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1939: Scalar fields portend an energy scale associated 
with new phenomena that are close at hand.





1962: A Spontaneously broken continuous symmetry 
yields a massless spin-0 (Goldstone) boson



How do Goldstone bosons arise?

Suppose a Lagragian exhibits a continuous global symmetry. If the vacuum state of the

theory breaks the global symmetry, then the spectrum contains a massless scalar state—the

Goldstone boson. This is a rigorous result of quantum field theory.

Goldstone’s theorem can be exhibited in a model of elementary scalar dynamics. Suppose

I have a multiplet of real scalar fields φi with Lagrangian

L = 1
2∂µφi∂

µφi − V (φi) ,

which is invariant under φi → φi + δφi, where

δφi = −iθaT a
ijφj .

The generators iT a are real antisymmetric matrices and the θa are real parameters. By

assumption, δL = 0 which yields

δV =
∂V

∂φi
δφi =

∂V

∂φi
T a

ijφj = 0 .



The global symmetry is spontaneously broken if the vacuum state does not respect the

symmetry. That is, the potential minimum occurs at φi = vi where exp(−iθaT a)v ≠ v

[or equivalently, T av ≠ 0]. Define new fields eφi ≡ φi − vi, in which case

L = 1
2∂µ
eφi∂

µeφi − 1
2M

2
ij
eφi
eφj + interactions ,

where M2 is a non-negative symmetric matrix,

M2
ij ≡

∂V

∂φi∂φj

˛̨
˛̨
φi=vi

.

Recall the condition for the global symmetry, (∂V/∂φi)T
a
ijφj = 0. Differentiating this

equation with respect to φj and setting φi = vi and (∂V/∂φi)φi=vi = 0 then yields

M2
kiT

a
ijvj = 0 .

The T a (which may be linear combinations of the original symmetry generators) are

re-organized to identify the maximal number of unbroken linearly independent generators

(i.e. T av = 0), which determine the residual unbroken symmetry. As for the remaining

broken generators (i.e. T av ≠ 0), we see that (T av)i is an eigenvector of M2 with zero

eigenvalue. In particular, there is one Goldstone boson, Ga ∼ iφiT
a
ijvj for each broken

generator.



If the potential energy density V(φ) of the scalar fields is such that 
the lowest energy state corresponds to a non-zero value of the field, 
then the vacuum will possess a non-zero “charge” (condensation), 
and the global continuous symmetry is broken. 

But excitations around the bottom of the “Mexican hat” do not 
cost energy, and correspond to the excitation of a massless spin 0 
particle---the Goldstone boson.





1963: Massive gauge bosons without violating gauge 
invariance (in a non-relativistic setting)



1964: Massive gauge bosons without violating 

gauge invariance (in a relativistic setting)

Taken from Sidney Coleman, Secret symmetry: An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields, 

1973 Erice Lectures, Published in Subnucl. Ser. 11, 139 (1975).



The Higgs mechanism can be exhibited in our simple model of elementary scalar dynamics

by promoting the global symmetry to a local symmetry. This is accomplished by introducing

a gauge field Aa
µ corresponding to each symmetry generator T a. The Lagrangian is now

L = LYM + 1
2(Dµφ)T (Dµφ) − V (φ) ,

where LYM is the Yang-Mills Lagrangian and D is the covariant derivative

Dµ ≡ ∂µ + igT aAa
µ .

Assuming that the scalar potential is minimized at φi = vi as before, we again define

shifted fields, eφi ≡ φi − vi. Then,

(Dµφ)T(Dµφ) = M2
abA

a
µAµb + · · · ,

with M2
ab = g2vTT aT bv. For each unbroken generator, the corresponding vector boson

remains massless (due to the residual unbroken symmetry). The remaining vector bosons

acquire mass. One can show that the corresponding Goldstone bosons are no longer

physical states of the theory. Instead, they are “absorbed” by the corresponding gauge

bosons and are realized as the longitudinal spin component of the massive gauge bosons.



1964: The Higgs boson makes its first appearance



1966: The Higgs potential of the Abelian Higgs model



1967: The birth of the Standard Model of electroweak 
physics, where the Higgs mechanism is employed



1971--1973: The renormalizability of non-abelian 
gauge theories is proven by ‘t Hooft (following key 
insights of Veltman).  A detailed treatment of the 
theory of spontaneously broken gauge theories is 
presented in a series of four papers by B.W. Lee 
and Jean Zinn-Justin.  

The definitive review article introducing a 
generation of physicists to gauge theories by 
Abers and Lee appears in 1973.



1973: Deriving the Higgs boson couplings of the 
Standard Model by applying tree-level unitarity



Unitarity of scattering amplitudes

Unitarity is equivalent to the conservation of probability in quantum

mechanics. A violation of unitarity is tantamount to a violation of the

principles of quantum mechanics—this is too sacred a principle to give up!

Consider the helicity amplitude M(λ3λ4 ; λ1λ2) for a 2 → 2 scattering

process with initial [final] helicities λ1, λ2 [λ3, λ4]. The Jacob-Wick partial

wave expansion is:

M(λ3λ4 ; λ1λ2) =
8π

√
s

(pipf)1/2
ei(λi−λf)φ

∞
∑

J=J0

(2J + 1)MJ
λ(s)d

J
λiλf

(θ) ,

where pi [pf ] is the incoming [outgoing] center-of-mass momentum,
√
s is

the center-of-mass energy, λ ≡ {λ3λ4 ; λ1λ2} and

J0 ≡ max{λi , λf} , where λi ≡ λ1 − λ2 , and λf ≡ λ3 − λ4 .

Orthogonality of the d-functions allows one to project out a given partial

wave amplitude.



For example, if we project out the J = 0 partial wave,

MJ=0
λ (s) =

1

16πs

∫ 0

−s
dtM(λ3λ4 ; λ1λ2) ,

where t = −1
2s(1 − cos θ) [and θ is the CM scattering angle] in the limit

where s is much larger than all particle squared masses.

Partial wave unitarity implies that:

|MJ |2 ≤ |Im MJ | ≤ 1 ,

which yields

(Re MJ)2 ≤ |Im MJ |
(

1− |Im MJ |
)

≤ 1
4 .

In particular, MJ
λ(s) cannot grow as s → ∞, as this would constitute bad

high energy behavior, which would be a clear violation of unitarity.



Consider the scattering process W+
L (p1)W

−
L (p2) → W+

L (p3)W
−
L (p4) at

center-of-mass energies
√
s ≫ mW . Here, L stands for longitudinal and

corresponds to λ = 0. The helicity-zero polarization vector at high energies

behaves as

εµL(p) ∼ pµ/mW .

Hence, contributions to the tree-level amplitude is proportional to

[εL(p1) · εL(p2)] [εL(p3) · εL(p4)] ∼
s2

m4
W

,

which can potentially lead to bad high energy behavior of the WLWL elastic

scattering amplitude.

Suppose we compute the tree-level amplitude in the electroweak theory but

with the Higgs boson, H ≡ φ0, removed. (For simplicity, we neglect the

fermions.) Instead we put in mass terms for the W and Z bosons by hand.





Since the gauge boson self-interactions are of the form specified by the

gauge invariant theory with massless gauge bosons, the magic of gauge

invariance is responsible for the cancelation of the leading bad high energy

behavior,

M =
√
2GF (s+ t) , for s ≫ m2

W .

where t ≃ −1
2s(1−cos θ) and GF is the Fermi constant of weak interactions.

Nevertheless, the amplitude still exhibits bad high energy behavior.

If we repeat the calculation using the electroweak theory with the Higgs

boson, then one must include additional contributions to the WLWL elastic

scattering amplitude. The end result in the limit of s ≫ m2
W , m2

H is

M = −
√
2GFm

2
H

(

s

s−m2
H

+
t

t−m2
H

)

.

Indeed, the bad high energy behavior has been canceled.



1973: Enlarging the Higgs sector  



Extended Higgs sectors can provide new sources 
of CP violation.    

This was the first 
appearance of the
two-Higgs doublet 
extension of the 
Standard Model 
(2HDM).



1975: The !-parameter 



The ρ-parameter constraint on extended Higgs sectors

Given that the electroweak ρ-parameter is very close to 1, it follows that a

Higgs multiplet of weak-isospin T and hypercharge Y must satisfy,1

ρ ≡
m2

W

m2
Z cos2 θW

= 1 ⇐⇒ (2T + 1)2 − 3Y 2 = 1 ,

independently of the Higgs vacuum expectation values (vevs). The simplest

solutions are Higgs singlets (T, Y ) = (0, 0) and hypercharge-one complex

Higgs doublets (T, Y ) = (12, 1). For example, the latter is employed by the

two Higgs doublet model (2HDM).

More generally, one can achieve ρ = 1 by fine-tuning if

∑

T,Y

[

4T (T + 1)− 3Y 2
]

|VT,Y |2cT,Y = 0 ,

where VT,Y ≡ ⟨Φ(T, Y )⟩ is the scalar vev, and cT,Y = 1 for complex Higgs

representations and cT,Y = 1
2 for real Y = 0 Higgs representations.

1Y is normalized such that the electric charge of the scalar field is Q = T3 + Y/2.



Taken from J. Erler and A. Freitas, Electroweak Model and Constraints on New Physics, in the 
2018 Review of Particle Physics,  M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).  

http://pdg.lbl.gov/2018/html/authors_2018.html


1976: The gauge hierarchy problem--fine tuning 
and unnaturalness of elementary scalars 

Taken from E. Gildener and S.  Weinberg, 
Symmetry Breaking and Scalar Bosons,
Phys. Rev. D 13, 3333 (1976). 

The context: in grand unified 
theories, the unification scale 
MU is around 1015 GeV, which is 
significantly larger than 100 
GeV, the scale of electroweak 
physics.  So how does one 
maintain such a large hierarchy 
of energy scales?





1976: The first comprehensive study of how to 
search for the Higgs boson

See also B.L. Ioffe and V.A. Khoze, Sov. J. Part. Nucl. Phys. 9, 50 (1978).



The Higgs sector of the Standard Model (SM)

The SM includes a complex hypercharge-one, SU(2) doublet of self-

interacting scalar fields, Φ ≡ (Φ+ Φ0) with four real degrees of freedom.

The scalar potential is:

V (Φ) = λ(Φ†Φ− 1
2v

2)2 ,

so that in the ground state, the neutral scalar field takes on a constant

non-zero value ⟨Φ0⟩ = v/
√
2, where v = 246 GeV. It is convenient to write:

Φ =

(

ω+

1√
2

(

v +H + iω0
)

)

,

where ω± ≡ (ω1 ∓ iω2)/
√
2.

The non-zero scalar vacuum expectation value breaks the electroweak

symmetry, thereby generating three Goldstone bosons, ωa (a = 1, 2, 3).



31

Breaking the Electroweak Symmetry

Higgs boson

extra W,Z polarization

energy stored 
in Higgs field

value of Higgs field

Higgs imagined a field filling all of space, with a “weak charge”.
Energy forces it to be nonzero at bottom of the “Mexican hat”.

symmetric

broken symmetry



After electroweak symmetry breaking, the degrees of freedom represented

by the ωa become the longitudinal modes of the massive W and Z gauge

bosons (via the Higgs mechanism), with

m2
W = 1

4g
2v2 , m2

Z = 1
4(g

2 + g′ 2)v2 ,

which determines the value of the v.

One scalar degree of freedom is left over—the Higgs boson, H, with

self-interactions

V (H) = λ

[

(

H + v√
2

)2

−
v2

2

]2

= 1
4λ
[

H4 + 4H3v + 4H2v2
]

.

It is a neutral CP-even scalar boson, whose interactions are precisely

predicted, but whose squared-mass, m2
H = 2λv2, depends on the unknown

strength of the scalar self-coupling—the only unknown parameter of the

model.



Mass generation and Higgs couplings in the SM

Gauge bosons (V = W± or Z) acquire mass via interaction with the Higgs

vacuum condensate.

V V V V V V

vv v H H H

Thus,

gHV V = 2m2
V /v , and gHHV V = 2m2

V /v
2 ,

i.e., the Higgs couplings to vector bosons are proportional to the

corresponding boson squared-mass.

Likewise, by replacing V with the Higgs field H in the above diagrams, the

Higgs self-couplings are also proportional to the square of the Higgs mass:

gHHH = 6λv =
3m2

H

v
, and gHHHH = 6λ =

3m2
H

v2
.



Fermions in the Standard Model

Given a four-component fermion f , we can project out the right and left-handed parts:

fR ≡ PRf , fL ≡ PLf , where PR,L = 1
2(1 ± γ5) .

Under the electroweak gauge group, the right and left-handed components of each fermion

has different SU(2)×U(1)Y quantum numbers:

fermions SU(2) U(1)Y

(ν , e−)L 2 −1

e−R 1 −2

(u , d)L 2 1/3

uR 1 4/3

dR 1 −2/3

where the electric charge is related to the U(1)Y hypercharge by Q = T3 + 1
2Y .

Before electroweak symmetry breaking, Standard Model fermions are massless, since the

fermion mass term Lm = −m(f̄RfL + f̄LfR) is not gauge invariant.



The generation of masses for quarks and leptons is especially elegant in the

SM. The fermions couple to the Higgs field through the gauge invariant

Yukawa couplings (see below). The quarks and charged leptons acquire

mass when Φ0 acquires a vacuum expectation value:

f f f f

v H

Thus, gHff̄ = mf/v , i.e., Higgs couplings to fermions are proportional to

the corresponding fermion mass.

It is remarkable that the neutral Higgs boson coupling to fermions is flavor-

diagonal. This is a consequence of the Higgs-fermion Yukawa couplings:

LYukawa = −hij
u (ū

i
Ru

j
LΦ

0 − ūi
Rd

j
LΦ

+)− hij
d (d̄

i
Rd

j
LΦ

0 ∗ + d̄iRu
j
LΦ

−) + h.c. ,

where i, j are generation labels and hu and hd are arbitrary complex 3× 3

matrices. Writing Φ0 = (v +H)/
√
2, we identify the quark mass matrices,



M ij
u ≡ hij

u

v√
2
, M ij

d ≡ hij
d

v√
2
.

One is free to redefine the quark fields:

uL → V U
L uL , uR → V U

R uR , dL → V D
L dL , dR → V D

R dR ,

where V U
L , V U

R , V D
L , and V D

R are unitary matrices chosen such that

V U †
R MuV

U
L = diag(mu , mc , mt) , V D †

R MdV
D
L = diag(md , ms , mb) ,

such that the mi are the positive quark masses (this is the singular value

decomposition of linear algebra).

Having diagonalized the quark mass matrices, the neutral Higgs Yukawa

couplings are automatically flavor-diagonal.∗ Hence the SM possesses no

flavor-changing neutral currents (FCNCs) mediated by neutral Higgs boson

(or gauge boson) exchange at tree-level.
∗Independently of the Higgs sector, the quark couplings to Z and γ are automatically flavor diagonal.

Flavor dependence only enters the quark couplings to the W± via the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, K ≡ V U †
L V D

L .





1976: The Bjorken process

From J.D. Bjorken, Proceedings of the 1976 SLAC Summer Institute, SLAC-R-198 (1977) pp. 1—42.





1977: Unitarity constraints and an upper bound 
on the Higgs mass



Recall that M = −
√
2GFm2

H

(

s
s−m2

H
+ t

t−m2
H

)

for elastic WLWL

scattering. Projecting out the J = 0 partial wave and taking s ≫ m2
H,

MJ=0 = −
GFm2

H

4π
√
2

.

Imposing |Re MJ | ≤ 1
2 yields an upper bound on mH. The most stringent

bound is obtained by all considering other possible final states such as

ZLZL, ZLH and HH. The end result is:∗

m2
H ≤

4π
√
2

3GF
≃ (700 GeV)2 .

If mH >∼ 700 GeV, then the Higgs-self coupling parameter, λ = 2m2
H/v2 is

becoming large and our tree-level analysis is no longer reliable. Nevertheless,

lattice studies suggest that an upper Higgs mass bound below 1 TeV remains

valid even in the strong Higgs self-coupling regime.

∗Lee, Quigg and Thacker imposed |MJ | ≤ 1, thereby obtaining M2
H ≤ 8π

√
2/3GF .



1977: Sensitivity to the Higgs mass through radiative 
corrections (Veltman’s screening theorem)



When radiative corrections are included, one has a number of ways to define

the weak mixing angle, θW . A scale-dependent (MS) mixing angle, can be

defined,∗ ŝ2Z ≡ sin2 θW (mZ), and ĉ2Z = 1 − ŝ2Z. One possible definition of

the ρ parameter in the Standard Model is,

ρ̂ ≡

m2

W

m2
Z ĉ

2
Z

= 1 + δρ̂ ,

where the leading one-loop radiative corrections, δρ̂, are given by

δρ̂ ≃ −

11g′ 2

96π2
ln

(

mH

mZ

)

+
3g2

64π2m2

W

[

m2

t +m2

b −
2m2

tm
2

b

m2
t −m2

b

ln

(

m2
t

m2

b

)]

,

and g, g′ are the SU(2) and U(1) electroweak gauge couplings, respectively.

Veltman noticed that the contribution of a heavy top quark was quadratic

in mt, whereas the sensitivity of a heavy Higgs boson was only logarithmic.†

∗W.J. Marciano, Phys. Rev. D 20, 274 (1979).
†A related ρ-parameter defined in terms of the ratio of neutral current to charged current neutrino-nucleon

scattering cross sections exhibits a similar behavior (with 11/96 above replaced by 3/32).



1977: Implications of flavor-diagonal neutral-Higgs 
mediated processes for extended Higgs sectors

See also E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15, 1966 (1977).





1978: The two-Higgs doublet model (2HDM) takes off… 

1978: N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets

2HDM models satisfying the Glashow-Weinberg-Paschos conditions:

1979: J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons (“Type-II”) 
H.E. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of  

Higgs Bosons on Experimental Observables (“Type-I”)

1981: L.J. Hall and M.B. Wise, Flavor Changing Higgs Boson Couplings (introduced the        
Type I/II nomenclature)

1990: V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs 
Sector in Two Higgs Doublet Models (introduced Types III and IV, also called  
Y and X, in which Higgs couplings to quarks and leptons are oppositely treated.



1980:  The criterion of naturalness in gauge theories

The Higgs mass parameter 
of the SM is unnatural, since 
the symmetry of the theory 
is not enhanced in the limit 
in which this parameter is 
set to zero.

In contrast, light fermions 
are natural because the 
limit of mf = 0 corresponds 
to the presence of a chiral 
symmetry.



1981:  Attempts to construct natural models of 
electroweak symmetry breaking (EWSB)

1. Supersymmetry: naturally light elementary bosons are related by supersymmetry 
to fermions whose small masses are protected by approximate chiral symmetry.   
However, supersymmetry must be broken at an energy scale not much higher 
than the scale of EWSB.  [Witten, Dimopoulos and Georgi, Sakai,…]

2. Strong EWSB dynamics not based on elementary scalar dynamics.   Examples of 
this approach include technicolor [Weinberg, Susskind,…], and composite Higgs 
bosons [Kaplan, Georgi, Dimopoulos,…].





Field content of the MSSM

Super- Super- Bosonic Fermionic

multiplets field fields partners SU(3) SU(2) U(1)

gluon/gluino V̂8 g g̃ 8 1 0

gauge/ V̂ W± , W 0 W̃± , W̃ 0 1 3 0

gaugino V̂ ′ B B̃ 1 1 0

slepton/ L̂ (ν̃L, ẽ
−

L) (ν, e−)L 1 2 −1

lepton Êc ẽ+R ecL 1 1 2

squark/ Q̂ (ũL, d̃L) (u, d)L 3 2 1/3

quark Ûc ũ∗

R uc
L 3̄ 1 −4/3

D̂c d̃∗

R dc
L 3̄ 1 2/3

Higgs/ Ĥd (H0
d , H

−

d ) (H̃0
d, H̃

−

d ) 1 2 −1

higgsino Ĥu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1

The fields of the minimal supersymmetric extension of the SM (MSSM) and their SU(3)×SU(2)×U(1)

quantum numbers are listed. The electric charge is given in terms of the third component of the weak isospin

T3 and U(1) hypercharge Y by Q = T3 + 1
2Y . Generation labels of quarks and leptons are suppressed.

For each lepton, quark, and Higgs super-multiplet, there is a corresponding anti-particle multiplet of charge-

conjugated fermions and their associated scalar partners. The L and R subscripts of the squark and slepton

fields indicate the helicity of the corresponding fermionic superpartners.



The Higgs sector of the MSSM is a 2HDM (whose interactions are

constrained by supersymmetry). The second Higgs doublet is needed

to cancel gauge anomalies in one-loop triangle diagrams with three external

gauge bosons. A theory that possesses gauge anomalies is inconsistent as a

quantum theory.

To cancel the gauge anomalies, we must satisfy certain group theoretical

constraints.

W iW jB triangle ⇐⇒ Tr(T 2
3Y ) = 0 ,

BBB triangle ⇐⇒ Tr(Y 3) = 0 .

Example: contributions of the fermions to Tr(Y 3)

Tr(Y 3)SM = 3
(

1
27 +

1
27 −

64
27 +

8
27

)
− 1− 1 + 8 = 0 .

Suppose we only add the higgsinos (H̃+
u , H̃0

u). The resulting anomaly factor

is Tr(Y 3) = Tr(Y 3)SM + 2, leading to a gauge anomaly. This anomaly is

canceled by adding a second higgsino doublet with opposite hypercharge.



1983:  Supersymmetry constraints on Higgs masses

That is, at tree level the MSSM 
yields                     .



1978--1990:  The study of the phenomenology 
of Higgs bosons becomes mature

Ø 1978: Higgs production via gluon-gluon fusion (via a top quark loop) at 
hadron colliders 



Ø 1984: Higgs production via vector boson at hadron colliders 



Ø 1984: Higgs decay to WW*



Ø 1986: MSSM Higgs boson phenomenology begins in earnest



Ø 1988: The importance of Higgs decay to !! and ZZ* at a hadron collider.



Ø 1990: The decoupling limit of an extended Higgs sector



1990:  The status of the Higgs boson is summarized, 
as LEP and SLC embark on the first dedicated 
searches for the Higgs boson. 

HHG authors anticipate the discovery of the Higgs bosonMichael Peskin peruses The Higgs Hunter’s Guide



1991:  Discovery of the Higgs boson of the 
MSSM at LEP is no longer guaranteed

See also, Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the 
minimal supersymmetric standard model, Prog. Theor. Phys 85, 1 (1991); J.R. Ellis, G. Ridolfi and F. Zwirner, 
Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257, 83 (1991).







2000:  At the end of 
SLC/LEP, the data imply 
that the Higgs boson 
mass must lie between 
114 GeV and 285 GeV
(95% CL limits)

Taken from the ALEPH, DELPHI, L3 and OPAL 
Collaborations, the SLD Collaboration, the LEP 
Electroweak Working Group, the 
SLD electroweak, heavy flavour groups,
Physics Reports 427, 257 (2006). 

https://arxiv.org/search/hep-ex?searchtype=author&query=SLD+Collaboration
https://arxiv.org/search/hep-ex?searchtype=author&query=LEP+Electroweak+Working+Group
https://arxiv.org/search/hep-ex?searchtype=author&query=LEP+Electroweak+Working+Group
https://arxiv.org/search/hep-ex?searchtype=author&query=electroweak,+S
https://arxiv.org/search/hep-ex?searchtype=author&query=heavy+flavour+group


2011:  Closing in on the Higgs boson.   The 
Tevatron completes a decade of running, as 
the LHC turns on and begins to take data.



The LHC 
discovery of 
4 July 2012

The CERN update of the 
search for the Higgs boson,
simulcast at ICHEP-2012
in Melbourne, Australia



ATLAS Collaboration:

Physics Letters B716 (2012) 1—29

CMS Collaboration: 

Physics Letters B716 (2012) 30—61

The discovery of a new boson, 
which may be the long sought
after Higgs boson, is reported
In two papers pubished in 
Physics Letters B.





Winners of the 2013 
Nobel Prize in Physics

François Englert

and

Peter Higgs





Higgs boson production cross sections at a pp collider

With 36 fb-1 of data delivered by the LHC to both ATLAS and CMS in 2015—2016 

at a center of mass energy of 13 TeV, roughly 1.8 x 106 Higgs bosons per 

experiment were produced, assuming the Higgs mass is 125 GeV.  Still to be 

analyzed: 50 fb-1 of 2017 data and at least another 50 fb-1 of data in 2018.
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Higgs boson decay mode Branching ratio (for mh = 125 GeV)
H0 → bb 0.582
H0 → !+ ! - 6.27 x 10-2

h0 → "+ "- ## (" = e or $) 1.06 x 10-2

h0 → %% 2.27 x 10-3

h0 → "+ "- "+ "- (" = e or $) 1.24 x 10-4

Higgs boson decay channels observed at the LHC

Taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR#Branching_Ratios

Remarks:
1. h0 ➞ WW* is observed primarily via the "+ # "-# (" = e or $) final state.
2. h0 ➞ ZZ* is observed primarily via the "+"-"+"- (" = e or $) final state.

In the decays to the diboson final state, kinematics dictates that one of the vector 
bosons is off-shell (i.e., “virtual”) and is thus indicated by a superscript star.



2012: Is the electroweak vacuum of the SM stable?

The Higgs field of the SM has a local minimum at <!>=246 GeV.   

However, it is possible that a second minimum develops at very 

large field values.  For field values larger than the Planck scale, 

MPL = 1019 GeV (in units of c=1), calculations within the SM are 

not reliable, as gravitational effects can no longer be neglected.  

However, below MPL 

one can reliably 

compute the shape of 

the scalar potential to 

determine whether our 

vacuum is stable.

(figure courtesy of A. Kusenko) 



Detailed calculations by G.Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. 
Giudice, G. Isidori and A. Strumia (2012)—see figure below on the left, and a 
more recent treatment by A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. 
Veretin (2015)—see figure below on the right, suggest that the electroweak 
vacuum is metastable, with a lower secondary minimum below MPL . 

However, for a slightly lower value 
of mt (compared to the central 
PDG value), stability up to MPL is 
recovered.



The popular press has taken notice …



Consider an extended Higgs sector with at n hypercharge-one Higgs doublets

Φi and m additional singlet Higgs fields φi. After minimizing the scalar

potential, we assume that only the neutral Higgs fields acquire vevs (in order

to preserve U(1)EM),

⟨Φ0
i ⟩ = vi/

√
2 , ⟨φ0

j⟩ = xj .

Note that v2 ≡
∑

i |vi|2 = 4m2
W/g2 = (246 GeV)2.

We define new linear combinations of the hypercharge-one doublet Higgs

fields (the so-called Higgs basis). In particular,

H1 =

(

H+
1

H0
1

)

=
1

v

∑

i

v∗iΦi , ⟨H0
1⟩ = v/

√
2 ,

and H2,H3, . . . , Hn are the other linear combinations such that ⟨H0
i ⟩ = 0.

2013:Achieving a SM-like Higgs boson in extended 
Higgs sectors—the alignment limit



That is H0
1 is aligned with the direction of the Higgs vev in field space. In

the exact alignment limit, H ≡
√
2Re(H0

1) − v, whose tree-level properties

coincide with the SM Higgs boson, is a mass-eigenstate.

In general, H is not a mass-eigenstate due to mixing with other neutral

scalars. In this case, the observed Higgs boson is SM-like if either∗†

• the mixing of H with other neutral scalars is suppressed,

and/or

• the diagonal squared masses of the other scalar fields are all large compared

to the mass of the observed Higgs boson (the so-called decoupling limit).

∗Although the alignment limit is most naturally achieved in the decoupling regime, it is possible to have a

SM-like Higgs boson without decoupling. In the latter case, the masses of the additional scalar states could lie

below ∼ 500 GeV and be accessible to LHC searches.
†For further details, see N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs

Doublet, arXiv:1305.2424 [hep-ph]; D.M. Asner et al., ILC Higgs White Paper, arXiv:1310.0763 [hep-ph];

J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-

doublet models: mh = 125 GeV, Phys. Rev. D 92, 075004 (2015).
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After the end of Run-1 of the LHC 
(2011—2013), the ATLAS and 
CMS Collaborations provided a 
combined analysis of the Higgs 
boson data. 

The properties of the Higgs boson 
are consistent with Standard 
Model predictions (given the 
statistical power of the Higgs 
boson data).

The Higgs data taken at Run-2 of 
the LHC (2015—2017) have 
confirmed the Run-1 observations 
(with potential deviations from 
the SM further reduced).

Taken from G. Aad et al. [ATLAS, CMS Collaborations],
Phys. Rev. Letters 114, 191803 (2015).

2015: Is the observed 125 GeV scalar the SM Higgs boson?



Experimental evidence that Higgs couplings scale with the mass of the particle



2018: Quo Vadis Higgs?
ØDo the Higgs properties deviate from those of the SM Higgs boson?

ØAre there additional Higgs scalars beyond the SM Higgs boson?
o Keep in mind that the fermion and gauge boson sectors of the SM 

are far from being of minimal form.  So why shouldn’t the the scalar 
sector be non-minimal as well?

ØAre the dynamics of electroweak symmetry breaking natural?
o Does supersymmetry exist at the TeV scale?
o Is the any evidence that the Higgs boson is composite?

ØThe operator           is an electroweak singlet, and thus can be a portal to 
new physics beyond the SM (BSM).  Is such BSM physics accessible at the 
LHC or at future collider facilities?



Backup slides



Particle 
content
of the 
Standard
Model

Something is 
missing…



What was missing?

The theory of W± and Z gauge bosons must be gauge invariant ; otherwise

the theory is mathematically inconsistent. You may have heard that “gauge

invariance implies that the gauge boson mass must be zero,” since a mass

term of the form m2Aa
µAµa is not gauge invariant.

So, what is the origin of the W± and Z boson masses? Gauge bosons are

massless at tree-level, but perhaps a mass may be generated when quantum

corrections are included. The tree-level gauge boson propagator G0
µν (in

the Landau gauge) is:

G0
µν(p) =

−i

p2

(

gµν −
pµpν

p2

)

.

The pole at p2 = 0 indicates that the tree-level gauge boson mass is zero.

Let’s now include the radiative corrections.



The polarization tensor Πµν(p) is defined as:

−→ −→p p
µ ν iΠµν(p) ≡ i(pµpν − p2gµν)Π(p2)

where the form of Πµν(p) is governed by covariance with respect to Lorentz

transformations, and is constrained by gauge invariance, i.e. it satisfies

pµΠµν(p) = pνΠµν(p) = 0.

The renormalized propagator is the sum of a geometric series

+ + + . . . =

−i(gµν−
pµpν

p2 )

p2[1+Π(p2)]

The pole at p2 = 0 is shifted to a non-zero value if:

Π(p2) ≃
p2→0

−g2v2

p2
.

Then p2[1 + Π(p2)] = p2 − g2v2, yielding a gauge boson mass of gv.



Interpretation of the p2 = 0 pole of Π(p2)

The pole at p2 = 0 corresponds to a propagating massless scalar. For

example, the sum over intermediate states includes a quark-antiquark pair

with many gluon exchanges, e.g.,

This is a strongly-interacting system—it is possible that one of the

contributing intermediate states is a massless spin-0 state (due to the

strong binding of the quark/antiquark pair).

We know that the Z and W± couple to neutral and charged weak currents

Lint = −gZjZ
µ Zµ − gW (jW

µ W+µ + h.c.) ,

which are known to create neutral and charged pions from the vacuum, e.g.,

⟨0|jZ
µ (0)|π0⟩ = ifπpµ .



Here, fπ = 93 MeV is the amplitude for creating a pion from the vacuum.

In the absence of quark masses, the pions are massless bound states of

qq̄ [they are Goldstone bosons of chiral symmetry which is spontaneously

broken by the strong interactions]. Thus, the diagram:

π0

Z0 Z0

yields the leading contribution as p2 → 0 [shown in red] to the pµpν of Πµν,

iΠµν(p) = ig2
Zf2

π

(

gµν −
pµpν

p2

)

.

Remarkably, the latter is enough to fix the corresponding gµν part of Πµν

[thank you, Lorentz invariance and gauge invariance!]. It immediately

follows that

Π(p2) = −
g2

Zf2
π

p2
,

and therefore mZ = gZfπ. Similarly mW = gWfπ.



Gauge boson mass generation and the Goldstone boson

We have demonstrated a mass generation mechanism for gauge bosons that

is both Lorentz-invariant and gauge-invariant! This is the essence of the

Higgs mechanism. The p2 = 0 pole of Π(p2) corresponds to a propagating

massless scalar state called the Goldstone boson. We showed that the

W and Z are massive in the Standard Model (without Higgs bosons!!).

Moreover, the ratio
mW

mZ
=

gW

gZ
≡ cos θW ≃ 0.88

is remarkably close to the measured ratio. Unfortunately, since gZ ≃ 0.37

we find mZ = gZfπ = 35 MeV, which is too small by a factor of 2600.

There must be another source for the gauge boson

masses, i.e. new fundamental dynamics that generates

the Goldstone bosons that are the main sources of mass

for the W± and Z.


