A dark matter relic from muon anomalies

CÉDRIC DELAUNAY

LAPTH-ANNECY

Bélanger, CD, Westhoff, PRD 92 (2015) 055021

What's wrong with muons?

several anomalies indicating new physics:

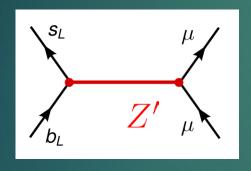
- B decays $(R_K, R_{K^*}...) \rightarrow \Lambda \sim O(10)$ TeV
- g_{μ} -2 \rightarrow Λ ~ O(100)GeV
- μH (proton radius) → Λ ~ O(1)GeV

but very different scales \rightarrow challenging to explain all with the same dynamics

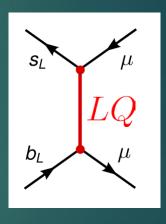
What's wrong with muons?

several anomalies indicating new physics:

• B decays
$$(R_{K'}, R_{K^*}...) \rightarrow \Lambda \sim O(10)$$
TeV


•
$$g_{\mu}$$
-2 \rightarrow Λ ~ $O(100)$ GeV

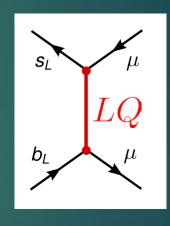
μH (proton radius) → Λ ~ O(1)GeV


is there a simple framework explaining both?

Starting from B anomalies

simplest (tree-level) explanations:

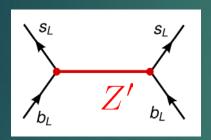

neutral vector



leptoquark

Starting from B anomalies

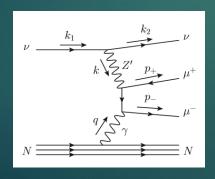
simplest (tree-level) explanations:


leptoquark

 R_{κ} and R_{κ^*} favors LL chiral couplings with

$$m_{Z'}/\sqrt{g_{\mu}g_{bs}} pprox 35\,\mathrm{TeV}$$

Generic constraints


• B_0 meson oscillations:

$$\rightarrow m_{Z'}/g_{bs} \gtrsim 125 \, {\rm TeV}$$

Altmannshofer+ ERJC 73 (2013) 2646

Neutrino trident production:

$$\rightarrow m_{Z'}/g_{\mu} \gtrsim 500 \, \mathrm{GeV}$$

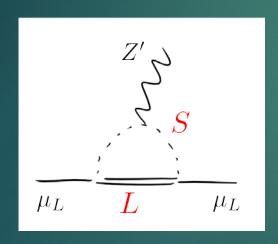
Altmannshofer+ ERJC 73 (2013) 2646 **Altmannshofer**+ PRL 113 091801 (2014)

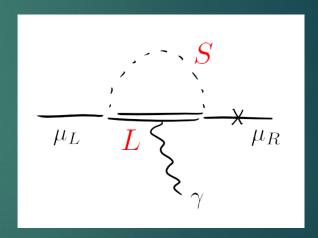
g_{μ} -2 prediction

under these constraints, B anomalies imply:

$$500\,{
m GeV} \lesssim m_{Z'}/g_{\mu} \lesssim 10\,{
m TeV}$$

and a too small correction to g_μ-2:


$$\rightarrow a_{\mu}^{Z'} = \frac{m_{\mu}^2}{12\pi^2} (g_{\mu}/m_{Z'})^2$$


$$\sim [0.1, 30] \times 10^{-11}$$

$$a_{\mu}^{\text{SM}} - a_{\mu}^{\text{exp}} = -268(43) \times 10^{-11}$$

Our approach

• Induce $\bar{\mu}_L Z' \mu_L$ and $\bar{\mu}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$ at one-loop, from the same fields (eg. a scalar and a heavy lepton):

• Use $U(1)^\prime$ symmetry to forbid tree-level coupling to muons

A simple/simplified? model

Bélanger, CD, Westhoff (2015)

	spin	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
L, L^c	1/2	1	2	-1/2	1
Q, Q^c	1/2	3	2	1/6	-2
ϕ	0	1	1	0	2
$_S$	0	1	1	0	-1

- SM fields are neutral under $U(1)^\prime$ and Z^\prime couples to fermions through the vector-like L,Q
 - → no anomalies Fox+ PRD 84 (2011) 115006
- ϕ breaks/higgses $U(1)' \rightarrow m_{Z'} = 2\sqrt{2}g_{Z'}\langle\phi\rangle$
- S connects LH lepton to L: $y\bar{l}SL_R + \mathrm{h.c.}$

A dark matter candidate

Bélanger, CD, Westhoff (2015)

- In order to prevent tree-level coupling to leptons in the broken phase, S shall not get a vev
- In this case, there is a remnant $\mathbb{Z}_2\supset U(1)'$ in the vacuum: $S,L\to -S,L$, $\phi,Q\to \phi,Q$
- Quite remarkably, in this approach, B anomalies and g_u-2 predict a dark matter candidate!
- DM is leptophilic, most likely scalar $\chi \equiv \mathrm{Re}(S)$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{dark}} + \mathcal{L}_{\mathrm{portal}}$$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{dark}} + \mathcal{L}_{\mathrm{portal}}$$

$$\mathcal{L}_{dark} = kinetic + mass terms$$

$$-(r\phi S^2 + h.c.) - \lambda_{\phi} |\phi|^4 - \lambda_S |S|^4 - \lambda_{\phi S} |\phi|^2 |S|^2$$

induce scalar/pseudoscalar mass splitting

$$S = \frac{1}{\sqrt{2}}(s + ia)$$

$$\rightarrow \delta \equiv \frac{m_a^2 - m_s^2}{m_s^2} = -\sqrt{2} \frac{r m_{Z'}}{g_{Z'} m_s^2}$$

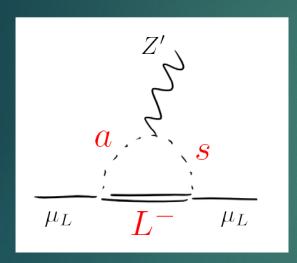
Lagrangian

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \mathcal{L}_{ ext{dark}} + \mathcal{L}_{ ext{portal}}$$

kinetic portal

Higgs portals

$$\mathcal{L}_{\text{portal}} = \epsilon B_{\mu\nu} F'^{\mu\nu} - \lambda_{SH} |S|^2 |H|^2 - \lambda_{\phi H} |\phi|^2 |H|^2$$
$$-w(\bar{q}Q)\phi - y(\bar{l}L)S + \text{h.c.}$$

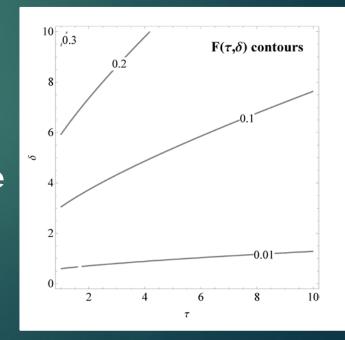

mass mixing after U(1)' breaking

new source of $b \rightarrow s$ unless m_Q 's are degenerate or w is aligned with SM Yukawas

mixing is $SU(2)_L$ invariant, there is also a new source of $t \to c$ transition

Muon coupling

• induced radiatively by loops of S, L



$$\rightarrow g_{\mu} = g_{Z'} \frac{|y|^2}{32\pi^2} F(\tau, \delta)$$

$$\tau \equiv m_L^2 / m_s^2$$

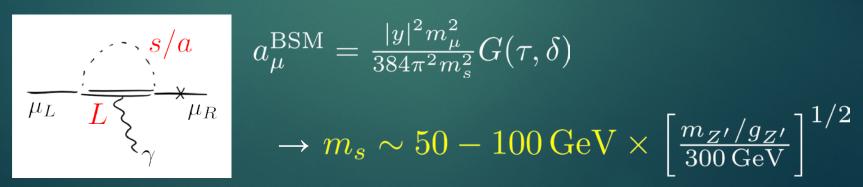
• $g_{\mu} \rightarrow 0$ when $\delta \rightarrow 0$ because there is no U(1)' breaking in this limit

(leading operator = $\phi^* D'_{\mu} \phi \, \bar{l} \gamma^{\mu} l + {
m H.c.}$)

Muon coupling

- Large δ (and $au\sim 1$) is favoved to avoid too small g_{μ}
- However, large a/s splitting requires some tuning $\sim 1/\delta$ in the scalar potential:

$$m_s^2 = m_S^2 - 2|r|\langle\phi\rangle \ll m_a^2 = m_S^2 + 2|r|\langle\phi\rangle$$

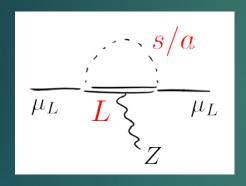

- For $\delta=10(100)$ and $\tau=1$, the loop function is $F(\tau,\delta)\approx 0.3(1.)$ so mild tuning is enough to avoid large suppression \to "compressed" scenario
- Also possible to slightly decouple the lepton: eg. $\tau=10$ gives $F(\tau,\delta)\approx 0.1(0.7)$ for $\delta=10(100)$
 - → heavy lepton scenario

Addressing the anomalies

• Under the Δm_B constraint, B anomalies requires $m_{Z'}/g_{\mu} < 10 \, {
m TeV}$, which implies a light Z' and a rather large lepton portal coupling

$$|y| \gtrsim 3 \times \left[\frac{m_{Z'}/300 \,\mathrm{GeV}}{g_{Z'}F(\tau,\delta)}\right]^{1/2}$$

Accomodating g_u -2 then sets the scalar mass

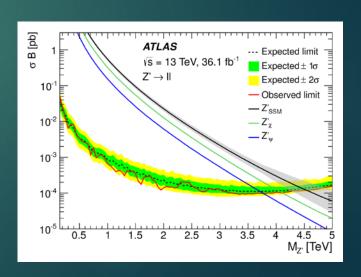


$$a_{\mu}^{\text{BSM}} = \frac{|y|^2 m_{\mu}^2}{384\pi^2 m_s^2} G(\tau, \delta)$$

$$\rightarrow m_s \sim 50 - 100 \,\mathrm{GeV} \times \left[\frac{m_{Z'}/g_{Z'}}{300 \,\mathrm{GeV}}\right]^{1/2}$$

Collider constraints

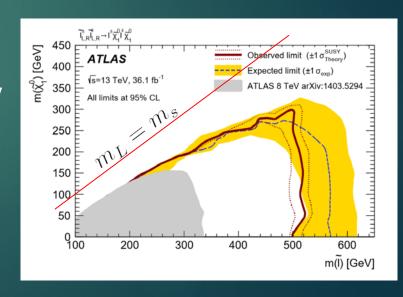
 $\overline{~~}$ • $Zar{\mu}\mu$ at LEP: $-4.4 imes10^{-3}\lesssim rac{\delta g_{\mu_L}}{g_{\mu_L}^{
m SM}}\lesssim 8.9 imes10^{-4}$ (2 σ)


the loop is m_Z^2/m_L^2 -suppressed since there is no Higgs involved $(H^\dagger D_\mu H\, ar l \gamma^\mu l + {
m h.c.}$ not generated)

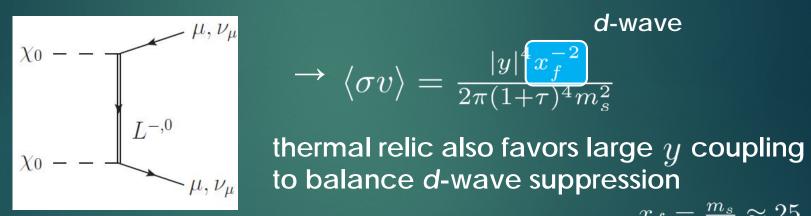
$$\delta g/g \approx -1.2 \times 10^{-3} \ {
m for} \ au \sim 1$$

- dimuon resonance at LHC:
 - light Z' production suppressed by sea quarks PDFs:

$$\sigma_{pp\to Z'}^{13\,{\rm TeV}}\sim \mathcal{O}({\rm few~fb})~{\rm for}~m_{Z'}=300\,{\rm GeV}$$


• BR $(Z' \to \mu\mu) \approx 0.5$

Collider constraints

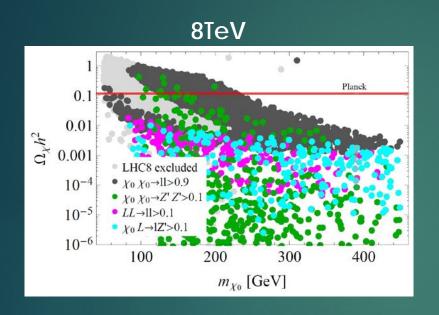

the real threat comes from DY production of L^+L^- giving, for $m_L>m_s$, a signal in $\mu^+\mu^-+E_T$ similar to sleptons in SUSY

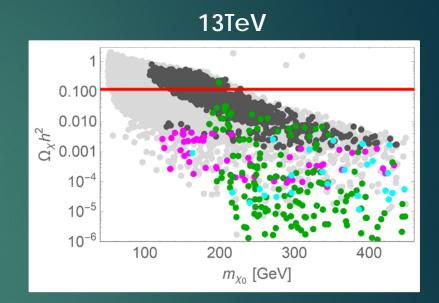
- Recasting 8TeV data implied $m_L \gtrsim 450\,{
 m GeV}$ Arina+ JHEP1505 (2015) 142 while a rough estimate of 13TeV data gives $m_L \gtrsim 900\,{
 m GeV}$
- This search requires sizable E_T and is **not** probing the compressed scenario

Dark matter relic

- DM annihilates through the <u>same</u> interaction responsible for the anomalies
- Assuming scalar DM ($\chi_0 \equiv s$):

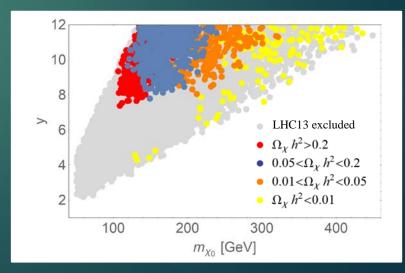
d-wave

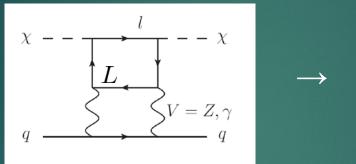

$$x_f = \frac{m_s}{T_f} \approx 25$$


Accomodating the anomalies fixes the relic:

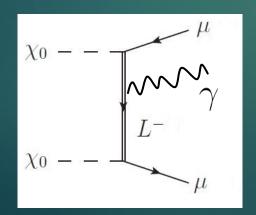
$$\Omega_{\chi} h^2 \approx 0.003 \times (1+\tau)^4 F(\tau,\delta) G(\tau,\delta) \left(\frac{300 \,\text{GeV}}{m_{Z'}/g_{Z'}}\right)$$

and observations favors the heavy lepton scenario $au\gg 1$


Dark matter relic vs. LHC


It remains possible to explain $R_{K^{(*)}}$, $g_{\mu}-2$ and obtain the correct DM abundance!

However, the coupling is barely perturbative...

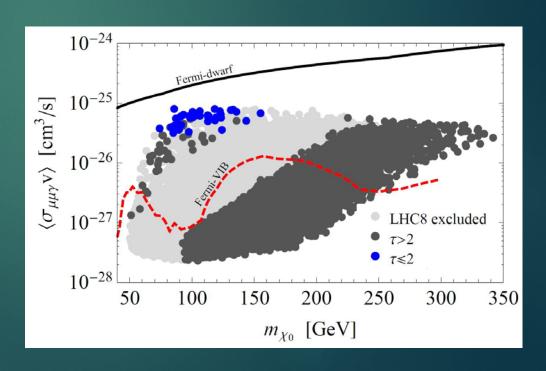

Dark matter detection

Direct signal at 2loop, well below ν -floor

Indirect signal from internal photon emission

Giacchino+ JCAP 1310, 025 (2013), Toma PRL 111, 091301 (2013)

2body annhilation is v^4 -suppressed, 3body is s-wave and dominates


$$\langle \sigma_{\bar{\mu}\mu\gamma} v \rangle = \frac{\alpha}{32\pi^2} \frac{|y|^4}{m_{\chi_0}^2} F_{\gamma}(\tau)$$

γ rays at the Fermi telescope

• In the heavy lepton scenario, 3body annihilation yields a continuous spectrum of energetic photons with $E_{\gamma}^{\rm max}=m_{\chi_0}$, constrained by dwarves galaxies observations Bringmann+ JHEP 01 (2008) 049

 Predicted signals are 1-2 orders of magnitude below Fermi sensitivity

(not up-to-date)

Conclusions

- If B anomalies are indeed new physics:
 - → Can it also explain other known anomalies?
 - → Is it linked to problems of the SM?

- We explored the possibility to address $R_{K^{(*)}}$, $g_{\mu}-2$ in simplified (loop) Z' model and found an interesting connection with dark matter
- This is a rich phenomenological framework with correlated signals in B physics, high-pT physics and astrophysics.