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FIG. 3. Projections of the fit results and data points with statistical uncertainties for the high M2
miss region. Top left: D+`�;

top right: D⇤+`�; bottom left: D0`�; bottom right: D⇤0`�.

RESULTS AND DISCUSSION

The best-fit results, including systematic uncertainties,
are

R(D) = 0.375± 0.064± 0.026 (12)

R(D⇤) = 0.293± 0.038± 0.015 . (13)

Figure 6 shows the exclusion level in the R(D)–R(D⇤)
plane, based on the likelihood distribution that is con-
voluted with a correlated two-dimensional normal distri-
bution according to the systematic uncertainties. The
exclusions of the central values of the BaBar mea-

surement [11] and the SM prediction as determined in
Ref. [11] are comparably low at 1.4� and 1.8�, respec-
tively. While our measurement does not favor one over
the other, both measurements deviate in the same direc-
tion from the SM expectation.

We also use our fit procedure to test the compatibility
of the data samples with the two-Higgs-doublet model of
type II. For this purpose, we perform the analysis with
the 2HDM MC sample with tan�/mH+ = 0.5 c2/GeV
to extract probability density distributions. The best-fit
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FIG. 2. Fit projections and data points with statistical uncertainties in the D⇤+`� (top) and D⇤0`� (bottom) data samples.
Left: M2

miss distribution for M2
miss < 0.85GeV2/c4; right: o0NB distribution for M2

miss > 0.85GeV2/c4.

systematic uncertainty for “M2

miss
shape” in Table IV.

For the o0
NB

alternate model, we replace the bifurcated
Gaussians by kernel-estimator functions with adaptive
bandwidth. Again, the deviation from the nominal fit
value is taken as the symmetric systematic uncertainty
for “o0

NB
shape” in Table IV. It is among the dominant

systematic uncertainties.

The identification e�ciencies for primary and sec-
ondary leptons are slightly di↵erent between simulated
and real data. This di↵erence a↵ects the measurement
by modifying the e�ciency ratios. It has been calibrated
for di↵erent lepton kinematics and run conditions using

J/ ! `+`� decays, leading to a 0.5% relative uncer-
tainty in R(D) and R(D⇤).

The correlations of R(D) and R(D⇤) for each item-
ized systematic-uncertainty contribution are given in the
last column of Table IV. These are calculated using 500
pseudoexperiments, with two exceptions: the shape un-
certainties are assumed to be uncorrelated while the lep-
ton ID e�ciencies are assumed to be 100% correlated
between R(D) and R(D⇤). The total correlation of the
systematic uncertainties is �0.32.

Belle 1507.03233
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systematic uncertainty for “M2

miss
shape” in Table IV.

For the o0
NB

alternate model, we replace the bifurcated
Gaussians by kernel-estimator functions with adaptive
bandwidth. Again, the deviation from the nominal fit
value is taken as the symmetric systematic uncertainty
for “o0

NB
shape” in Table IV. It is among the dominant

systematic uncertainties.

The identification e�ciencies for primary and sec-
ondary leptons are slightly di↵erent between simulated
and real data. This di↵erence a↵ects the measurement
by modifying the e�ciency ratios. It has been calibrated
for di↵erent lepton kinematics and run conditions using

J/ ! `+`� decays, leading to a 0.5% relative uncer-
tainty in R(D) and R(D⇤).

The correlations of R(D) and R(D⇤) for each item-
ized systematic-uncertainty contribution are given in the
last column of Table IV. These are calculated using 500
pseudoexperiments, with two exceptions: the shape un-
certainties are assumed to be uncorrelated while the lep-
ton ID e�ciencies are assumed to be 100% correlated
between R(D) and R(D⇤). The total correlation of the
systematic uncertainties is �0.32.
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➡ Could be a light, weakly-interacting BSM particle instead?

ARE WE SURE THAT THESE ARE SM NEUTRINOS?



Allowing for RH neutrinos opens up new avenues for model building and 
phenomenology.

How will we be able to tell LH from RH neutrinos experimentally?
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Effective Hamiltonian

A measurement strategy for these CP-odd observables is yet to be delivered, but due

to their discriminating power, they should be considered a high priority. Our results

highlight the importance of finding experimental strategies for their measurement.

The outline of our paper is as follows. In Sec. 2, we describe those single operators and

simplified models which can explain both RD(⇤) anomalies and survive other experimental

constraints. We also define in detail the two di↵erent scenarios for Belle II measurements

of RD(⇤) described above, and show how these measurements alone can significantly

reduce the set of viable models. In Sec. 3, we define the angular observables (forward-

backward and polarization asymmetries) and calculate their dependence on the Wilson

coe�cients. We further discuss their experimental status and review a recent proposal

[36] with higher projected sensitivity for their measurements at Belle II. Finally, in

Sec. 4, we show which combinations of angular observables can be used to distinguish

the viable models with LH and RH neutrinos. We show that for the bulk of possible

outcomes at Belle II, we will be able to tell di↵erent types of neutrinos apart, and in

many cases can distinguish individual models as well. We conclude in Sec. 5 with a brief

summary and outlook.

Several appendices are included in the end. In App. A we list the leptonic matrix

elements used in our calculation as well as some hadronic functions needed for the

calculation involving RH neutrinos. App. B includes further details on the calculation

of the asymmetries and full analytic formulas for each of them. Finally, in App. C

we point out a linear relationship between di↵erent CP-even observables we study in

this work and explain a numerical scan that we perform over the viable range Wilson

coe�cients.

2 Simplified Models for RD(⇤)

The set of all possible dimension-6 operators modifying the b ! c⌧⌫ decay rate can be

written as

He↵ =
4GFVcbp

2

0

B@OV

LL
+

X

X=S,V,T
M,N=L,R

CX

MN
OX

MN

1

CA (2.1)

where the pre-factor normalizes the SM Wilson coe�cient to unity, and the four-fermion

e↵ective operators are defined as

OS

MN
⌘ (c̄PMb)(⌧̄PN⌫)

OV

MN
⌘ (c̄�µPMb)(⌧̄ �µPN⌫) (2.2)
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OT

MN
⌘ (c̄�µ⌫PMb)(⌧̄�µ⌫PN⌫),

for M, N = R or L. These operators can be generated by integrating out heavy new

mediators; the Wilson coe�cients CX

MN
parametrize the most general contribution.3

Di↵erent UV models can be categorized using the operators they give rise to (typically

more than one), see Sec. 2.2.

In the operator basis of (2.1), the contribution of new physics to the ratios RD(⇤) can

be calculated in terms of the ten (possibly complex) Wilson coe�cients: five involving a

SM left-handed neutrino, and five requiring a new right-handed neutrino. The numerical

contribution of all the operators from (2.1) to the ratios are [24]:

RD ⇡ RSM

D
⇥
��

|1 + CV
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+ CV

RL
|2 + |CV
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+ CV
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,
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(2.3)

Further details on deriving these numerical equations are included in App. B.

2.1 Single Operator Solutions

The range of RD(⇤) that each individual operator can generate (with general complex

Wilson coe�cients) is indicated in Fig. 2, along with the present-day experimental and

theoretical combined uncertainty in the RD(⇤) measurements, showing the 1, 2, and

5� contours (gray-dashed ellipses). For a review of experimental correlations in the

measurements of RD(⇤) , see [4, 6]. In Fig. 2, we use the current average of the correlations,

⇢corr = �0.2 [10]. We see that out of all ten e↵ective operators in (2.1), there are only

3The tensor operators with M 6= N , OT
RL and OT

LR, are identically zero. To generate OV
LR and OV

RL

gauge-invariantly, we further need to insert some Higgs field vacuum expectation values. They can be

absorbed into the Wilson coe�cients.
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Mediator Operator Combination Viability

Colorless Scalars OS

XL
7 (Br (Bc ! ⌧⌫))

W
0µ

(LH fermions) OV

LL
7 (collider bounds)

S1 LQ (3̄, 1, 1/3) (LH fermions) OS

LL
� xOT

LL
, OV

LL
3

Uµ

1 LQ (3, 1, 2/3) (LH fermions) OS

RL
, OV

LL
3

R2 LQ (3, 2, 7/6) OS

LL
+ xOT

LL
3

S3 LQ (3̄, 3, 1/3) OV

LL
7 (Br (B ! Xs⌫⌫))

Uµ

3 LQ (3, 3, 2/3) OV

LL
7 (Br (B ! Xs⌫⌫))

V µ

2 LQ (3̄, 2, 5/6) OS

RL
7 (RD(⇤) value)

Colorless Scalars OS

XR
7 (Br (Bc ! ⌧⌫))

W
0µ

(RH fermions) OV

RR
3

R̃2 LQ (3, 2, 1/6) OS

RR
+ xOT

RR
3

S1 LQ (3̄, 1, 1/3) (RH fermions) OS

RR
� xOT

RR
, OV

RR
3

Uµ

1 LQ (3, 1, 2/3) (RH fermions) OS

LR
, OV

RR
3

Table 2: A complete list of the simplified mediator models and resulting e↵ective operators that are

possibly relevant for the RD(⇤) anomalies. The Uµ
1 and S1 LQs as well as the colorless scalars can give

rise to two independent Wilson coe�cients, while the rest of the mediators can generate only one. We

use x = 1/8 in this work, see the text for more details. We indicate in the last column if the model is

still viable (by 3) and if not, what experimental constraint rules it out (see Sec. 2.3 for discussion of

these constraints).

in Tab. 2. Notice that the S1 and U1 LQs and a heavy W
0
can couple to either LH and

RH fermions and so give rise to operators involving either type of neutrinos. In this

work we consider these possibilities as separate solutions to the anomalies and will try

to distinguish them from one another.

The factor of x in Tab. 2 relates the Wilson coe�cients of scalar and tensor operators

in some models after Fierz transformation. At the mediator scale, x = 1/4 for all the

models in Tab. 2; as we run down to the GeV scale x changes to ⇠ 1/8 [54–56], with the

exact value depending on the mediator scale. For simplicity, we use the fiducial value

x = 1/8 in our analysis.

In Fig. 3, we show the values of RD and RD⇤ which can be obtained by each of the

8

Viable mediators for RD/RD*

see also Robinson et al 1807.04753
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Mediator Operator Combination Viability
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in Tab. 2. Notice that the S1 and U1 LQs and a heavy W
0
can couple to either LH and

RH fermions and so give rise to operators involving either type of neutrinos. In this

work we consider these possibilities as separate solutions to the anomalies and will try

to distinguish them from one another.

The factor of x in Tab. 2 relates the Wilson coe�cients of scalar and tensor operators
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models in Tab. 2; as we run down to the GeV scale x changes to ⇠ 1/8 [54–56], with the

exact value depending on the mediator scale. For simplicity, we use the fiducial value
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W’ with LH neutrinos: problems

bL

cL

W 0W 0

⌧L

⌫L
SU(2)L

Tree-level FCNCs!

sL

Z 0

bL

Need 3rd 
generation 
dominance

SU(2)L

Faroughy et al 1609.07138,   Crivellin et al 1703.09226

Strong constraints from Z’→ττ resonance searches rule out these models!
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✏

L̄�µ⌧aLW 0a
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bR

sRcR

bR

⌫R

⌧R

W’ coupling to RH neutrinos avoids these problems

W’ with RH neutrinos: no problem!

W 0W 0

SU(2)L

Z 0

SU(2)L

No FCNCs. Don’t need 3rd generation dominance — 
no enhancement of Z’→ττ production!

⌧̄R�
µ⌫R W 0

µ



cR

bR

⌫R

⌧RW 0

CV
RRO

V
RR = CV

RR(c̄R�
µbR)(⌧̄R�µ⌫R)

W’ with RH neutrinos
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W’ with RH neutrinos

Just like for CVLL, automatically explain 
both anomalies simultaneously with a 
single Wilson coefficient.

Unlike CVLL, lack of interference with 
SM means a larger Wilson coefficient 
is required.

➡ Collider constraints are still 
not negligible.
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UV model

Basic idea: 

W’ couples to RH fermions through mixing with additional 
vector-like fermions charged under SU(2)V x U(1)X

h�0
i ⇠ O(TeV)SU(2)V ⇥ U(1)X ! U(1)Y

CV
RR ⇠ g2V UQbUQcUL⌧UL⌫

m2
W 0GFVcb

⇠ v2L
v2V

U4

Vcb

cR

bR W 0x

xQ

Q

x

x

⌫R

⌧R

L

L



Generations SU(3) SU(2)L SU(2)V U(1)X

� 1 1 2 1 1/2

qL 3 3 2 1 1/6

uR 3 3 1 1 2/3

dR 3 3 1 1 -1/3

`L 3 1 2 1 -1/2

eR 3 1 1 1 -1

⌫R 1 1 1 1 0

�0 1 1 1 2 1/2

Q NV 3 1 2 1/6

L NV 1 1 2 -1/2

Table 2: The field content of the model. The right-handed SM-like fermions uR, dR, and eR will

eventually mix with the fields charged under the new gauge group SU(2)V to give rise to the actual

right-handed SM fermions. One generation of ⌫R, and one generation of QL/R, and LL/R mixing with

SM-like fermions, are su�cient to explain the RD and RD⇤ anomalies. However, we will see in section

4.2 that NV > 1 is generally required to evade Z 0 ! ⌧⌧ searches.

After SU(2)V ⇥ U(1)X breaking, the vector-like fermions will mix with right-handed

fermions carrying SM quantum numbers. This will facilitate the interaction between

the bR, cR, ⌧R and ⌫R (mediated by the W 0 of the SU(2)V ) that forms the basis of our

explanation of the RD/RD⇤ anomaly.

In the following subsections we will explore the spectrum and couplings of the model,

in preparation for a detailed study of the phenomenology in section 4.

3.1 Gauge bosons

The charged gauge bosons do not mix at tree-level; their spectrum is given by:

mW =
1

2
gLvL, mW 0 =

1

2
gV vV . (3.3)

Meanwhile, the spectrum of neutral gauge bosons is given by:

m2
Z ⇡ 1

4

�
g2L + g2Y

�
v2L

 
1� v2L"

4

v2V
+O

 
"6 ⇥

✓
vL
vV

◆4
!!

, (3.4)
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phenomenological investigation we will focus on this range of this Wilson coe�cient.

3 The Model

In this section, we introduce our model that explains the RD and RD⇤ anomalies using a

W 0 that couples to right-handed SM fermions and a right-handed neutrino. The right-

handed neutrino is assumed to be light enough (m⌫R . 10 keV) so that it is safe from

cosmological and astrophysical bounds (see Section 4.3); this makes it indistinguishable

at the collider from the nearly-massless SM neutrinos in the decays of the B mesons.

Integrating out the W 0 generates the CV
RR Wilson coe�cient, capable of explaining both

branching ratio measurements, as discussed in the previous section.

The field content of the model is summarized in Table 2, and a schematic presentation

of the model is included in Fig. 3. Our model embeds hypercharge into a new SU(2)V ⇥
U(1)X gauge group (with gauge couplings gV and gX respectively), broken by the vev of

h�0i = 1p
2
(0, vV )T . It is useful to define the e↵ective hypercharge coupling in our model:

g2Y ⌘ g2Xg
2
V

g2X + g2V
. (3.1)

After the heavy particles are integrated out, gL and gY are identified with the SM gauge

couplings, and � is identified with the SM-like Higgs (with vev h�i = 1p
2
(0, vL)T ).

In what follows, we expand some of our equations and find the leading contribution

in vL ⌧ vV and gX , gL ⌧ gV . This useful limit will simplify many of the equations

that will follow. It will also prove to be a fairly good approximation in the region of the

experimentally allowed parameter space capable of explaining the B-anomalies.

We extend the SM matter fields with a right-handed neutrino ⌫R and NV generations

of vector-like fermions Q and L. In order to explain the anomalies, only one ⌫R and one

generation (NV = 1) of vector-like fermions su�ces. However, we will see in Section 4

that additional vector-like fermions (with no mixing into the SM) are required to evade

direct Z 0 ! ⌧⌧ searches (by enlarging the width of the Z 0). The Lagrangian of the SM

is extended to3

�L � MQQ̄LQR +MLL̄LLR +m⌫R⌫R⌫R

+ ỹdQ̄L�
0bR � ỹuQ̄L�

0⇤cR + ỹeL̄L�
0⌧R � ỹnL̄L�

0⇤⌫R + h.c.
(3.2)

3The scalar potential part of the Lagrangian is straightforward and we omit it for brevity. We can

have an interaction ⌫̄R�`L at tree-level as well. This operator can generate a large mass and disastrous

mixing between neutrinos (see Section 4); hence, we must assume its Yukawa coupling is very suppressed

at tree-level.
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Constraints on the model

FCNCs:

• eliminated at tree-level and one-loop order — no coupling of W’,Z’ to s or d quarks!

Precision EW:

• Use most stringent EW constraints (GF, αEM, mZ) to fix parameters of the model.  Then no 
longer have freedom to fix mW and fermion couplings.  
 
Find that only the former sets a significant bound:

Collider searches:

• Significant constraints from searches for  

Then, we can use Eqs. (3.4) and (3.15) to solve for gY and gL in terms of the experimental

values of (↵em,mZ) and the other parameters of our model. To the first sub-leading order,

the gauge couplings gY and gL in our model are given by

gY = ĝY

 
1� ĝ6Y v

2
L

2g4V (ĝ
2
L � ĝ2Y )v

2
V

+O
 
"6 ⇥

✓
vL
vV

◆4
!!

, (4.4)

gL = ĝL

 
1 +

ĝ2Lĝ
4
Y v

2
L

2g4V v
2
V (ĝ2L � ĝ2Y )

+O
 
"6 ⇥

✓
vL
vV

◆4
!!

, (4.5)

where ĝY and ĝL are the SM values given above. Evidently, the values of gY and gL are

shifted from their SM values by higher order corrections in " and vL/vV .

Using the three experimentally measured quantities (GF ,↵em,mZ), we have reduced

the number of undetermined variables that span our parameter space to three: (gV , vV ,U21).

We choose to work in terms of the more physical parameters (gV ,mW 0 , CV
RR), where

CV
RR =

v2L
v2V

(U21)4

Vcb
(4.6)

is derived from Eq. (3.12) after setting all the mixing angles equal.

4.1 Electroweak precision tests

Our study of the EWP observables in our model closely follows the analysis in [42].

Given the precise measurements of GF , ↵em, and mZ , these quantities are fixed at their

experimentally observed values. Our model can then be constrained by requiring that

the NP corrections to the W mass and the coupling of the W and Z gauge bosons to

the SM fermions are within the experimental uncertainties [42].

We saw in Eqs. (4.4)–(4.5) that keeping GF , ↵em, and mZ fixed implies that gL and

gY should slightly deviate from the SM gauge couplings (ĝL and ĝY ). This amounts

to a change in mW from the SM predictions. Demanding the deviation in mW (=

80.385± 0.015 GeV) [40] to be within the 1� experimental range, we find

mW 0gV & 0.97 TeV. (4.7)

This is the most-constraining limit we get from EWP observables on our model.

In principle there could be additional EWP limits coming from deviations in W/Z

couplings to fermions compared to the SM predictions. No such deviation occurs for the

photon, as we have set the coupling e to its experimentally observed value in Eq. (3.15).

From Eq. (3.14), the W the coupling is gL. While gL deviates from the SM value

15

W 0 ! ⌧⌫

Z 0 ! ⌧⌧

Need light VL-leptons to broaden Z’ resonance and dilute Z’ BR…

see Admir’s talk tomorrow 
for an update



Collider constraints

Figure 4: A summary of the bounds on our model. For the left (right) plots we are assuming CV
RR = 0.4

(CV
RR = 0.6), two benchmark values that can account for the RD(⇤) anomaly. Those on the top (bottom)

correspond to the case NV = 2 (NV = 3) generations of new vector-like fermions, only one of which

has mixing with SM fermions. We are assuming all the new leptons (quarks) have mL = 250 GeV

(mQ = 1500 GeV). The dashed blue curves denote the contours of constant ⌘, while the solid black

curves indicate contours of constant �Z0/mZ0 . Points within the gray region have corrections to mW

which are outside 1� observed range according to [40]. (The simple inequality in Eq. (4.7) explains

the shape of the gray lines.) Bounds from [30] (obtained by recasting an older ATLAS search [46]) are

indicated by the purple region (the colored region is ruled out) while a rough estimation of the bounds

from a newer search [47] are denoted by dashed purple lines. As explained in the text, adding extra

generations of vector-like matter alleviates the collider bounds.
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gray: mW EWP constraint
purple: ATLAS 36/fb Z’→ττ (estimated)

[Slightly stronger limits from ATLAS 36/fb W’→τν (Greljo et al 1804.04642)]



Mediator Operator Combination Viability

Colorless Scalars OS

XL
7 (Br (Bc ! ⌧⌫))

W
0µ

(LH fermions) OV

LL
7 (collider bounds)

S1 LQ (3̄, 1, 1/3) (LH fermions) OS
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� xOT
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3

Uµ

1 LQ (3, 1, 2/3) (LH fermions) OS

RL
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LL
3

R2 LQ (3, 2, 7/6) OS

LL
+ xOT

LL
3

S3 LQ (3̄, 3, 1/3) OV
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7 (Br (B ! Xs⌫⌫))

Uµ

3 LQ (3, 3, 2/3) OV
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7 (Br (B ! Xs⌫⌫))

V µ
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W
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RR
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3
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3

Uµ
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3

Table 2: A complete list of the simplified mediator models and resulting e↵ective operators that are

possibly relevant for the RD(⇤) anomalies. The Uµ
1 and S1 LQs as well as the colorless scalars can give

rise to two independent Wilson coe�cients, while the rest of the mediators can generate only one. We

use x = 1/8 in this work, see the text for more details. We indicate in the last column if the model is

still viable (by 3) and if not, what experimental constraint rules it out (see Sec. 2.3 for discussion of

these constraints).

in Tab. 2. Notice that the S1 and U1 LQs and a heavy W
0
can couple to either LH and

RH fermions and so give rise to operators involving either type of neutrinos. In this

work we consider these possibilities as separate solutions to the anomalies and will try

to distinguish them from one another.

The factor of x in Tab. 2 relates the Wilson coe�cients of scalar and tensor operators

in some models after Fierz transformation. At the mediator scale, x = 1/4 for all the

models in Tab. 2; as we run down to the GeV scale x changes to ⇠ 1/8 [54–56], with the

exact value depending on the mediator scale. For simplicity, we use the fiducial value

x = 1/8 in our analysis.

In Fig. 3, we show the values of RD and RD⇤ which can be obtained by each of the
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Signatures of LH vs RH neutrinos

Recent work: tau asymmetries at Belle II!  Asadi, Buckley & DS 1810.06597

Large literature on this…

Our work

• Includes RH neutrinos

• Focuses on mediators, not effective operators

• Takes into account experimental feasibility and projected sensitivity

Alonso et al 1602.07671, 1702.02773
Alok et al 1606.03164, 1804.08078 
Bardhan et al 1610.03038
Celis et al 1612.07757
Huang et al 1808.03565
………

Tanaka 9411405
Tanaka & Watanabe 1005.4306, 1212.1878 
Fajfer et al 1203.2654
Sakaki & Tanaka 1205.4908

Datta et al 1206.3760
Duraisamy & Datta 1302.7031
Ivanov et al 1508.02678,1701.02937
Becirevic et al 1602.03030



Tau asymmetries

~pB

~pD(⇤)

~p⌧

~p⌫

~pd

~p⌫0

✓

✓⌧d�

ê⌧

ê?
êT

Figure 4: The kinematics of B̄ ! D(⇤)⌧⌫ and subsequent ⌧ ! d⌫0 decay processes, in the center-of-

mass frame of the leptonic system (the “q2 frame”). The black plane indicates the original decay plane,

defined by the B momentum ~pB (or the D(⇤) momentum ~pD(⇤)) and the leptonic pair. The red plane

is the decay plane of the ⌧ , defined by the visible daughter meson d and invisible daughter neutrino ⌫0

of the ⌧ . The three directions in which we will project the ⌧ polarization asymmetries are indicated in

green.

We will calculate the dependence of these observables on all the Wilson coe�cients in

(2.1) and report the result in the form of numerical formulas (like (2.3) for RD and RD⇤).

In particular, we carry out the calculation including the contribution of the operators

with right-handed sterile neutrinos with negligible masses compared to the other energy

scales in the decay. Full analytic versions are available in the appendices. Wherever

possible, we have checked that parts of our calculations (results from the numerical

equations, q2 distributions, the SM predictions, etc.) are in agreement with previous

studies, e.g. [22, 35, 39, 59]. A further consistency check is that the numerical equations

for the observables will manifest a symmetry between left- and right-handed neutrinos

such that by applying the following transformations,

h⌧ ! �h⌧ , CS,T

LL
$

⇣
CS,T

RR

⌘⇤
, CX

RL
$

�
CX

LR

�⇤
,

1 + CV

LL
$

�
CV

RR

�⇤
,

(3.1)

(where h⌧ refers to the ⌧ helicity) the observables will transform as

RD(⇤) ! RD(⇤) , Px ! �Px, AFB ! AFB. (3.2)

In writing 1 + CV

LL
in (3.1) (and in all the up-coming numerical equations), we are

explicitly separating the contribution of the SM operator.5 These symmetries indicate

5The complex conjugate in the way the Wilson coe�cients are transformed is only relevant for the
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leptonic center of mass frame

Forward-backward 
asymmetry 

wrt D(*) direction
polarization 
asymmetry 

wrt arbitrary 
direction e

A(⇤)
FB

P(⇤)
ê



Tau asymmetries

Observable AFB A⇤
FB

P⌧ P⇤
⌧

P? P⇤
? PT P⇤

T

SM value �0.366 0.0701 0.333 �0.501 �0.858 �0.475 0 0

Projected Precision [36] 10% � 3% � 10% � � �

Table 3: Observables studied in this work, our numerical calculation for the prediction in the SM, and

the projected Belle II sensitivity (assuming the 50 ab�1 full data set) where available. We use these

observables to identify di↵erent explanations of the anomalies. In the upcoming sections we will assume

the observables in B ! D⇤⌧⌫ are measured with the same uncertainty as in B ! D⌧⌫.

it can play in distinguishing models with LH and RH neutrinos, and in the hopes that

viable proposals for how to measure it will emerge in the future.

4 Distinguishing Di↵erent Solutions

Having calculated these asymmetry observables, we now use them to distinguish between

di↵erent simplified models for the RD(⇤) anomalies (see Sec. 2). As the range of possible

Wilson coe�cients depends on the value of RD and RD⇤ after the Belle II data set is

collected, we consider the two benchmark scenarios described in Sec. 2.4 and indicated

in Figs. 2 and 3.

4.1 10� Scenario

In this scenario, for the models involving the LH neutrinos, the two LQs U1 and S1,

as well as the single operators OT

LL
and OV

RL
, will be able to explain the anomalies

while satisfying the experimental bounds mentioned above. Among the RH neutrino

proposals, only U1 and S1 LQs will remain viable.

Fig. 6 shows the ranges of CP-even asymmetry observables that are achievable in

each model, projected here into 2d plots, one for each pair of observables. In each

model, we have scanned over the (complex) Wilson coe�cients of the model, subject to

the following constraints: RD and RD⇤ should be within the 1� Belle II error ellipse for

this scenario; Br(Bc ! ⌧⌫) < 10%; and the Br (B ! Xs⌫⌫) bound from (2.10) (on the

S1 model coupled to LH neutrinos). Further details on how to e�ciently carry out this

scan are included in App. C.

angle � between the two planes in Fig. 4 contains information about P(⇤)
T . We cannot confirm the

claim that this angle is experimentally accessible and are not aware of any experimental proposals for

its measurement at Belle II.
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One measurement of Pτ* by Belle (2016): 

Pτ*  = -0.38 ± 0.51 ± 0.2

Huge error bars.

Proposal by Alonso, Camalich & Westhoff 1702.02773 for how to 
measure asymmetries in D mode with improved precision
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Figure 6: Two-dimensional plots of asymmetry observables for the 10� scenario. We scan over Wilson

coe�cients that result in RD(⇤) values within the 1� Belle II error ellipse centered on the present-

day world averages. We also impose the Br (B ! Xs⌫⌫) bound [49] (on the SL
1 LQ model) and the

Br(Bc ! ⌧⌫) 6 10% bound [45]. The projected Belle II precision for each observable, centered on the

SM prediction, is indicated by the dashed gray lines, see the text. Regions which can be realized by

models with LH SM neutrinos (shown in green) are from S1 and U1 LQs and single operators OT
LL and

OV
RL, while those requiring new RH neutrinos (shown in red) are S1 and U1 LQs. It is obvious that

we can clearly distinguish models with LH and RH neutrinos from one another by measuring these

asymmetry observables.
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Tau asymmetries at Belle II

Green: LH neutrinos
Red: RH neutrinos

Assumptions: Belle II measures RD/RD* 
at their current global average

Can easily tell apart LH 
from RH models!
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Figure 8: Two-dimensional plots of asymmetry observables in the 5� scenario. We scan over Wilson

coe�cients which result in RD(⇤) values within the 1� Belle II error ellipse centered at RD = 0.34

and RD⇤ = 0.275. We also impose the Br (B ! Xs⌫⌫) bound [49] (on the SL
1 LQ model) and the

Br(Bc ! ⌧⌫) 6 10% bound [45]. The projected Belle II precision for each observable, centered on the

SM prediction, is indicated by the dashed gray lines, see the text. All the currently viable models and

single operators remain viable in this scenario. Regions which can be realized by models with LH SM

neutrinos are shown in green, while those requiring new RH neutrinos are in red. In many cases, the

green and the red regions are quite distinct. However, there is also significant overlap between these

regions. Further measurements are required to disentangle the RH and LH models in such cases, see

the text.
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Tau asymmetries at Belle II

Green: LH neutrinos
Red: RH neutrinos

Assumptions: Belle II measures reduced 
RD/RD*, but still 5σ significance

Can still tell apart LH from 
RH models in most cases!



Figure 9: The PT and P⇤
T observables for the points from Fig. 8 that are less than 1� apart according

to our �2 constructed from all the CP-even observables. The green (red) points correspond to S1 LQs

coupled to LH (RH) neutrinos. Notice the identical slope of the lines, which is a consequence of the

symmetry outlined in (3.1)–(3.2). If these CP-odd asymmetries can even be measured, and with enough

experimental precision, then they will be able to distinguish between the LH and RH neutrino cases.

substantiative proposal currently exists.

5 Conclusion

In this work we studied various ⌧ asymmetry observables that can potentially be mea-

sured at Belle II and that could help to resolve the BSM origin of the long-standing

RD(⇤) anomalies. In (3.4) and (3.7)–(3.9), we reported numerical formulas for the ⌧

forward-backward asymmetry A(⇤)
FB

and polarization asymmetries P (⇤)
⌧ , P (⇤)

? , and P (⇤)
T

,

as a function of all relevant dimension 6 Wilson coe�cients (including those for RH neu-

trinos). The analytic formulas from which our numerical results are derived are included

in App. B. While similar analytic formulas existed in the literature previously, here we

report the contribution of the massless RH neutrinos as well.

We also catalogued all the simplified models involving both LH and RH neutrinos

that explain the RD(⇤) anomalies and are not ruled out by the severe Br (Bc ! ⌧⌫)

and Br (B ! Xs⌫⌫) constraints, see Tab. 2. We then showed that, using the CP-even

asymmetry observables A(⇤)
FB

, P (⇤)
⌧ , P (⇤)

? for which proposed measurement methods exist,

it is possible to tell apart solutions with di↵erent types of neutrinos (SM LH vs. RH sterile

ones) from one another in the vast majority of cases, see Fig. 6 and Fig. 8. In many

instances, it is even possible to tell apart di↵erent mediators with the same neutrino

chirality. The most useful observables for this purpose were P⌧ and P (⇤)
⌧ , followed by

P (⇤)
? and A(⇤)

FB
.
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CP-odd asymmetries may play a crucial role in resolving the most difficult 
degeneracies.

Currently no substantiative proposal for how to measure these at Belle II.



Summary and Outlook

The invisible energy in the B decays of the RD/RD* anomalies might not be 
entirely from SM neutrinos. 

Allowing for light, sterile RH neutrinos in the B decays opens up new avenues 
for model building and phenomenology.

• In particular, it allows for models with W’ mediators which would otherwise be ruled out by 
direct collider searches.

Various tau asymmetries (FB, polarization) are measurable at Belle II and should 
allow us to distinguish between models with LH and RH neutrinos.

• tau asymmetries in the D* mode?

• D* polarization asymmetries?

• prospects at LHCb?

• CP-odd asymmetries?



Thanks for your 
attention!


