High-energy implications of flavour anomalies CERN, 23 October 2018

LQ search in relation with $R_{D^{(*)}}$

Ryoutaro Watanabe (INFN Roma Tre)

[1603.05248] in collaboration with Kenji Nishiwaki, Dumont Beranger

LQ contributions

 U_1, R_2

LQ solutions to the $R_{D^{(*)}}$ anomaly

 $egin{aligned} S_1: [SU(3)_c, SU(2)_L, U(1)_Y] &= [ar{3}, 1, 1/3] \ U_1: [3, 1, 2/3] & R_2: [3, 2, 7/6] \end{aligned}$

$$C = rac{(\mathrm{LQ\ coupling})^2}{M_{\mathrm{LQ}}^2} imes C_{\mathrm{SM}}^{-1} \quad \left(C_{\mathrm{SM}} = 2\sqrt{2}G_F V_{cb}
ight)$$

This talk

- ✓ Singlet scalar leptoquark
- Collider signals
 - 8TeV bound translated
 - 14TeV expected in 2016
 - Development up to date

8TeV bounds

Properties of S_1

✓ Interaction

$$\mathcal{L}_{LQ} = \left(\boldsymbol{g_L^{ij}} \, \overline{Q}_L^{c,i} (i\sigma_2) L_L^j + \boldsymbol{g_R^{ij}} \, \overline{u}^{c,i} \ell_R^j \right) \boldsymbol{S_1}$$

Many possible decays :

 $S_1
ightarrow (u^i \, \ell^j), \, (d^i \,
u^j)$

Solution

 \checkmark Condition explaining $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ anomaly

$$\frac{g_L^{3j} g_R^{23*}}{2M_{S_1}^2} = \begin{cases} -0.25 \, C_{\rm SM} & (j=3) \\ \pm 0.66 \, C_{\rm SM} & (j\neq3) \end{cases}$$

 $C_{
m SM} = 2\sqrt{2}G_F V_{cb}$: SM contribution

✓ Assumption in this talk

Keep this condition, namely for g_R^{23*} ,

$$g_{R}^{23*} = -0.25 C_{
m SM} imes 2 M_{S_{1}}^{2} ig/g_{L}^{33}$$

Collider signals

✓ Decay at collider

$$g_L^{33}: S_1 \to b\nu_{\tau}, t\tau \qquad g_R^{23}: S_1 \to c\tau$$

(Production at LHC)

Pair production by QCD, independent on $g_{L,R}$

Dominant process

$pp \to S_1 S_1^* \to \begin{cases} (t\tau)(t\tau) \\ (b\nu)(b\nu) \\ (c\tau)(c\tau) \\ \vdots \end{cases}$

What is the current bound ?
 Potential at high luminosity?

Framework

 \checkmark Setup motivated by the $\ ar{B}
ightarrow D^{(*)} au ar{
u}$ anomaly

$$egin{aligned} g_L^{33}
eq 0, \ g_R^{23} &= ext{fixed to explain } R(D^{(*)}), \ ext{others} &= 0 \end{aligned}$$

Possible decay : $S_1
ightarrow (t au), \, (b
u_ au), \, (c au)$

Production:

Pair production by QCD

Framework

ullet Setup motivated by the $\ ar{B} o D^{(*)} au ar{
u}$ anomaly

$$g_L^{33}
eq 0,$$

 $g_R^{23} = ext{fixed to explain } R(D^{(*)}),$
others = 0

Process:

 $pp \to S_1 S_1^* \to \begin{cases} (t\tau)(t\tau) \\ (b\nu)(b\nu) \\ (c\tau)(c\tau) \\ \vdots \end{cases}$

Check on property

Present search for $(b\nu)(b\nu)$

✓ SUSY (sbottom) searches at CMS & ATLAS

The final state : $(b\widetilde{\chi}_1^0)(b\widetilde{\chi}_1^0)$

Straightforward translation to (b u)(b u) is possible

Present search for $(c\tau)(c\tau)$

✓ $(b\tau)(b\tau)$ search at CMS

We can reinterpret the result of (b au)(b au) to that of (c au)(c au)

by taking a probability of mis-identifying c-jets as b-jets

8TeV bound

Present searches provide upper limit of Br's

To model specific case

Constraint on (Mass, Branching ratio)

8TeV bound

Combination for $(g_L^{33}\,,\,M_{S_1})$

 $\begin{array}{lll} \mbox{Gray}: S_1 \rightarrow t\tau \ \mbox{(CMS)} \\ \mbox{Blue}: S_1 \rightarrow b\nu \ \mbox{(CMS)} \\ \mbox{Cyan}: S_1 \rightarrow b\nu \ \mbox{(ATLAS)} \\ \mbox{Red}: S_1 \rightarrow c\tau \ \mbox{(CMS)} \end{array}$

For large g_L^{33} , $M_{S_1} < 530 \,{
m GeV}$ For small g_L^{33} , $M_{S_1} < 640 \,{
m GeV}$

For any region, $M_{S_1} \! < \! 400 \, {
m GeV}$

"Allowed region" also explains the RD anomaly

14TeV expectation

Target/Availability

$(b\nu)(b\nu)$ $(c\tau)(c\tau)$ Necessary to probe source of the anomaly

SUSY sbottom search can be applied (ATLAS-COM-PHYS-2014-555)

- can follow the same cut analysis
- adopt ATLAS official b-tag rate

LQ search by $(b\tau)(b\tau)$ can be referred (CMS, arXiv:1408.0806)

- follow same tau-tag algorithm
- must consider c-tag/mistag rate
- must implement c-tag module
 - in cut analysis (madanalysis5)

Analysis for $(b\nu)(b\nu)$

Cut analysis :

- ✓ We can follow the same cut analysis with SUSY sbottom search
- ✓ Signal region cut is (mainly) based on $M_{\rm CT}$ variable

ATLAS-COM-PHYS-2014-555

SM background event :

- ✓ Relevant processes: (t-tbar), (single top), (z/w+jets), ...etc.
- ✓ Cut analysis at 14 TeV is already obtained by ATLAS

Signal event :

✓ [FyenRules] Model file for S1 leptoquark
→ [Madgraph5/Pythia6] Event generation
→ [DelphesMA5tune] Detector simulation
→ [Madanalysis] Cut analysis

Analysis for $(c\tau)(c\tau)$ c jet tagging/mis-tagging rate ✓ No conclusive & reliable value Three choices by some studies **Case-1** (Theorist, arXiv:1505.06689) $\epsilon_{c
ightarrow c} = 50\%, \quad \epsilon_{b
ightarrow c} = 20\%, \quad \epsilon_{ ext{light}
ightarrow c} = 0.5\%$ Case-2 (ATLAS, arXiv:1501.01325) $\epsilon_{c
ightarrow c} = 19\%, \quad \epsilon_{b
ightarrow c} = 13\%, \quad \epsilon_{ ext{light}
ightarrow c} = 0.5\%$ **Case-3 (ATLAS-PHYS-PUB-2015-001)** $\epsilon_{c
ightarrow c} = 40\%, \quad \epsilon_{b
ightarrow c} = 25\%, \quad \epsilon_{ ext{light}
ightarrow c} = 10\%$

Analysis for $(c\tau)(c\tau)$

Cut analysis :

- \checkmark We follow the analysis method for (b au)(b au) given by CMS
- ✓ Tau-tagging algorithm (HPS) is implemented (CMS, arXiv:1109.6034)
- ✓ c-jets tagging module is implemented in madanalysis5
- ✓ Signal regions cut is based on S_T variable (CMS

(CMS, arXiv:1408.0806)

SM background event :

- We consider (t-tbar; dominant), (w+jets; sub.), (z+jets; less.)
- ✓ We generated 10⁷ events for t-tbar, 5*10⁶ for w/z+jets

Signal event :

✓ We utilize the same procedure with the case for $(b\nu)(b\nu)$

14TeV, expected in 2016

Condition : $g_R^{23*} \simeq -0.5 C_{\rm SM} M_{S_1}^2 / g_L^{33}$

Blue: $pp \to S_1 S_1^* \to (b\nu)(\bar{b}\bar{\nu})$ Red: $pp \to S_1 S_1^* \to (c\tau)(\bar{c}\bar{\tau})$

 c-jet tagging is significant to search S1 leptoquark motivated by R(D(*))

 $\lesssim 800 \, GeV \,$ Scalar-LQ (explaining the anomaly) can be probed at the LHC

Development up to date

(b u)(b u) search:

Development up to date

c-jet tag:

Stop/Scharm search (ATLAS 1805.01649)

"Direct searches at LHC are becoming more and more useful to test the LQ solutions to the RD anomaly"

"For Scalar LQ, please try to look at $(c\tau)(c\tau)$ "

(b au)(b au) search:

LQ search (CMS 1806.03472)

 $(c\nu)(c\nu)$ search:

?

 U_1, R_2

Summary

S1 Leptoquark can explain $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ **anomaly**

$$\frac{g_L^{33} g_R^{23*}}{2M_{S_1}^2} = -0.25 \times 2\sqrt{2}G_F V_{cb} \qquad \mathcal{L}_{\rm LQ} = \left(g_L^{ij} \, \overline{Q}_L^{c,i}(i\sigma_2) L_L^j + g_R^{ij} \, \overline{u}^{c,i} \ell_R^j \right) S_1$$

Present search/prospect at the LHC

 $M_{S_1} < 400 \,\mathrm{GeV}$ is already excluded

 $M_{S_1} < (0.7 - 1) \,\mathrm{TeV} \,\mathrm{can} \,\mathrm{be} \,\mathrm{excluded} \ (14 \,\,\mathrm{TeV}, \,300 \,\mathrm{fb}^{-1})$

We can confirm the flavor anomaly by the search at the LHC

Bound on S1 leptoquark

Result for (g_{1L}^{3i}, M_{S_1}) $i \neq 3$

- g_{1R}^{23} is fixed as well
- + $S_1
 ightarrow t au$ is not relevant
- g_{1R}^{23} is fixed so that the condition is satisfied
- all of the other couplings

are set to be zero

$M_{S_1} \sim 400 \, { m GeV}$ is still allowed !

Cut details

(b nu)(b nu)

(c tau)(c tau)

Category	Cut condition (in SRA)
Lepton veto	no e/μ after the isolation
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 \mathrm{GeV}$
Leading jet $p_{\mathrm{T}}(j_1)$	$> 130 \mathrm{GeV}$
Second jet $p_{\mathrm{T}}(j_2)$	$> 50 \mathrm{GeV}$
Third jet $p_{\mathrm{T}}(j_3)$	veto if $> 50 \mathrm{GeV}$
b-tagging	for leading two jets, $n_{b-jets} = 2$
	$(p_{\rm T} > 20 {\rm GeV}, \ \eta < 2.5)$
$\Delta \phi_{ m min}$	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(k)$	> 0.25 for $k = 2$
m_{bb}	$> 200 \mathrm{GeV}$
$m_{ m CT}$	$> 300, 350, 450, 550, 650, 750 \mathrm{GeV}$

Category	Cut and selection rule
Leptons	(A-1) one $\tau_{\rm h}$ and one $\ell = \mu$
	(A-2) one $\tau_{\rm h}$ and one $\ell = \mu$ or e
Electric charge	opposite sign between $\tau_{\rm h}$ and ℓ^{\pm}
Jet objects	more than three (including $\tau_{\rm h}$)
<i>c</i> -tagged jet	(B-1) at least two
	(D 2) at least one
$M(\tau_{\rm h} ext{-jet}, c ext{-jet})$	$> 250 \mathrm{GeV}$
S_{T}	>100 - 1000 GeV for each 100 GeV bin

