

Top quarks measurements with the ATLAS detector

<u>Leonid Serkin</u> for the ATLAS Collaboration

INFN Gruppo Collegato di Udine and ICTP Trieste

27/11/2018

SILAFAE 2018, Lima, Peru

• The top quark is the heaviest known elementary particle described by SM

• The top quark has a mass close to the EW symmetry breaking scale, and in many BSM models it is predicted to have a **very large coupling** to new resonances

• Due to its large mass, the predicted top quark lifetime (~ 5 x 10⁻²⁵ s) implies that it **decays before** forming hadrons

• The ATLAS and CMS experiments at the LHC have accumulated millions of top quark events (~ 500 tt-pairs per minute), sustained by data from the LHCb experiment in forward kinematic regions

• Large number of results produced by the ATLAS experiment, **today** will focus on a selection of latest measurements concerning:

- i. top quark mass
- ii. single top and top-pair cross-section (inclusive and differential)
- iii. top quark spin correlations
- iv. rare processes with top quarks (tt+X)

• Apologies if your preferred search is not included due to lack of time

Top quark production and decay

• Top quark pair production governed by **strong** interaction:

• Single top production proceeds via EW interaction:

- The top quark decays almost 100% to a W-boson and b-quark (V $_{\rm tb}$ ~ 1):

• final state topology is given W-boson decays: $W \rightarrow lv (\sim 30\%) / qq' (\sim 70\%)$

Top quark production and decay

Top quark pair production governed by strong interaction:

• Single top production proceeds via **EW** interaction:

- The top quark decays almost 100% to a W-boson and b-quark (V $_{\rm tb}$ ~ 1):
 - final state topology is given W-boson decays: $W \rightarrow lv (\sim 30\%) / qq' (\sim 70\%)$

Top Pair Branching Fractions

Final states:

- **Single-lepton**: large statistics and large background
- **Dilepton**: cleanest signature but lower statistics
- All-hadronic: large uncert. due to multijet background

Experimental signatures: top and bottom as probes

- Very peculiar experimental signature
 - jets and b-jets, charged leptons, MET (neutrino)
- Algorithms built to identify b-jets
 - b-hadron long lifetimes (e.g. 1.5ps for B⁰) can travel few millimetres before they decay
 - based on displaced vertex and jet shape information
 - multivariate discriminant used to discriminate
 - *b*-, *c* and *light*-jets
- Boosted object tagging:

Experimental signatures: top and bottom as probes

- Very peculiar experimental signature
 - jets and b-jets, charged leptons, MET (neutrino)
- Algorithms built to identify b-jets
 - b-hadron long lifetimes (e.g. 1.5ps for B⁰) can travel few millimetres before they decay
 - based on displaced vertex and jet shape information
 - multivariate discriminant used to discriminate
 - b-, c- and light-jets
- Boosted object tagging:

higher p_T

Summary of top mass measurements

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, √ s = 7-13 TeV	September 2018
World comb. (Mar 2014) [2] stat	total stat	
total uncertainty	m _{top} ± total (stat ± syst)	s Ref.
LHC comb. (Sep 2013) LHCtopWG	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [1]
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [2]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [4]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]
ATLAS, dilepton	$172.99 \pm 0.85 \; (0.41 \pm 0.74)$	8 TeV [6]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	172.08 \pm 0.91 (0.38 \pm 0.82)	8 TeV [8]
ATLAS comb. (^{Sep 2017}) H+H	172.51 \pm 0.50 (0.27 \pm 0.42)	7+8 TeV [8]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [9]
CMS, dilepton	$172.50 \pm 1.52 \ (0.43 \pm 1.46)$	7 TeV [10]
CMS, all jets	$173.49 \pm 1.41 \ (0.69 \pm 1.23)$	7 TeV [11]
CMS, I+jets	172.35 \pm 0.51 (0.16 \pm 0.48)	8 TeV [12]
CMS, dilepton	172.82 \pm 1.23 (0.19 \pm 1.22)	8 TeV [12]
CMS, all jets	$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [12]
CMS, single top	$172.95 \pm 1.22~(0.77 \pm 0.95)$	8 TeV [13]
CMS comb. (Sep 2015)	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [12]
CMS, I+jets	172.25 \pm 0.63 (0.08 \pm 0.62)	13 TeV [14]
CMS, all jets	172.34 \pm 0.79 (0.20 \pm 0.76)	13 TeV [15]
[1] ATLA [2] arXiv	(S-CONF-2013-102 [6] Phys Lett.8761 (2016) 350 [1403.4427 [7] arXiv:1702.07546	 [11] Eur.Phys.J.C74 (2014) 2758 [12] Phys.Rev.D93 (2016) 072004
[3] Eur F [4] Eur F	Imps J.C.75 (2015) 330 [8] ATLAS-CONF-2017-071 Phys J.C.75 (2015) 158 [9] JHEP 12 (2012) 105	[13] EPJC 77 (2017) 354 [14] arXiv:1805.01428
	to contraction of the Europhyse (solis) sees	Tal onio Exo TOP-17-008
1/0 1/5		185
m _{top}	[Gev]	

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/TOP/

Good **agreement** between ATLAS measurements and indirect mass determinations by the EW fit

Latest combined ATLAS 2018 result:

CERN-EP-2018-238

Relative precision of 0.28%

- Top cross-section can **constrain** parameters such as top mass, α_s and PDFs
- All measurement consistent with the SM prediction

- Theory (NNLO+NNLL): ~ 5.5% precision
- ATLAS (eµ channel): **4%** precision at 7/8 TeV
- 7% precision at 13 TeV (lumi uncert.)

- Measured total cross section converted to CKM matrix element Vtb, achieving **5%** precision
- s-channel challenging @13 TeV

• Test global properties of top-quark pair events by measuring top quark observables in both fiducial (particle) and full (parton) phase space

Comparison of different generator setups and radiation tunes
Precision limited by: data statistics, generator uncertainties, jet energy scale and resolution

Fiducial and differential cross-section measurements

- Test global properties of top-quark pair events by measuring top quark observables in both fiducial (particle) and full (parton) phase space
- Comparison of different generator setups and radiation tunes
 Precision limited by: data statistics, generator uncertainties, jet energy scale and resolution
- All three final states studied: MC simulations predict harder top p_T than data
- Single-lepton resolved Dilepton All-hadronic boosted $\frac{1}{\sigma} \cdot \frac{d\sigma}{d p_{\gamma}(t)} / \text{GeV}$ ATLAS Fiducial phase-space d $\sigma_{t\overline{t}}$ / dp $_{T}^{t,had}$ [pb/GeV] Data ATLAS ATLAS $1/\sigma_{t\bar{t}} \cdot d \; \sigma_{t\bar{t}} / d \; p_T^{t,1}$ [GeV s = 13 TeV, 3.2 fb Data PWG_PY6 POWHEG+Py8 √s = 13 TeV. 3.2 fb⁻¹ 10-2 10^{-1} √s = 13 TeV. 36.1 fb⁻¹ PWG+PY6 h_{damp}=2m, radHi 10 POWHEG+H7 Stat
 Svst. Resolved PWG+PY6 h =m. radLo Fiducial phase space POWHEG Box + PYTHIA 6 ス MG5_aMC@NLO+Py8 Fiducial phase-space WG+PY8 h =1.5 m OWHEG Box + HERWIG+ Sherpa 2.2.1 PWG+H7 h POWHEG Box + PYTHIA 8 Stat. Unc. MG5 aMC@NLO + HEBWIG++ aMC@NLO+H+ Stat.
 Syst. Unc. 80 MG5 aMC@NLO + Pythia 8 aMC@NLO+PY8 10 Stat. unc top p_T 10-Stat +Syst. und 10-2 10 top p_T 10-Pred. / Data Pred. / Data 00 0 10 Prediction Data top p_T 4 0 12003 292 1.5 Prediction Data 10 6 Prediction Data 0.8 Prediction Data 0.5 400 600 800 1000 500 600 700 800 900 1000 1100 1200 p_(t) [GeV] p_T^{t,1}[GeV] 400 1000 p^{t,had} [GeV]
- MC simulations predict harder top p_T than data, NNLO agrees better

- Test global properties of top-quark pair events by measuring top quark observables in both fiducial (particle) and full (parton) phase space
- Comparison of different generator setups and radiation tunes
 Precision limited by: data statistics, generator uncertainties, jet energy scale and resolution
- Single-lepton final state with additional jets (sensitive to gluon radiation):
- 5-jet exclusive 6-iet inclusive 4-iet exclusive d $\sigma_{\rm ff}^{}/\,dp_{\rm T}^{\rm t,had}\,[\,pb\cdot GeV^{-1}]$ d $\sigma_{\rm ff}$ / dp_{\rm T}^{\rm t,had} [pb \cdot GeV⁻¹ ATLAS GeV ATLAS PWG+PY6 PWG+PY6 Fiducial phase-space Fiducial phase-space Fiducial phase-space 10 WG+PY8 h_{rlamo}=1.5 m, s = 13 TeV, 3.2 fb WG+PY8 h ___=1.5 m vs = 13 TeV, 3.2 fb √s = 13 TeV 3.2 fb d $\sigma_{f\bar{f}}\,/\,dp_{_{T}}^{t,had}$ [pb WG+H7 h____=1.5 m WG+H7 h____=1.5 m =1.5 m 4-iet exclusive aMC@NLO+PY8 Mm² + p MC@NLO+PY8 Mm² AC@NLO+PY8 Mm² Sherpa 2.2 Sherpa 2.2. Sherpa 2.2 Stat. und 10 Stat.+Syst. und Stat.+Syst. und Stat.+Syst. un 10 10 10-4 top p_T top p_T top p_T 10^{-3} 10^{-3} 018) 10-5 Prediction Data Prediction Data Prediction Data 59 Prediction Data Prediction Data 0001 1000 p^{t,had} [GeV] p_t,had [GeV] p^{t,had} [GeV]
- MC simulations predict harder top p_T than data, NNLO agrees better

Fiducial and differential cross-section measurements

- Comparison of different generator setups and radiation tunes
 Precision limited by: data statistics, generator uncertainties, jet energy scale and resolution
- All truth events Fiducial particle ei Reco Detector flatc Mij

• tt + additional heavy-flavour jets

• MC predictions where additional b-jets are dominantly produced by the parton shower predict too few events

Fiducial and differential cross-section measurements

Comparison of different generator setups and radiation tunes
Precision limited by: data statistics, generator uncertainties, jet energy scale and resolution

• Differential cross-section in single top production

 Most of the MC models show fair agreement, however there are more events with high-pT finalstate objects than several of the MC models predict

- SM predicts top quark and anti-quark spins to be correlated in tt-pairs
- Spin information is carried by the top quark decay products, particularly accessible in charged leptons
- Measure unfolded |Δφ| = |Δφ|(e,μ) differential cross section in dileptonic channel
- Extract the fraction of SM-like spin correlation f_{SM} at parton level:

$$n_i = f_{\rm SM} \cdot n_{\rm spin} + (1 - f_{\rm SM}) \cdot n_{\rm nospin}$$

- Measure the azimuthal opening angle as a function of the invariant mass of the tt-system: spin correlation increases
- None of the studied MC generators is able to reproduce the data within uncertainties

Region	$f_{\rm SM}$	Significance (incl. theory uncertainties)
$m_{t\bar{t}} < 450~{\rm GeV}$	$1.11 \pm 0.04 \pm 0.13$	0.85(0.84)
$450 < m_{t\bar{t}} < 550 { m ~GeV}$	$1.17 \pm 0.09 \pm 0.14$	1.00(0.91)
$550 < m_{t\bar{t}} < 800 { m ~GeV}$	$1.60 \pm 0.24 \pm 0.35$	1.43 (1.37)
$m_{t\bar{t}} > 800~{\rm GeV}$	$2.2\pm1.8\pm2.3$	0.41 (0.40)
inclusive	$1.250 \pm 0.026 \pm 0.063$	3.70(3.20)

ATLAS-CONF-2018-027

• With increasing energy and integrated luminosity, the ability to study **rare SM phenomena** becomes possible

Standard Model Total Production Cross Section Measurements Status: July 2018

With increasing energy and integrated luminosity, the ability to study rare SM phenomena becomes possible

• Measurement of tt+Z and tt+W cross-section at 13 TeV using a dataset of 36.1 fb⁻¹ pp events

- direct probe of weak coupling to top quark
- important background in many searches with multilepton final states (SUSY, tt+H,..)

• Events are selected in channels with two same- or opposite-sign, three or four leptons (electrons or muons) and each channel is further divided into multiple regions

Process	<i>tī</i> decay	Boson decay	Channel
tŦW	$ \begin{array}{l} (\ell^{\pm}\nu b)(q\bar{q}b) \\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array} $	$\ell^{\pm}\nu\\\ell^{\pm}\nu$	SS dilepton Trilepton
tīZ	$(q\bar{q}b)(q\bar{q}b)(\ell^{\pm}\nu b)(q\bar{q}b)(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^+ \ell^- \\ \ell^+ \ell^- \\ \ell^+ \ell^-$	OS dilepton Trilepton Tetralepton

Top quark pair + vector boson

ATLAS-CONF-2018-047

 Measurement of tt+Z and tt+W cross-section at 13 TeV using a dataset of 36.1 fb⁻¹ pp events

- direct probe of weak coupling to top quark
- important background in many searches with multilepton final states (SUSY, tt+H,..)
- Events are selected in channels with two same- or opposite-sign, three or four leptons (electrons or muons) and each channel is further divided into multiple regions
- Yielding significance of ttW: 4.3σ (3.4σ) observed (expected) and ttZ > 5σ , with dominant systematic uncertainties: modelling, sample statistics
- Interpretations of the inclusive cross section measurement in terms of EFT, constrain operators which modify ttZ vertex

- Measurement of tt+ γ inclusive and differential crosssection at 13 TeV using a dataset of 36.1 fb⁻¹ pp events
 - direct probe of EM coupling of the top quark
 - no attempt to separate but reduce the contribution of photons being radiated from top quark decays
- Events are selected in single-lepton and dilepton channels, and exactly one photon
- Tag-and-probe method are used to correct the number of fake photons predicted by MC samples
- Hadronic fake background via ABCD method inverting isolation/identification criteria
- Object-level and event-level neural networks improve the separation and sensitivity

ATLAS-CONF-2018-048

- Measurement of tt+ γ inclusive and differential crosssection at 13 TeV using a dataset of 36.1 fb⁻¹ pp events
 - direct probe of EM coupling of the top quark
 - no attempt to separate but reduce the contribution of photons being radiated from top quark decays
- Events are selected in single-lepton and dilepton channels, and exactly one photon
- Tag-and-probe method are used to correct the number of fake photons predicted by MC samples
- Hadronic fake background via ABCD method inverting isolation/identification criteria
- Object-level and event-level neural networks improve the separation and sensitivity
- Normalised differential crosssections are measured as a function of the photon kinematics
- All measurements are in agreement with NLO predictions

4 top quarks

- SM four-top-quarks (tttt) cross-section ~9.2 fb (NLO in QCD)
- Powerful probe for many signatures of BSM physics

• Can be studied in a variety of final states, given by the decays of each W-boson (t \rightarrow Wb)

4 tops in SS dilepton/trilepton events

- SM four-top-quarks (tttt) cross-section ~9.2 fb (NLO in QCD)
- Powerful probe for many signatures of BSM physics
- Can be studied in a variety of final states, given by the decays of each W-boson (t \rightarrow Wb)
- Cut & count in 6 (8) validation (signal) regions with selection on MET, HT, number of leptons, jets and b-jets: achieve very low SM background
- Data-driven backgrounds:
 - Fake/non-prompt e/µ backgrounds estimated using a matrix method
 - Charge mis-ID backgrounds (for SS dilepton events) estimated via rate measured in data
- SM four-top-quark production cross-section upper limit obtained (expected) of 69 (29) fb

CERN-EP-2018-171

- Search for four-top-quark production in 1L / 2OSL final states: small signal on top of large tt+jets bkg
- Probe extreme regions: go to up to 10 jets, up to 4 b-jets and up to 2 large-R jets
- MC simulation not expected to model well the high multiplicity regions: data-driven tt+jets
- Simultaneous fit to HT_{had} in 20 signal regions using data-driven estimation of tt+jets
- Results combined with ATLAS SS dilepton / trilepton search: excess of events over the SM background prediction observed with a significance of 2.8σ (1.0σ).
- Assuming no signal, obs. (exp.) 95% CL upper limit of 5.3 (2.1) times SM expectation

<u>CERN-EP-2018-174</u>

• Top quark: a laboratory for precisely testing theory predictions and perform highprecision measurements, and a window into BSM physics

• ATLAS has a broad program using top/b-quarks with many public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

- Challenging and rare decay modes are exploited:
 - measurements using all possible top-quark pair final states
 - dedicated resolved/boosted channels
 - jet substructure and jet reclustering
 - event categorisation/background rejection using MVAs
 - combination of searches and various interpretations of the results
- Looking forward to new results using full Run 2 data thanks to LHC great performance
- Muchas gracias por su atención!

BACK-UP

<u>CERN-EP-2018-238</u>

Uncertainty	Δm_{top}^{sp} [GeV]	Δm_{top}^{qw} [GeV]	Δm_{top} [GeV]	
Signal Monte Carlo generator		0.16 ± 0.17		
POWHEG-BOX - MC@NLO (HERWIG)			-0.161 ± 0.168	
Hadronization		0.15 ± 0.10		
POWHEG+PYTHIA - POWHEG+HERWIG			$+0.146 \pm 0.098$	
Initial- and final-state QCD radiation		0.08 ± 0.11		
less I/FSR - more I/FSR	+0.086	-0.075	$+0.080 \pm 0.111$	
Underlying event		0.08 ± 0.15		
Р2012 - Р2012 мріНі			-0.080 ± 0.153	
Colour reconnection		0.19 ± 0.15		
P2012 - P2012 LoCR			$+0.191 \pm 0.154$	
Background normalization		0.08 ± 0.00		
Z+jets norm.	+0.007	-0.015	$+0.011 \pm 0.000$	
W+jets norm.	-0.017	-0.061	-0.061 ± 0.000	
Fake lepton norm.			$+0.046 \pm 0.000$	
W/Z+jets shape	0.11 ± 0.00			
W+jets HF0	-0.001	-0.070	-0.070 ± 0.000	
W+jets HF1	-0.005	-0.087	-0.087 ± 0.000	
Jet reconstruction efficiency	0.02 ± 0.01			
nominal - 0.23% drop			$+0.022 \pm 0.013$	
Jet vertex fraction		0.09 ± 0.01		
	+0.077	-0.112	0.095 ± 0.009	
Leptons		0.16 ± 0.01		
Electron energy scale	+0.025	-0.006	$+0.016 \pm 0.006$	
Electron energy resolution	-0.152	-0.145	-0.152 ± 0.013	
Muon resolution (muon spectrometer)			$+0.027 \pm 0.000$	
Muon resolution (inner detector)			$+0.023 \pm 0.000$	
Muon scale	-0.013	+0.015	-0.014 ± 0.000	
Lepton trigger SF	-0.005	-0.003	-0.005 ± 0.001	
Lepton identification SF	+0.005	-0.011	$+0.008 \pm 0.001$	
Lepton reconstruction SF	+0.003	-0.008	$+0.005 \pm 0.000$	
Missing transverse momentum(E_T^{mlss})		0.05 ± 0.01		
$E_{\rm T}^{\rm miss}$ (resolution soft term)	+0.003	+0.012	$+0.012 \pm 0.018$	
$E_{\rm T}^{\rm miss}$ (scale soft term)	+0.054	-0.039	$+0.047 \pm 0.009$	

- assume probability of b-tagging a jet in tt+jets event is independent of number of extra jets
- extract effective b-tagging efficiencies from low Nj, reweight the data and predict tt+jets in signal regions with same Nj/NJ, but larger Nb
- correction factor C for each considered bin
- full set of syst. uncert. by repeating the procedure on MC simulated events with syst. variations applied

4 tops in SS dilepton/trilepton events

• Excess info: More than half of the excess is observed in events with two muons, three b-tagged jets and HT around 700 GeV.

Region name	N_{j}	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
$VR1b2\ell$	≥ 1	1	2	++ or	$400 < H_{\rm T} < 2400 {\rm ~GeV} {\rm ~or~} E_{\rm T}^{\rm miss} < 40 {\rm ~GeV}$
$\mathrm{SR}1b2\ell$	≥ 1	1	2	++ or	$H_{\rm T} > 1000 {\rm ~GeV}$ and $E_{\rm T}^{\rm mass} > 180 {\rm ~GeV}$
$VR2b2\ell$	≥ 2	2	2	++ or	$H_{\rm T} > 400~{\rm GeV}$
$\mathrm{SR}2b2\ell$	≥ 2	2	2	++ or	$H_{\rm T} > 1200 {\rm ~GeV}$ and $E_{\rm T}^{\rm miss} > 40 {\rm ~GeV}$
$VR3b2\ell$	≥ 3	≥ 3	2	++ or	$400 < H_{\rm T} < 1400 {\rm ~GeV} {\rm ~or} ~ E_{\rm T}^{\rm miss} < 40 {\rm ~GeV}$
$SR3b2\ell_L$	≥ 7	≥ 3	2	++ or	$500 < H_{\rm T} < 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
$\mathrm{SR}3b2\ell$	≥ 3	≥ 3	2	++ or	$H_{\rm T}>1200~{\rm GeV}$ and $E_{\rm T}^{\rm miss}>100~{\rm GeV}$
$VR1b3\ell$	≥ 1	1	3	any	$400 < H_{\rm T} < 2000~{\rm GeV}~{\rm or}~E_{\rm T}^{\rm miss} < 40~{\rm GeV}$
$\mathrm{SR}1b3\ell$	≥ 1	1	3	any	$H_{\rm T} > 1000~{\rm GeV}$ and $E_{\rm T}^{\rm miss} > 140~{\rm GeV}$
$VR2b3\ell$	≥ 2	2	3	any	$400 < H_{\rm T} < 2400 {\rm ~GeV} {\rm ~or} {\rm ~} E_{\rm T}^{\rm miss} < 40 {\rm ~GeV}$
$\mathrm{SR}2b3\ell$	≥ 2	2	3	any	$H_{\rm T}>1200~{\rm GeV}$ and $E_{\rm T}^{\rm miss}>100~{\rm GeV}$
$VR3b3\ell$	≥ 3	≥ 3	3	any	$H_{\rm T} > 400~{\rm GeV}$
$SR3b3\ell_L$	≥ 5	≥ 3	3	any	$500 < H_{\rm T} < 1000 {\rm ~GeV}$ and $E_{\rm T}^{\rm miss} > 40 {\rm ~GeV}$
$SR3b3\ell$	≥ 3	≥ 3	3	any	$H_{\rm T}>1000~{\rm GeV}$ and $E_{\rm T}^{\rm miss}>40~{\rm GeV}$

CERN-EP-2018-171

ATLAS-CONF-2018-027

Parton level $\Delta \phi(l^+, \bar{l}) / \pi [rad/\pi]$

Generator	inclusive	$m_{t\bar{t}} < 450 \; {\rm GeV}$	$450 < m_{t\bar{t}} < 550 \text{ GeV}$	$550 < m_{t\bar{t}} < 800 \; \mathrm{GeV}$	$m_{t\bar{t}} > 800 \; {\rm GeV}$
$f_{\rm SM}$ values					
Powheg + Pythia 8	1.25	1.11	1.17	1.60	2.19
Powheg + Pythia 8 (2.0 μ_F , 2.0 μ_R)	1.29	1.14	1.21	1.70	1.70
Powheg + Pythia 8 (0.5 μ_F , 0.5 μ_R)	1.18	1.09	1.11	1.40	1.30
POWHEG + PYTHIA 8 (PDF variations)	1.26	1.12	1.24	1.69	2.19
Powheg + Pythia 8 RadLo tune	1.29	1.14	1.21	1.40	1.70
Powheg + Herwig7	1.32	1.16	1.23	1.70	1.70
$MadGraph5_aMC@NLO+Pythia8$	1.20	1.06	1.17	1.40	0.70

$$\mathcal{L}_{SM} = \mathcal{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right),$$

v 1

т т

ATLAS-CONF-2018-047

Operator	Expression	
$O^{(3)}_{\phi Q}$	$i\frac{1}{2}(\phi^{\dagger}\overleftrightarrow{D}_{\mu}^{I}\phi)(\bar{Q}\gamma^{\mu}\tau^{I}Q)$	
$O^{(1)}_{\phi Q}$	$i\frac{1}{2}(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{Q}\gamma^{\mu}Q)$	$\sigma_{tot,i} = \sigma_{SM} + \frac{C_i}{(1 + C_i)^2} \sigma_i^{(1)} + \frac{C_i^2}{(1 + C_i)^2} \sigma_i^{(2)},$
$O_{\phi t}$	$irac{1}{2}(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\overline{t}\gamma^{\mu}t)$	$(\Lambda/11eV)^2$ $(\Lambda/11eV)^4$ $(\Lambda/11eV)^4$
O_{tW}	$y_t g_w (\bar{Q}\sigma^{\mu\nu}\tau^I t) \tilde{\phi} W^I_{\mu\nu}$	
O_{tB}	$y_t g_Y(\bar{Q}\sigma^{\mu\nu}t)\tilde{\phi}B_{\mu\nu}$	

Table 10: The expected and observed 68% and 95% confidence intervals that include the value 0, on C_i/Λ^2 for the EFT coefficients $C_{\phi Q}^{(3)}$, $C_{\phi Q}^{(1)}$, $C_{\phi t}$, C_{tB} and C_{tW} . The measurement is sensitive only to the difference $C_{\phi Q}^{(3)} - C_{\phi Q}^{(1)}$. All results are given in units of 1/TeV². Previous 95% confidence level constraints as summarized in Ref. [6] are quoted in the last column.

Coefficient	Expected limits	Observed limits	Previous constraints
	at 68% and $95~\%~CL$	at 68% and $95~\%~CL$	at 95 % CL
$(C_{\phi Q}^{(3)} - C_{\phi Q}^{(1)})/\Lambda^2$	[-2.1, 1.9], [-4.6, 3.7]	[-1.0, 2.7], [-3.4, 4.3]	[-3.4, 7.5]
$C_{\phi t}/\Lambda^2$	[-3.8, 2.8], [-23, 5.0]	[-2.0, 3.6], [-27, 5.7]	[-2.0, 5.7]
C_{tB}/Λ^2	[-8.3, 8.6], [-12, 13]	[-11, 10], [-15, 15]	[-16, 43]
C_{tW}/Λ^2	[-2.8, 2.8], [-4.0, 4.1]	[-2.2, 2.5], [-3.6, 3.8]	[-0.15, 1.9]

Flavor-changing neutral currents (FCNC) are forbidden at tree level and strongly suppressed at higher order in SM, ex.

 $t \to Hq, (q = u, c)$

Large enhancements in branching ratio are possible in some beyond Standard Model (SM) scenarios, $\mathcal{B}(t \to Hc) \sim 0.1\%~(\sim 10^{-15} \text{ in SM})$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/TOP