

Low-Energy Probes of the Standard Model II

Brendan Kiburg, Fermilab SLAC Summer Institute 2018 Standard Model at 50: Successes and Challenges Aug 1, 2018

Introductions

Goals for this talk

1. Why do we use muons to probe the Standard Model? How?

2. What details matter for precision experiments?

3. Where might we see the next cracks in the SM?

What details matter: Example from yesterday @ LEP

 LEP's energy measurement is sensitive to the orbit of the moon, the level of water in Lac Leman, and the departure of the TGV from Geneva station.

Overview

SM/BSM: Muon g-2

BSM I: EDMS

Conclusion

We Asked Celeb Physicist Brian Cox About Flat

Precision Muon Physics: Why Muons?

- We have studied the muon since its discovery 80 years ago
- What useful properties do you know about muons?

Exceptionally Useful Probe	
Heavy, 2 nd Generation Particle	$m_{\mu} pprox 207 \cdot m_e$
High Sensitivity to New Physics	$\propto (m_{\mu}/m_e)^2$
Produced and Decay via Weak Int	
 V-A structure in pion decay 	$\nu \leftrightarrow \pi^+ \leftrightarrow \mu^+$
Muon Decay	$\mu ightarrow e u u$
Can produce hydrogen-like atoms	$\mu^- p , \ \mu^+ e^- , \ \mu^- \mu^+$
Muon lifetime is "just right" 2.2 μ s	$10^{-9} s << \tau_{\mu} << 1 s$

Global Precision Muon Physics Experiments

Precision Muon Physics to Establish the SM

- SM Electroweak Physics involves three parameters Two gauge coupling constants: g, g' Higgs vacuum expectation value: v
- Values fixed experimentally via precise determination of: Fine structure constant α , known to 32 ppb Z boson mass, known to 23 ppm Fermi Coupling constant, G_F, known to 9 ppm (Giovanetti, 1984)

The Muon Lifetime: An Important Input to MuCap

- Observe muons form Muonic Hydrogen Atoms in an ultra-pure protium TPC
- 2. Use Similar Technique: Measure $\mu^{\scriptscriptstyle -}$ disappearance rate

3. Compare μ^- disappearance (via $\mu \rightarrow evv$) to μ^+ lifetime

4. Extract very different physics

MuCap: Extracting the proton's pseudoscalar coupling, g_P

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.055502

🛠 Fermilab

 u_p

Aside: Precision Measurements

- Goal: ~10 ppm precision on muon disappearance rate
- Disappearance rate (decay) ~455,000 s⁻¹
- Capture rate on proton ~ 700 s⁻¹
- Capture rate on deuteron ~ 400 s⁻¹
- Capture rate on Aluminum $~705,000 \text{ s}^{-1}$ Stopping μ forms μ d atom w/ ~45 eV

Ramsauer-Townsend minimum

- "Good" muon stop
- μ d diffusion (cm / τ_{μ})
- Finds a "high" Z material $\Lambda_Z \propto Z^4$

🛟 Fermilab

MuSun: Protium→Deuterium, Different Physics Goal

Simplest process on compound nucleus

Clean channel to determine Low Energy Constant in Effective Field Theories

This LEC directly relates to astrophysical and neutrino scattering processes

🗲 Fermilab

Proton Radius Puzzle

🚰 Fermilab

- Muons probe the proton significantly deeper than electrons
- Improve precision of the proton charge radius

Muonic Hydrogen Lamb Shift Technique

- 1. Form Muonic Hydrogen
- 2. About 1% of muons cascade to meta-stable 2S state
- 3. Use laser to induce 2S-2P
- Measure 1.9 keV x-ray in 2P-1S transition

🛟 Fermilab

Muonic Hydrogen Lamb Shift Differs from Electronic Experiments

F=2

F=1

F=1

F=0

🚰 Fermilab

- Hard to build
- Easy to interpret
- μd Lamb shift confirms observation

F=0

Recent (2017,2018) Measurements Maintain the Tension

Spectroscopy	0.8758 ± 0.077	0.84087 ± 0.00039
Scattering	0.8770 ± 0.060	????

- Diversify e spectroscopy
- Pursue the missing quadrant (MUSE experiment)

SM So Far

- MuLan \rightarrow G_F SM Electroweak Observable
- MuCap \rightarrow g_p Nucleon pseudoscalar coupling (ChPT predicts)
- MuSun $\rightarrow d_R^{-}$ Low-energy Constants of EFT
- CREMA \rightarrow r_p Proton-radius

Precision measurements using the well-established muon as a probe continue to validate critical Standard Model parameters and sometimes reveal Puzzles

Muon g-2: The Basics

🛟 Fermilab

SM determination of a_{μ}

A Tour de force Standard Model Calc

- γ + leptons
- 12,762 5-loop diagrams!
- Kinoshita & independent cross-checks

SM determination of a_{μ}

The Muon Theory Initiative

Great Progress with Lattice QCD

HVP: Improvements from e+e- data Dispersion relations Lattice QCD Hybrid calculations

HLbL: Evaluation on parts on lattice Dispersive approach becoming possible

Conferences/Workshops

- Second plenary workshop of the Muon g-2 Theory Initiative at Mainz in June 18-22, 2018
- First Workshop of the Muon g-2 Theory Initiative at Q Center/FNAL in June 3-6, 2017

$$a_{\mu}^{EXP} - a_{\mu}^{SM} = a_{\mu}^{New Physics}$$

New Physics or missing systematics/statistics?

- Many Possible Models
 Dark Photons (most var)
 - SUSY (many-variations)

$$a_l - a_l^{SM} \propto (m_l^2 / \Lambda_{NP}^2)$$

🛟 Fermilab

More precise comparison of SM and experimental values of g-2 needed to reveal new physics

Uncertainty Source δa_{μ}	Status 2015 [ppb]	Projected after E989 [ppb]
Total Theory	420	240?
HVP	360	215
HLbL	225	100?
Total Exp.	540	140

 Combined updates expected as output of summer work

🚰 Fermilab

Results expected in 2018

Creating the Muon Beam for g-2

- 8 GeV p batch into Recycler
- Split into 4 bunches
- Extract each bunch to strike target
- Long FODO channel to collect $\pi \rightarrow \mu v$
- p/π/μ beam enters DR; protons kicked out; π decay away
- ~10,000 μ stored in ring per pulse (goal)

Experiment Basics: Muons in a storage ring

1. Start with polarized muon beam (from pion decay)

Muon g-2 Measurements

B via NMR $\rightarrow \omega_{p}$ proton precession frequency,

Muon g-2 Measurements

B via NMR $\rightarrow \omega_p$ proton precession frequency,

 $a_{\mu} (Expt) \approx \frac{\omega_{a}}{\omega_{p} \otimes \rho(r)}$

Muon spin precession frequency

Muon spin precession frequency

E989 data: e^+ with E > 1.8 GeV

$$N(t) = N_0 e^{-t/\tau} \left(1 + A\cos(\omega_a t + \phi)\right)$$

Measurement principle for the magnetic field

- Map the storage field regularly during beam off periods with trolley
- Monitor the field with 400 fixed NMR probes around the ring

Field: Production Trolley Runs

(line) 860 840 820 800 780 760 0 50 100 150 200 250 300 350 azimuth (deg)

dipole field

- Moments all < 0.28 ppm!
 Goal was < 0.5 ppm
- Variation of field +/-1ppm over storage region
- BNL +/-2 ppm

- Dipole RMS =14.2 ppm
- BNL RMS = 29 to 39 ppm

Aside: Precision Measurements

Aside: Precision Measurements \rightarrow Calculate or Measure!

🛟 Fermilab

 $a_{\mu} (Expt) \approx \frac{\omega_{a}}{\omega_{p} \otimes \rho}$

B-field = 1.45 T

Tracking detectors measure the muon beam.

Slide From T. Walton

dist

1000

800

600

400

200

🛟 Fermilab

Detector: Offline+OnlineTrackers

Plots from J. Mott

Performance

- Commissioning Nov → Feb
- Started full running w/ all systems installed Mar 22 2017
- Accumulated 1.85e10 raw decay positrons!
 - BNL 0.939e10 total w/ quality cuts [raw e⁺ now ~2x BNL]

🚰 Fermilab

- The Muon g-2 Experiment @ FNAL is underway
 - Collected raw stats ~2x BNL
 - Analyses are well underway
 - Projected first results in 2019
- We are very excited to hear updates on the theory progress
 - Great progress on lattice
 - Improvements in dispersive approach for both HVP and HLbL

Contract Fermilab

Baryon Asymmetry of Universe

- Observed asymmetry: $\frac{n_B n_{\bar{B}}}{n_\gamma} = 6 \times 10^{-10}$
- Existing CP-Violation insufficient to explain observation

$$\frac{n_B - n_{\bar{B}}}{n_\gamma} \approx 10^{-18}$$

 Assuming asymmetry not present at the Big Bang, looking for New sources of CP-Violation neutrinos, permanent EDMs, etc...

EDM Basics

- Permanent Electric Dipole Moments are good candidates
 - T- & P-Violating
 - \rightarrow CP-Violating (Assuming CPT)
- Types of EDMs
 - Nucleon EDM (n,p)
 - Bare lepton (e, μ)
 - Paramagnetic Atoms/Molecules → Electron EDM, nuclear-spin independent coupling
 - Diamagnetic Atoms → Nuclear Shiff moment, nucleon EDM, or nuclear-spin-dependent electron-nucleon interaction
- ANY detection of an EDM would be very significant
 - So far, experiments have set impressive limits

Ref: Theory: Engel, Musolf arXiv:1303.2371.

Exp: Chupp, Fierlinger, Musolf, Singh https://arxiv.org/abs/1710.02504

🛠 Fermilab

Typical EDM Technique

- 1. Set up constant magnetic field
- 2. Bring neutral particle into the field
- 3. Rotate particle so that it precesses about the B-field
- 4. Add Electric field Parallel to field (alternate aligned/anti-aligned)
- 5. A permanent intrinsic EDM will manifest as a difference in the Larmor precession frequencies

 $\omega(E\uparrow,E\downarrow)=2\mu B\pm 2dE$

 $\Delta \omega = 4dE$

🚰 Fermilab

6. Steps 6-100: Systematic variations of all of the knobs

Neutron EDM projections as of Dec 2017

Projec	t Status	Sensitivity goal (E-27 <i>e</i> cm)	Schedule (start data-taking)
LANL	2017:UCN source upgrade finished	UCN density sufficient for O(1)	2019
TUM-I	LL TUM apparatus moves to ILL	O(0.1)	2019
PNPI	At PNPI 2020	PNPI: 0.5	PNPI later
SNS	Critical component demonstration concluded	0.2	2022
	IF 2017: first UCN 2-3 years for experiment	O(1)	2019
PSI	Phase(1) data-taking concluded Phase(2) construction	Phase 1: O(10) Phase 2: O(1)	Phase(2): 2020
ESS	Demonstration phase at ILL	O(0.1) ?	2025

Component demo

EDMs of Paramagnetic Polar Molecules

• Schiff Enhancement \rightarrow Amplify external E field \rightarrow Extreme internal fields $\Delta E \simeq E_{eff}(E_{ext}) d_e$

For ThO: $E_{ext} \sim 10 \text{ V/cm} \rightarrow E_{eff} \sim 80 \text{ GV/cm} \text{ !}$

A Muon EDM modifies the muon precession

An EDM tips the spin

precession plane, modifies ω_{tot}

5 Fermilab

 With just MDM in uniform B field, the spin precesses around B field

Muon EDM Signal

• Muon polarization has vertical component S_y Maximized when $\boldsymbol{\beta} \cdot \boldsymbol{S} = 0$

EDM signal: an oscillation with in the average vertical angle of the e+ that:

- has frequency ω_{tot} (~ ω_a)
- is 90° out of phase with g-2 oscillation
- has amplitude ∝ EDM magnitude
 ♣ Fermilab

Experimental Summary of muon EDM bounds

SM pred ~10^-36 e-cm SM EDM scales with lepton mass

Source	d _μ Limit (e-cm)	Note
CERN III	< 1.05 x 10^-18	Bailey (1978)
BNL	< 1.8 x 10^-19	Bennett (2009)
FNAL	< ~10^-21	Projection
JPARC	< ~10^-21	Projection
eEDM	< 1.8 x 10^-26	Naïve SM scaling* from Baron (2014) ACME
eEDM	< ~1.8 x 10^-27	ACME update (Projection assuming limit)

Muons are curious particles \rightarrow Keep looking for clues

‡ Fermilab

The Evolution of Precision: EDM limits

EDM precision experiments (upper limits)

Fermilab Muon Campus: The Stage for Mu2e

The Evolution of Precision: CLFV

Mu2e conversion

- Charged Lepton Flavor Conservation
 - Processes that start with "electron-ness", end with "electron-ness"
 - Empirically observed, but no known conservation "Law" yet

Having a nucleus to recoil against allows for conservation of E and p

The Search for Mu2e

- Mu2e searches for charged lepton flavor violation (CLFV) in muons: ۲ $\mu^- + \mathrm{Al}
 ightarrow e^- + \mathrm{Al}$
- The Standard Model (with neutrino masses) predicts fewer than 1 in ۲ 10⁵⁰ muons to convert
- An observed signal means unambiguous new physics. ۰
- The experimental signature? **Electron with 105 MeV!**

Lots of Possibilities for New Physics

- Muon-to-electron conversion allowed via loop diagrams or contact terms.
 cf: μ→eγ happens via loops.
- Muon-to-electron conversion enables discovery sensitivity over broad swath of BSM parameter space.

Production Solenoid (PS)

Transport Solenoid (TS)

Detector Solenoid (DS)

S-shaped solenoid:

- collimator selects negatively-charged particles
- transports particles to detector area, and
- allows remaining pions to decay to muons

Mu2e Tracker

20k Straw tubes transverse to beam High efficiency, excellent resolution Momentum resolution 120 keV/c core for 105 MeV electrons

Inner 38 cm is purposefully uninstrumented

- Blind to beam flash
- Blind to >99% of Decay In Orbit (DIO) spectrum

Decay-In-Orbit (DIO)

- Peak and Endpoint of free muon decay ~ 52.8 MeV
- Detector blind to these electrons
- Conversion signal at 105 MeV >> 52.8 MeV

🚰 Fermilab

Decay-In-Orbit (DIO) Background

- Consider the recoil off
 the nucleus
- When neutrinos are at rest, the DIO electron can be at the conversion energy (minus the tiny neutrino mass)

Expected backgrounds

Process	Expected Number
Cosmic Ray Muons	0.25 ± 0.026
DIO	0.14 ± 0.09
RPC	0.025 ± 0.003
Antiprotons	0.047 ± 0.024
Muon DIF	< 0.003
Pion DIF	$0.001 \pm < 0.001$
Beam Electrons	$< 5 \times 10^{-4}$
Total	0.46 ± 0.03

Single Event Sensitivity

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$$

- Designed for SES of $\sim 3 \times 10^{-17}$
- Online in ~2021
- Detection would usher in new era of precision measurements
- Setting 10,000x improved limit would be tremendous too
- Upgrades \rightarrow 10⁻¹⁸ underway

Probability of	
rolling a 7 with two dice	1 675 01
	1.07E-01
rolling a 12 with two dice	2.78E-02
getting 10 heads in a row flipping a coin	9.77E-04
drawing a royal flush (no wild cards)	1.54E-06
getting struck by lightning in one year in the US	2.00E-06
winning Pick-5	5.41E-08
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-09
your house getting hit by a meteorite this year	2.28E-10
drawing two royal flushes in a row (fresh decks)	2.37E-12
your house getting hit by a meteorite today	6.24E-13
getting 53 heads in a row flipping a coin	1.11E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-16
your house getting hit by a meteorite AND you being	
struck by lightning both within the next three months	2.85E-17

What's Next?

PHYSICS

We Asked Celeb Physicist Brian Cox About Flat Earth Conspiracies, the Multiverse, and Ghosts

Ryan F. Mandelbaum 7/11/18 12:00pm + Filed to: PARTICLE PHYSICS ~

Particle physicist and celebrity scientist Brian Cox

RFM: And finally, what do you think are the most important outstanding mysteries in physics?

BC: The LHC hasn't taken nearly as much data as it can, and it's also being upgraded to get many more collisions. It will be a big surprise if all [we find] is the Standard Model Higgs particle. People were expecting we'd see supersymmetry that would have given us an idea of what dark matter is.

One of the biggest discrepancies in particle physics at the moment is the <u>g</u>-<u>2 experiment</u>. It's a measurement of the way the muon behaves in a magnetic field. The experiment shows a significant discrepancy with the Standard Model that's getting more significant with time. It's a low-profile experiment, but it's extremely sensitive to new physics. It's still running, but if I were to put my money on something that would signal new physics, it's the g-2 experiment at Fermilab. I think it's really fascinating.

The other thing is gravitational waves. The point was not to discover gravitational waves—everyone was pretty sure they existed. The point is that we now have an observatory that can watch the collisions of black holes and neutron stars. Thinking that LIGO was built to discover gravitational waves is like saying we build telescopes to look at one star. Of course not. It completely revolutionized astronomy.

Goals for this talk

 Why do we use muons to probe the Standard Model? How?
 Muons have very useful properties

We design clean, precision experiments to carefully expose cracks (Muon g-2, EDM, Mu2e, etc...)

- 2. What details matter for precision experiments? Until you have calculated/simulated/measured, everything you can think of. And probably some things you didn't!
- 3. Where might we see the next cracks in the SM?
 I can't answer your contest question for you, but I hope I left a few clues about my opinions ⁽²⁾

Suggested Readings

Precision Muon Physics

- "Low-energy precision tests of the standard model: a snapshot" D. Hertzog. Ann. Phys. (Berlin), 1–8 (2015) / DOI 10.1002
- Gorringe, Hertzog. Precision Muon Physics. Prog. Part. Nucl. Phys. 84 p.73-123 (2015).
- Kammel, Kubodera, Precision Muon Capture. Ann. Rev. Nucl. Part. Sci. 60 p.327-353 (2010).

EDMs

- Engel, Ramsey-Musolf, van Kolck, *Electric dipole moments of nucleons, nuclei, and atoms: The Standard Model and Beyond.* Prog. Part. Nucl. Phys. **71** p.21-74 (2013).
- Chupp, Ramsey-Musolf, Electric dipole moments: A global analysis. Phys. Rev. C 91 035502 (2015).
- Chupp, Fierlinger, Musolf, Singh. Electric Dipole Moments of the Atoms, Molecules, Nuclei and Particles. Rev. Mod. Physics https://arxiv.org/abs/1710.02504
- Baron et al. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron Science **343** p.269-272 (2014).

Acknowledgments

Many thanks to the folks who aided in conversation and in providing plots:

- Muon g-2: Alex Keshavarzi, Tammy Walton, James Mott, Chris Polly, Dave Hertzog, Kim-Siang Khaw, Erik Swanson, Peter Winter, Ran Hong, David Flay, and more
- o EDM: Saskia Charity, Adam Ritz, Gerry Gabrielse, Tim Chupp
- **Proton Radius**: Jan Bernauer, Randolph Pohl
- **Mu2e:** Doug Glenzinski, Bob Bernstein

Great Progress with Lattice QCD

 2016-17: physical pions, u,d,s,c connected loops
2% Precision (Models 0.7%)

- Lattice Calculation
- Dispersion Relation

Both https://arxiv.org/pdf/1710 .06874.pdf

- Dec 2015: disconnected loops
 - Small contribution
 - First calculation
- Nov 2015: hadronic lightby-light
 - Needed to avoid becoming dominant theory uncertainty

disconnected diagram (gluons not shown)

QCD Box in a QED Box to manage finite volume effects

Muon g-2 Field

Superb Intrinsic Shim Kit Added iron laminations for x3 improvement in field uniformity

76 6/7/17 B. Kiburg Muon Experiments | Fermilab 50th Symposium

Muon g-2 Running Outlook

- Will need FY2020 running
- Running about 50% of design rate, making great progress
- Started summer shutdown to upgrade various components

			FY	2	.017		FY 2018				FY 2019				FY 2020				
		Q	.1 Q	2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
NuMI	МІ	MINERvA			MINERvA				MINERvA ?				OPEN				Г		
			NOvA				NOvA				NOvA				NOvA				
BNB	в		MicroBooNE				MicroBooNE ?				SBN: MicroBooNE				SBN: MicroBooNE				V
		SBN: ICARUS					SBN: ICARUS SBN: SBND				SBN: ICARUS SBN:ICARUS				SBN: ICARUS SBN: SBND				1
		SBN: SBND									SBN: SBND								
Muon Campus		g-2 Mu2e				g-2 Mu2e				g-2 Mu2e				OPEN Mu2e				In	
																		p	
SY 120	MT	FTBF - MTEST			FTBF - MTEST FTBF - MC OPEN			FTBF - MTEST				FTBF - MTEST				Г			
	MC	OPEN LArIAT						FTBF - MC				FTBF - MC				p			
	NM4	SeaQuest							OPEN				OPEN						
		Q	1 Q	2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Г

Experimental Summary of EDM bounds

🛟 Fermilab

Next-Generation Muon MDM+EDM Experiments

🛟 Fermilab

Novel Beamline Design

Pulsed proton beam, ~250 ns wide , ~1695 ns apart Delay live gate ~700 ns Suppress prompt backgrounds (beam electrons and pion interactions)

