Majorana masses, motivated by see-saw and leptogenesis

$$
Q_l = (0, 1, -1) \qquad Q_l = (0, 0, -1)
$$

Two classes of U(1)

 \triangleright With a few assumptions, narrowed down to just two classes of U(1) at low-energy!

$$
Q_q = (a, a, -2a),
$$
 $Q_l = (0, 1, -1)$
[see Crivellin, D'Ambrosio, Heeck 1503.03477] $L_\mu - L_\tau$

$$
Q_q = \left(a, a, \frac{1}{3} - 2a\right), \quad Q_l = (0, 0, -1)
$$

 $SU(3)_H$ model is $a = 4/9$

Two classes of U(1)

[Crivellin, D'Ambrosio, Heeck 1503.03477]

Flavoured B-L

$$
Q_q = (a, a, \frac{1}{3} - 2a), \quad Q_l = (0, 0, -1)
$$

Interesting special case $a = 0 \longrightarrow$ flavoured B-L symmetry

- \triangleright B-L doesn't need to be universal anomalies cancel *within* each generation (like SM)
- \triangleright From point of view of $b \to s l l$, flavoured B-L is likely to be the *least* constrained possibility (lack of 1^{st} and 2^{nd} generation couplings means it can evade direct searches)

Rotation to mass basis: $f_{L(R)} \rightarrow U_{L(R)} f_{L(R)}$

- \triangleright In this case, assuming only CKM angles in the quark sector gives the wrong sign contribution to C_9^{μ}
- \triangleright Take a minimal approach and introduce two new angles

$$
U_{d_L} = R^{23}(\theta_q),
$$

$$
U_{u_L} = R^{23}(\theta_q) V_{CKM}^{\dagger},
$$

$$
U_{e_L} = R^{23}(\theta_l)
$$

$$
U_{\nu_L} = R^{23}(\theta_l) U_{PMNS},
$$

(no rotation of RH fermions)

$$
\delta C_9^{\mu} = - \delta C_{10}^{\mu} = - \frac{\pi}{\alpha \sqrt{2} G_F V_{tb} V_{ts}^*} \frac{g^2 s_{\theta_q} c_{\theta_q} s_{\theta_l}^2}{3M^2}
$$

$U(1)_{(B-L)_3}$ phenomenology

 $\overline{B}_s - B_s \Rightarrow |\theta_q| \lesssim 0.15$

 $\tau \rightarrow \mu \mu \mu$ disfavours maximal mixing

 $U(1)_{(B-L)_3}$ phenomenology

Connection with dark matter

 ν_R^3 is charged under $U(1)_{(B-L)_3}$ and remains light $\boldsymbol{\rightarrow}$ DM candidate? \rightarrow Yes! but already strong constraints from Z' searches LHC Z' searches $m_{\phi} = m_{\chi}/3$ Violates $\theta = 10^{-3}$ perturbative $10²$ unitarity Z' Mass [GeV] Z' Mass [GeV] R_K , R_K^* @ 1σ 1000 $\theta_q = -0.1$ $Z \rightarrow \mu\mu$ $\theta_l = \pi/2$ $9 = 10^{2}$ Xe 1 T 100 Smaller θ_q Landau pole Fermi below M_{Pl} 10

10

Direct detection

100

Dark Matter Mass [GeV]

1000

 10^{4}

Summary

- \triangleright Z' provides a simple, tree-level explanation of the $b \rightarrow s l l$ anomalies
- Starting from $SU(3)_Q \times SU(3)_L \times U(1)_{B-L}$, two interesting classes of U(1) to consider
- \triangleright One possibility is $SU(3)_H \times U(1)_{R-I} \rightarrow U(1)_h$ \rightarrow can fit the data currently, but strong constraints from LHC searches
- \triangleright Flavoured B-L can evade direct searches and remain valid to high scale
- \triangleright In general, additional complexity needed in the Yukawa sector to generate mixing with 3^{rd} generation after $U(1)$ breaking

Backup

High-pT projections for $U(1)_h$

Courtesy of Admir Greljo

Yukawa Structure

 \triangleright Off-diagonal Yukawa couplings involving 3rd generation forbidden by new gauge symmetry

$$
Y_d = \left(\begin{array}{cc} \hat{Y}_d^{2 \times 2} & 0 \\ 0 & Y_b \end{array}\right)
$$

 \rightarrow Require a mechanism to generate these upon $U(1)$ ' breaking

Two general possibilities:

- Additional Higgs doublets charged under $U(1)$ '
- New vector-like fermions

Yukawa Structure for $U(1)_{(B-L)_3}$

To generate general 3x3 Yukawa couplings, introduce:

• $U(1)_{(B-L)_3}$ neutral *V-L* fermions: $Q_{L,R}, U_{L,R}, D_{L,R}, L_{L,R}, E_{L,R}, N_{L,R}$

$$
Q_{L,R}
$$
, $U_{L,R}$, $D_{L,R}$, $L_{L,R}$, $E_{L,R}$, $N_{L,R}$

• SM singlet scalars $(U(1)'$ breaking): $\phi_l(+1), \phi_q(+\frac{1}{3})$ 3)

Rotation Matrices for $U(1)_{(B-L)_3}$

$$
U_{d_L} = \begin{pmatrix} \mathbf{V}_{L}^{d} & -\frac{Y_D^{\prime} \phi_q^*}{M_D Y_b} Y_D \\ \frac{Y_D^{\prime *} \phi_q}{M_D^* Y_b^*} Y_D^{\dagger} \mathbf{V}_{L}^{d} & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)
$$

$$
U_{d_R} = \begin{pmatrix} \mathbf{V}_{R}^{d} & -\frac{Y_Q^{\prime *} \phi_q^*}{M_Q^* Y_b^*} Y_Q^* \\ \frac{Y_Q^{\prime} \phi_q}{M_Q Y_b} Y_Q^T \mathbf{V}_{R}^{d} & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)
$$

 \triangleright V-L fermions can be relatively heavy and still easily generate CKM-sized mixing angles

 \triangleright RH rotations can be naturally suppressed by decoupling M_O

Connection with dark matter?

> One RH neutrino is charged under $U(1)_{(B-L)_3}$ and remains light **■ DM** candidate?

Spontaneous breaking by $\Phi(+2)$, can generate Majorana mass for v_R^3

$$
\mathcal{L} = \frac{i}{2}\bar{\chi}\partial\!\!\!/\chi + \frac{g}{2}Z'_\mu\bar{\chi}\gamma^5\gamma^\mu\chi - \left(\frac{g}{2}\bar{\chi}\Phi P_R\chi + h.c.\right) \qquad \chi = (-\varepsilon\nu_R^{3*}, \nu_R^3)^T
$$

 \triangleright Stability can be guaranteed by \mathbb{Z}_2

≻ Relic abundance from freeze-out via $U(1)_{(B-L)_3}$ gauge interactions

