

b hadron production at the LHC

• b hadrons (and anti-hadrons) are dominantly produced through strong interaction in pp collisions at the LHC

- Example: gluon-gluon fusion
- Large inclusive bb cross-section (~ 0.1 mb)
- All b hadron types including Λ_b , B_c and B_s are produced
- Unfortunately, it's hard to efficiently trigger on b hadron decays at the LHC
 - b decay products have relatively low p_T , predominantly produced in forward direction
 - Rare hadronic final states swamped by light hadron backgrounds
- Exceptions
 - Dedicated displaced vertex triggers (for example, LHCb)
 - Specific final states, e.g. including di-muons

ATLAS detector and data sample

• Di-muon triggers with varying thresholds depending on instantaneous luminosity

2 New ATLAS b Physics Analyses

Study of the rare decays of B^0_s and B^0 to muons (ATLAS-CONF-2018-046) [26.3 fb⁻¹ of 13 TeV pp collisions taken in 2015+16]

Angular analysis of $B^0 \to K^* \mu \mu$ (JHEP 10 (2018) 047) [20 fb⁻¹ of 8 TeV pp collisions taken in 2012]

Search for rare decays $B_{s,d} \rightarrow \mu\mu$

- FCNC in the SM
 - Forbidden at tree level
 - Loop-processes highly suppressed through GIM mechanism
 - Predictions for charm and top quarks before their discovery

BFs could be enhanced significantly through NP particles in the loop

Standard Model predictions (Bobeth et al., PRL 112, 101801 (2014))

$$BF(B_s \to \mu\mu) = (3.65 \pm 0.23) \times 10^{-9}$$

 $BF(B_d \to \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$

LHCb and CMS combination (Nature 522, 68 (2015))

$$BF(B_s \to \mu\mu) = (2.80^{+0.7}_{-0.6}) \times 10^{-9}$$
$$BF(B_d \to \mu\mu) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$$

$$B^0_{(s)} \longrightarrow \mu^+ \mu^-$$

ATLAS Run 1 result

$$B(B_s \to \mu\mu) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$$
 and $B(B^0 \to \mu\mu) < 4.2 \times 10^{-10}$ @95% CL

- Compatible with SM at 2.3σ
- Lower BFs compared toLHCb + CMS combination
- Tension in B⁰ BF reduced with the LHCb Run 2 measurement

(PRL118(2017)191801): $B(B^0 \to \mu\mu) < 3.4 \times 10^{-10}$

- Based on 2015 and 2016 data
 - 36.2 fb⁻¹ dataset, effectively 26.3 fb⁻¹ used for $B \rightarrow \mu\mu$ and 15.1 fb⁻¹ for normalization mode $B \rightarrow J/\psi K$

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) \ = \ \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \left[\mathcal{B}(B^+ \to J/\psi \, K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

- Trigger
 - Higher thresholds than Run 1 [4-6 GeV p_T , positive B transverse decay length required at trigger level]

Backgrounds

- Combinatorial $(b \rightarrow \mu X, bb \rightarrow \mu \mu X)$
 - 15-variable Boosted Decision Tree
 (BDT) used to reject this background
 - Trained and tested on simulated events and data sidebands
- Partially reconstructed $(b \rightarrow \mu \mu X)$
 - -B → μμX, B → cμX, B_c → J/ψμν backgrounds accumulate at lower mass
- Semileptonic

Peaking Background and Mass Resolution

- $B \rightarrow hh'$ ($h = \pi^{\pm}$, K^{\pm}) accumulates in the signal region
- Studied with MC-simulated samples and validated in data control regions
- Fake rates using "tight" muon selection
 - $-\pi: 0.1 \%$
 - K: 0.08%
 - p: < 0.01 %
- B^0 and B_s peaks overlap due to limited B mass resolution
 - Separately statistically, expect negative correlation between B^0 and B_s signal yields

Mass of two misidentified muons [MeV]

Dimuon invariant mass [MeV]

Normalization Channel

- Extract B[±] yield with unbinned ML fit
- Relative efficiency to signal mode determined from MC simulation
 - Data/MC difference treated as systematic uncertainty
 - 2.7% correction for B_s effective lifetime

Table 2: Summary of the uncertainties in R_{ε} .

Source	Contribution [%]
Statistical	0.8
BDT input variables	3.2
Kaon tracking efficiency	1.5
Muon trigger and reconstruction	1.0
Kinematic reweighting (DDW)	0.8
Pile-up reweighting	0.6

Signal Yields

- Unbinned ML fit to $m(\mu\mu)$ distribution in 4 BDT bins
- Model PDFs
 - Signal and peaking background
 - 3 double-Gaussians with common mean
 - Combinatorial background
 - 1st-order polynomial
 - $bb \rightarrow \mu\mu X$ and semi-leptonic backgrounds
 - Exponentials
- Extracted yields

$$-N_s = 80 \pm 22$$
 $N_d = -12 \pm 20$

• Fitted yields are consistent with SM expectations:

$$-N_{s} = 91$$
 $N_{d} = 10$

• Extracted branching fractions

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$$

Run 2 Results and Run1+2 Combination

• Run 2 Results:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.21^{+0.96+0.49}_{-0.91-0.30}) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$$

• Run 1+ Run 2 (2015+'16)
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8 \pm 0.7) \times 10^{-9}$$

Combination: $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (-1.9 \pm 1.6) \times 10^{-10}$

- Rare flavor-changing neutral current decay
 - Loop/box diagram is sensitive to new physics
 - $BR(B_d \to K^* \mu \mu) = (1.02 \pm 0.09) \times 10^{-6}$

• LHCb and Belle have reported 3.4 σ and 2.6 σ deviations from the Standard Model [JHEP 02 (2016) 104, PRL 118 (2017) 111801]

• *The decay angular distribution is given by*

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right. \\
\left. -F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \right. \\
\left. +S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi \right. \\
\left. +S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi \right. \\
\left. +S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]. \tag{1}$$

- ATLAS use trigonometric identities to determine F_L , S_3 and S_i (i = 4,5,7,8) in 4 separate fits for each q^2 bin
- S_i parameters are translated into the theoretically cleaner $P^{(')}_i$ parameters

$$P_1 = \frac{2S_3}{1 - F_L} \qquad P'_{4,5,6,8} = \frac{S_{4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

- Low-background, high-statistics K^*J/ψ and $K^*\psi(2S)$ control samples
 - q^2 from 8-11 and from 12-15 GeV²
 - used to extract nuisance parameters (m_B, σ_0) of the signal probability density function (p.d.f.) from data

- Simultaneous fit to $\cos \theta_L$, $\cos \theta_K$ and φ distributions to isolate signal and extract parameters of interest
 - Mass p.d.f. parameters fixed to control region values

Total p.d.f (blue), signal (black) and background (red) contributions

- $20.3 \, fb^{-1}$ of 8 TeV pp collision data
- Analyze data in three q^2 bins from 0.04 to 6.0 GeV²
 - Data shown here for $0.04 < q^2 < 2 \text{ GeV}^2$ overlaid with projections of signal and background p.d.f.s from the S_5 fit
 - 128 ± 22 signal events in this q^2 bin
 - Similar results are obtained for the other
 q² bins and fits

ATLAS results are compatible with theoretical calculations and fits

- 2.7 σ deviation with DHMV for P'_4 , P'_5 in $4 < q^2 < 6$ GeV² range
- New LHCb measurement compatible with SM (PLB 781 (2018) 517)
- All measurements are within 3 σ range covered by predictions

Conclusions

- Presented two recent ATLAS results in b physics
 - Results of angular analysis of rare decay $B_d \rightarrow K^* \mu \mu$ are consistent with the SM with some small tensions (JHEP 10 (2018) 047)
 - Results from Run 2 2015 and 2016 data of B_s and B^0 decays to μμ are consistent with the SM (ATLAS-CONF-2018-046)

Back-Up Slides

- Results are statistically limited
 - Fit values of F_L , S_3 , and P_1 from the 4 fits are consistent with each other; reported is the result with the smallest systematic uncertainty

$q^2 [{\rm GeV^2}]$	F_L	S_3	S_4	S_5	S_7	S_8
[0.04, 2.0]	$0.44 \pm 0.08 \pm 0.07$	$-0.02\!\pm\!0.09\!\pm\!0.02$	$0.15 \pm 0.20 \pm 0.10$	$0.33 \pm 0.13 \pm 0.08$	$-0.09\pm0.10\pm0.02$	$-0.14\!\pm\!0.24\!\pm\!0.09$
[2.0, 4.0]	$0.64 \pm 0.11 \pm 0.05$	$-0.15\!\pm\!0.10\!\pm\!0.07$	$-0.37\!\pm\!0.15\!\pm\!0.10$	$-0.16\pm0.15\pm0.06$	$0.15 \pm 0.14 \pm 0.09$	$0.52 \!\pm\! 0.20 \!\pm\! 0.19$
[4.0, 6.0]	$0.42 \pm 0.13 \pm 0.12$	$0.00 \pm 0.12 \pm 0.07$	$0.32 \pm 0.16 \pm 0.09$	$0.13\pm0.18\pm0.09$	$0.03 \pm 0.13 \pm 0.07$	$-0.12\!\pm\!0.21\!\pm\!0.05$
[0.04, 4.0]	$0.52 {\pm} 0.07 {\pm} 0.06$	$-0.05\!\pm\!0.06\!\pm\!0.04$	$-0.15\!\pm\!0.12\!\pm\!0.09$	$0.16 \pm 0.10 \pm 0.05$	$0.01 \pm 0.08 \pm 0.05$	$0.19 \pm 0.16 \pm 0.12$
[1.1, 6.0]	$0.56 \pm 0.07 \pm 0.06$	$-0.04\!\pm\!0.07\!\pm\!0.03$	$0.03\pm0.11\pm0.07$	$0.00\pm0.10\pm0.04$	$0.02\pm0.08\pm0.06$	$0.11 \pm 0.14 \pm 0.10$
[0.04, 6.0]	$0.50 \pm 0.06 \pm 0.04$	$-0.04\!\pm\!0.06\!\pm\!0.03$	$0.03 \pm 0.10 \pm 0.07$	$0.14 \pm 0.09 \pm 0.03$	$0.02 \pm 0.07 \pm 0.05$	$0.07 {\pm} 0.13 {\pm} 0.09$
$q^2 \; [{ m GeV^2}]$	P_1	P_4'	P_5'	P_6'	P_8'	
[0.04, 2.0]	$-0.05\pm0.30\pm0.08$	$0.31 \pm 0.40 \pm 0.20$	$0.67 {\pm} 0.26 {\pm} 0.16$	$-0.18\pm0.21\pm0.04$	$-0.29\pm0.48\pm0.18$	
[2.0, 4.0]	$-0.78\pm0.51\pm0.34$	$-0.76\pm0.31\pm0.21$	$-0.33\!\pm\!0.31\!\pm\!0.13$	$0.31\!\pm\!0.28\!\pm\!0.19$	$1.07 {\pm} 0.41 {\pm} 0.39$	
[4.0, 6.0]	$0.14 \pm 0.43 \pm 0.26$	$0.64 {\pm} 0.33 {\pm} 0.18$	$0.26 \!\pm\! 0.35 \!\pm\! 0.18$	$0.06 \pm 0.27 \pm 0.13$	$-0.24\pm0.42\pm0.09$	
[0.04, 4.0]	$-0.22 \pm 0.26 \pm 0.16$	$-0.30\!\pm\!0.24\!\pm\!0.17$	$0.32\!\pm\!0.21\!\pm\!0.11$	$0.01\!\pm\!0.17\!\pm\!0.10$	$0.38 \!\pm\! 0.33 \!\pm\! 0.24$	
[1.1, 6.0]	$-0.17\pm0.31\pm0.13$	$0.05\!\pm\!0.22\!\pm\!0.14$	$0.01\!\pm\!0.21\!\pm\!0.08$	$0.03\!\pm\!0.17\!\pm\!0.12$	$0.23 {\pm} 0.28 {\pm} 0.20$	
[0.04.6.0]	0.15 0.00 0.10	$0.05 \pm 0.20 \pm 0.14$	$0.27 \pm 0.19 \pm 0.06$	$0.03\pm0.15\pm0.10$	$0.14\pm0.27\pm0.17$	

- Dominant systematics come from uncertainties in the background
 - partially reconstructed decays with open charm and incorrect $K\pi$ combinations (fake K^*)
 - $K\pi$ S-wave contributions results only in small systematic uncertainty