
Massive stealth fields from deformation method

Mauricio Valenzuela

Universidad San Sebastián, Valdivia, Chile

SILAFAE 20118

Based in the collaboration:

Cristian C. Quinzacara, Paola Meza, Almeira Sampson & M.V. Eur.

Phys. J. C (2018) 78. [arXiv:1805.04621]



1 Introduction

It is generally believed that matter curves the space since given an action principle

of pure gravity and matter,

Srg, ϕs “ SGrgs ` SM rg, ϕs, (1.1)

it happens that the equations of motion of the metric tensor g,

δSrg, ϕs

δgµν
“

?
´gp Gµνrgs

loomoon

Einstein tensor

´ Tµνrg, ϕs
looomooon

Hilbert EM tensor

q “ 0. (1.2)
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Hence matter curves the spacetime...
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However, there are many examples in the literature where this is not the case:

Alvarez et al. (2016, 2017), Ayon-Beato et al. (2005, 2006), Ayón-Beato et al. (2013,

2015, 2018), Hassaine (2014), Smolić (2018).

Here the energy momentum tensor vanishes for non-trivial solutions of the matter

field equations. In this case, the geometry is not curved in the presence of non-trivial

matter fields configuration. These configurations are dubbed Stealth Fields.
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The purpose of this paper is to present a method to construct models with

massive stealth fields in arbitrary backgrounds.

SM rϕs
loomoon

“original action”

Ñ Sθ
M rϕs

loomoon

“deformed action”

The scalar field action is “deformed” into a new action with deformation parameter

θ.

The deformed action possesses:

• a massive stealth mode of mass θ´1

• other modes with rescaled effects on the gravity background
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2 A toy model

Let fpxq be any function of x P R with a saddle point at x “ 0,

df

dx

ˇ

ˇ

ˇ

ˇ

x“0

“ 0 , (2.3)

and let ypxq another function which possess, for definiteness, two zeros at x “ 0 and

x “ 1,

yp0q “ 0, yp1q “ 0 . (2.4)
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We define the composition of functions F pxq :“ fpypxqq, which inherits from the

parent functions f and y the properties,

dF

dx

ˇ

ˇ

ˇ

ˇ

x“0

“
dF

dx

ˇ

ˇ

ˇ

ˇ

x“1

“ 0 , (2.5)

such that it has two saddle points, at x “ 0, 1. It is straightforward to prove this.

We can use the chain rule to evaluate dF {dx at x “ 0, 1,

dF

dx

ˇ

ˇ

ˇ

ˇ

x“0,1

“

ˆ

dfpyq

dy

dypxq

dx

˙ˇ

ˇ

ˇ

ˇ

x“0,1

“
dfpyq

dy

ˇ

ˇ

ˇ

ˇ

y“0

dypxq

dx

ˇ

ˇ

ˇ

ˇ

x“0,1

.

Here the dfpyq{dy|y“0 vanishes because from (2.4) y takes zero-value and from (2.3)

the derivative of f vanishes when the argument is zero.
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Hence from an arbitrary function fpxq with saddle point at x “ 0 (2.3) we

can construct another arbitrary function F pxq with saddle points at the

kernel of the map y : R Ñ R, in this example x “ 0, 1.
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3 θ-deformation of scalar field theories

We shall apply now the same logic in the language of functional calculus, with the

dictionary:

x Ñ ϕ, ypxq Ñ ϕθrg, ϕs, fpxq Ñ SM rg, ϕs, F pfpxqq Ñ SM rg, ϕθrg, ϕss.

Here the scalar field ϕ is the analogous of x, ϕθ is a funcional map from ϕ, SM rg, ϕs

is the action principle of a scalar field (with saddle points) analogous of f , and

SM rg, ϕθrg, ϕss is a new action principle obtained from a composition of the func-

tionals SM and ϕθ analogous of F pfpxqq.
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The field transformation to be considered is:

ϕθrg, ϕs “ p1 ´ θ2lqϕ, (3.6)

where θ is a real-valued parameter. Here

lϕ :“
1

a

p´gq
Bµp

?
´ggµνBνϕq ,

is the Laplace-Beltrami operator acting upon ϕ.
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Therefore the kernel of the deformation map ϕ Ñ ϕθrg, ϕs consists of the trivial

vacuum ϕ “ 0 and the massive configuration ϕ “ ϕm with mass m “ θ´1:

ϕθrg, ϕms “ p1 ´ θ2lqϕm “ 0 , m “ θ´1 , (3.7)

which is equivalent to the Klein-Gordon equation in curved space.
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4 Scalar field action deformation

We shall consider theories of the type,

Srg, ϕs “ SGrgs ` SM rg, ϕs. (4.8)

δϕ Ñ Υrg, ϕs :“
δSM rg, ϕs

δϕ
“

δSrg, ϕs

δϕ
“ 0 , (4.9)

Hence the E.o.M are:

Gµνrgs ´ Tµνrg, ϕs “ 0, Υrg, ϕs “ 0, (4.10)
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Now we produce a “deformed” field theory,

Sθrg, ϕs “ SGrgs ` SM rg, ϕθs, ϕθrg, ϕs :“ p1 ´ θ2lqϕ (4.11)

with E.o.Ms:

Gµνrgs ´ rTµνrg, ϕs “ 0, rΥrg, ϕs “ 0, (4.12)
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We claim that:

rΥrg, ϕs “ 0, Gµνrg, ϕs “ 0 , rTµνrgs “ 0 , (4.13)

for the massive mode of mass m “ θ´1.
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Indeed, in reference Cristian C. Quinzacara, Paola Meza, Almeira Sampson

& M. V. Eur. Phys. J. C (2018) 78. [arXiv:1805.04621] we proved that the

following statements are true:

• Let ϕ “ 0 (trivial vacuum) be a saddle point of SM rg, ϕs (i.e. a solution of the

equations of motion), then the deformed action SM rg, ϕθs has a saddle point at

ϕθ “ 0, i.e. for massive ϕ of mass m “ θ´1.

• The energy momentum tensor of the massive ϕ (m “ θ´1) vanishes (ϕ is a

stealth field), hence it does not curve the spacetime.
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The proof is very general, and it uses the functional generalization of the chain rule,

δF rGrf ss

δfpyq
“

ż

dDz
δF rGrf ss

δGrf spzq

δGrf spzq

δfpyq
, (4.14)

to be confronted with our toy model.
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5 Example 1:

The simplest example we can imagine is:

rSrg, ϕs “ ´
M 2

2

ż

dDx
?

´g ϕ2 , (5.15)

The equation of motion for the scalar field is, ϕ “ 0 , and its energy momentum

tensor vanishes for this solution.

17



The deformed action is:

rSrg, ϕθs “ ´
M 2

2

ż

dDx
?

´gpϕθrg, ϕmsq2 “ ´
M 2

2

ż

dDx
?

´g
´

ϕ2´2θ2 ϕlϕ`θ4 plϕq2
¯

, ϕθrg, ϕms :“ p1´θ2lqϕ,

(5.16)

where we replaced the original field ϕ by ϕθ.

This action can be regarded as a degenerated (single-parameter) case of the two-

parametric fourth-order action principle analyzed in Hawking and Hertog (2002).
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The equation of motion for ϕ yields:

p1 ´ θ2lq2ϕ “ 0 . (5.17)

Clearly satisfied by massive ϕ of mass θ´1. A direct calculation of the energy mo-

mentum tensor produces:

rTµνrg, ϕs “ ´
1

4
M 2gµν

´

p1 ´ θ2lqϕ
¯2

´
1

2
M 2θ2gµνlϕp1 ´ θ2lqϕ

`
1

2
M 2θ2

´

δρµδ
σ
ν ` δρνδ

σ
µ ´ gµνg

ρσ
¯

∇ρϕ∇σ

´

p1 ´ θ2lqϕ
¯

, (5.18)

which is evidently zero for the massive ϕ “ ϕm.
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6 Example 2: Deformation of the massive field

action

In the case of the scalar field ϕ, with mass M the matter action principle is given

by:

SM rg, ϕs “ ´
1

2

ż

dDx
?

´g
`

∇µϕ∇µϕ ` M 2ϕ2
˘

. (6.19)

With E.o.M:
`

l ´ M 2
˘

ϕ “ 0 . (6.20)
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The deformed action principle is

SM rg, ϕs “ ´
1

2

ż

dDx
?

´g
`

∇µϕθ∇µϕ
θ ` M 2pϕθq2

˘

, ϕθrg, ϕs “ p1 ´ θ2lqϕ.

(6.21)

We obtain the E.o.M (from variation with respect to ϕ):

´

1 ´ θ2l
¯2

`

l ´ M 2
˘

ϕ “ 0 , (6.22)

which has both solutions, of mass θ´1 and of mass M .
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The energy momentum tensor is given by:

rTµνrg, ϕs “ ´
1

2

ˆ

1

2
gµν

`

∇ρϕθ ∇ρϕ
θ ` M 2pϕθq2

˘

´ ∇µϕ
θ ∇νϕ

θ

˙

`
1

2
θ2gµνlϕ

`

l ´ M 2
˘

ϕθ

´
1

2
θ2

´

δρµδ
σ
ν ` δρνδ

σ
µ ´ gµνg

ρσ
¯

∇ρϕ∇σ

`

l ´ M 2
˘

ϕθ , (6.23)

which vanishes for the field of mass θ´1, because ϕθ “ p1 ´ θ2lqϕ “ 0.

Hence ϕ of mass θ´1 is stealth.
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Now we analyze the energy-momentum for ϕM . First note that:

ϕθrg, ϕM s :“ p1 ´ θ2lqϕM “ λϕM , λ :“ 1 ´
M 2

m2
“ 1 ´ M 2θ2 , (6.24)

Hence the energy-momentum tensor for this solution is (6.23) given by:

rTµνrg, ϕM s “ ´
1

2
λ2

ˆ

1

2
gµν

`

∇ρϕM ∇ρϕM ` M 2ϕ2
M

˘

´ ∇µϕM ∇νϕM

˙

“ λ2 Tµνrg, ϕM s ,

(6.25)

where Tµνrg, ϕM s is the energy momentum tensor provided by the standard massive

field action (6.21).
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Therefore, the energy-momentum tensor of the original gravity-matter system is

rescaled by factor λ2 in the deformed theory.

This can be interpreted also as a rescaling of the Newton coupling constant by a

factor, GN Ñ λ2GN, in the standard nomenclature.

Ñ Hence the mass of the stealth field (equivalently the deformation parameter) can

be used to smooth or amplify the effects of the massive field of mass M on the

gravitational background.
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7 Overview and remarks

• We can construct a wide class of scalar field action principles in curved space

which admits massive stealth configurations.

• The existence of stealth configurations may produce cosmological effects, by

means of the energy-momentum tensor rescaling of regular matter fields.
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Thank you !
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