Properties of the Higgs Boson

John Conway University of California, Davis

SLAC Summer Institute August 6, 2018

LEP 2/Tevatron/V precision measurements

⇒ light SM Higgs boson was strongly favored...but excluded?

LEP 2/Tevatron/V precision measurements

⇒ light SM Higgs boson was strongly favored...but excluded?

Meanwhile, back in Geneva construction continued....

By early 2012 the Tevatron had excluded 147-178 GeV...and had an excess in the 120-130 GeV range!

Mass

Spin/Parity

- Small branching ratio: 1/500
- Excellent em calorimeter resolution leads to a sharp mass peak

BSM Higgs

- Large background from fake photons
- Cannot model background well so need to use analytic functional forms
- Sensitive to new physics
- Most sensitive channel overall!

mode

Spin/Parity

- Small branching ratio: 1/500
- Excellent em calorimeter resolution leads to a sharp mass peak

BSM Higgs

- Large background from fake photons
- Cannot model background well so need to use analytic functional forms
- Sensitive to new physics
- Most sensitive channel overall!

How do CMS and ATLAS achieve sensitivity?

 $H \rightarrow \gamma \gamma$ mode

Electromagnetic Resolution

lead tungstate crystalsprojective geometry

liquid argon/leadspatial sampling

BSM Higgs

Spin/Parity

CMS

ATLAS

CMS, ATLAS e.m. calorimeters: order of magnitude better resolution than Tevatron experiments

EM resolution

At the time of the discovery the $\gamma\gamma$ signal was clear

Bosonic Couplings

CMS full Run 1 $\gamma\gamma$ result

Spin/Parity

 $\sigma_m/m\sim1.1\%$ per event

BSM Higgs

Bosonic Couplings

Spin/Parity

BSM Higgs

- Branching ratio ~3%
- Demand each Z decays to ee or µµ: this brings an additional reduction of 0.068²
- One Z on shell, other Z off shell
- Invariant mass of all four leptons has very good resolution
- Background is minor

Bosonic Couplings

Spin/Parity

Bosonic Couplings

John Conway - Higgs Properties - SSI 2018

BSM Higgs

Bosonic Couplings

Bosonic Couplings

Spin/Parity

H→ZZ*

Bosonic Couplings

H→₩₩*

Spin/Parity

- Branching ratio ~20%
- Two main modes: *lv lv* and *lv* qq' (high mass)
- One W on shell, other W off shell
- Missing neutrinos preclude this mode for H mass

Bosonic Couplings

John Conway - Higgs Properties - SSI 2018

BSM Higgs

Mas

Spin/Parity

H→WW*

- Quite good sensitivity using transverse mass
- Dominant background is from SM WW production
- With additional jets dominant background comes from tt

Bosonic Couplings

Higgs Couplings to Fermions

Spin/Parity

- Strongest coupling (obviously) is to tt but the Higgs boson cannot decay to top pairs directly
- Next strongest is to bb this is the dominant branching fraction of the Higgs boson at ~70%
- Coupling to ττ gives a ~7% branching fraction and was the first to be observed
- Coupling to cc gives a ~3% branching fraction but this is experimentally challenging - need e+e⁻ collider
- Muon pair coupling is suppressed; 2x10⁻⁴ branching fraction

Fermionic Couplings

Couplings

John Conway - Higgs Properties - SSI 2018

BSM Higgs

- 35% of the time taus decay semileptonically, 65% hadronically
- reconstruction and identification of hadronic tau decays ("τ_h") in ATLAS and CMS is well advanced
- dedicated triggers for τ_h
- $H \rightarrow \tau \tau$ final states:
 - **e**τ_h, μτ_h
 - τ_hτ_h

missing neutrinos!

- add missing pT
- complicates TT mass

• eµ

Fermionic Couplings

tau decays

e⁻ VV	0.178
μ-νν	0.174
h-ν	0.49
π-ν	0.11
Κ-ν	0.007
ρ-ν	0.254
h⁺h-h-v	0.15

CMS and ATLAS have developed powerful multivariate tools to reconstruct tau pair invariant mass: key to sensitivity

- Analyses utilize multiple final state categories in terms of additional jets and Higgs p_T to optimize sensitivity
- By demanding two forward tagging jets, can be sensitive to VBF production: simultaneous measure of κ_v and κ_f

Spin/Parity

- Analyses utilize multiple final state categories in terms of additional jets and Higgs p_T to optimize sensitivity
- By demanding two forward tagging jets, can be sensitive to VBF production: simultaneous measure of κ_v and κ_f

Fermionic Couplings

John Conway - Higgs Properties - SSI 2018

BSM Higgs

Couplings Mass Spin/Parity

- Analyses utilize multiple final state categories in terms of additional jets and Higgs p_T to optimize sensitivity
- By demanding two forward tagging jets, can be sensitive to VBF production: simultaneous measure of κ_v and κ_f

Fermionic Couplings

BSM Higgs
Spin/Parity

 As of Higgs discovery in 2012, strongest evidence (3.2σ) for H→bb came from the Tevatron experiments, which can utilize the VH production modes: leptonic tags

This result used 10 fb⁻¹ of integrated luminosity, combining CDF and D0

BSM Higgs

Observed significance was 3.0σ

Fermionic Couplings

H→bb at LHC

Spin/Parity

BSM Higgs

• Huge background from QCD bb production

Couplings

• VH production at LHC suppressed relative to gg mode

 \Rightarrow need more data relative to other final state

Couplings

Mass

Spin/Parity

BSM Higgs

- CMS results from last year: 3.8σ
- $\mu_{bb} = 1.06^{+0.31}_{-0.29}$
- New results from ATLAS and CMS!
- See C. Vernieri talk this afternoon!

Fermionic Couplings

Htt coupling

- to see the Htt coupling we look for Higgs bosons produced in association with a top quark pair
 - \Rightarrow can utilize all Higgs decay modes; very busy events!

Analyses focus on tt decays to *l*vjjbb + H

H decays to hadrons, photons, or leptons

Category	Signature	Trigger	Signature
	Lepton + Jets	Single Lepton	$1 \text{ e}/\mu, p_{\text{T}} > 30 \text{ GeV}$
$H \rightarrow Hadrons$	$(t\bar{t}H ightarrow \ell u jjbbbb)$		\geq 4 jets + \geq 2 b-tags, $p_{\rm T}$ > 30 GeV
${ m H} ightarrow { m b}\overline{ m b}$	Dilepton	Dilepton	$1 \text{ e}/\mu$, $p_{\text{T}} > 20 \text{ GeV}$
${ m H} ightarrow au_{ m h} au_{ m h}$	$(t\bar{t}H ightarrow \ell u \ell u bbbb)$		$1 \text{ e}/\mu$, $p_{\text{T}} > 10 \text{ GeV}$
$\mathrm{H} ightarrow \mathrm{WW}$			\geq 3 jets + \geq 2 b-tags, $p_{\rm T}$ > 30 GeV
	Hadronic $ au$	Single Lepton	$1 \text{ e}/\mu$, $p_{\text{T}} > 30 \text{ GeV}$
	$(t\bar{t}H \rightarrow \ell \nu \tau_h[\nu]\tau_h[\nu]jbb)$		$2 \tau_{\rm h}$, $p_{\rm T} > 20 { m GeV}$
			\geq 2 jets + 1-2 b-tags, $p_{\rm T}$ > 30 GeV
	Leptonic	Diphoton	2 γ , $p_{\rm T} > m_{\gamma\gamma}/2$ (25) GeV for 1 st (2 nd)
$H \rightarrow Photons$	(t $\overline{t}H ightarrow \ell \nu$ jjbb $\gamma \gamma$,		$\geq 1 \text{ e}/\mu, p_{\text{T}} > 20 \text{ GeV}$
${ m H} ightarrow \gamma \gamma$	$t\bar{t}H \rightarrow \ell \nu \ell \nu b \gamma \gamma$)		\geq 2 jets + \geq 1 b-tags, $p_{\rm T}$ > 25 GeV
	Hadronic	Diphoton	2 γ , $p_{\rm T} > m_{\gamma\gamma}/2$ (25) GeV for 1 st (2 nd)
	$(t\bar{t}H ightarrow jjjjbb\gamma\gamma)$		$0 \text{ e}/\mu, p_{\text{T}} > 20 \text{ GeV}$
			\geq 4 jets + \geq 1 b-tags, $p_{\rm T}$ > 25 GeV
	Same-Sign Dilepton	Dilepton	$2 e/\mu, p_{\rm T} > 20 {\rm GeV}$
$H \rightarrow Leptons$	$(t\bar{t}H \rightarrow \ell^{\pm}\nu\ell^{\pm}[\nu]jjj[j]bb)$		\geq 4 jets + \geq 1 b-tags, $p_{\rm T}$ > 25 GeV
$H \rightarrow WW$	3 Lepton	Dilepton,	$1 \text{ e}/\mu$, $p_{\text{T}} > 20 \text{ GeV}$
m H ightarrow au au	$(t\bar{t}H \rightarrow \ell\nu\ell[\nu]\ell[\nu]j[j]bb)$	Trielectron	$1 \text{ e}/\mu, p_{\text{T}} > 10 \text{ GeV}$
$H \rightarrow ZZ$			1 e(μ), $p_{\rm T} > 7(5)$ GeV
			\geq 2 jets + \geq 1 b-tags, $p_{\rm T}$ > 25 GeV
	4 Lepton	Dilepton,	$1 \text{ e}/\mu$, $p_{\text{T}} > 20 \text{ GeV}$
	$(ttH \rightarrow \ell \nu \ell \nu \ell [\nu] \ell [\nu] bb)$	Trielectron	$1 \text{ e}/\mu$, $p_{\text{T}} > 10 \text{ GeV}$
			$2 e(\mu), p_{\rm T} > 7(5) {\rm GeV}$
			≥ 2 jets + ≥ 1 b-tags, $p_{\rm T} > 25$ GeV

Fermionic Couplings

Htt coupling

Spin/Parity

Fermionic Couplings

John Conway - Higgs Properties - SSI 2018

Htt coupling

Spin/Parity

Fermionic Couplings

John Conway - Higgs Properties - SSI 2018

Couplings

H→µµ

Spin/Parity

- LHC sensitivity to $H \rightarrow \mu \mu$ is approaching
- CMS result with 2016 data only shows mild rise consistent with SM expectations...stay tuned for Run 3

Fermionic Couplings

John Conway - Higgs Properties - SSI 2018

Couplings

- as of the end of Run 1, and ATLAS and CMS had established that the couplings are consistent with those of the SM Higgs
- the era of precision Higgs physics has begun
- See C. Vernieri talk this afternoon for the latest Run 2 updates

LHC Run 1 Couplings

 the best resolution on the Higgs boson mass comes from the two main discovery modes, H→γγ and H→ZZ*→4ℓ

BSM Higgs

SM Higgs mass

 the best resolution on the Higgs boson mass comes from the two main discovery modes, H→γγ and H→ZZ*→4ℓ

SM Higgs mass

• CMS and ATLAS combined all the mass data from Run 1 and arrived at a consistent picture

Spin/Parity

Mass/Width

 $m_H = 125.09 \pm 0.21$ (stat) ± 0.11 (sys) GeV

SM Higgs mass

John Conway - SS

• In the SM, the Higgs boson width is expected to be 4.15 MeV

Spin/Parity

• Far too narrow to measure directly due to resolution!

Mass/Width

• However $gg \rightarrow H$ can be sensitive to the Higgs width

⇒ Measure the ratio of on-shell to off-shell cross sections to constrain Higgs width

- Can also use $2\ell 2\nu$ channel
- CMS Run 1 result:
 - Г_н < 22 MeV at 95% CL
- Can also do similar measurement in WW(*) final states
- ATLAS Run 1 result:
 - $\Gamma_{\rm H}$ < 22.7 MeV at 95% CL

SM Higgs width

ouplings

- The SM Higgs boson is a scalar with even parity:
 J^P = 0⁺
- The Higgs decays to yy, ZZ*, WW* can be used to probe this
- In H→ZZ*→4ℓ we can measure a 5-D angular distribution

Couplings

Spin/Parity

$$\begin{split} &A_{00} = \frac{m_{X}^{4}}{m_{1}m_{2}\sqrt{6}}\frac{c_{1}}{8} + \frac{m_{1}m_{2}}{\sqrt{6}}\left[c_{1}\frac{1}{2}\left(1+x\right) - c_{2}2x + c_{41}2x + c_{42}2x\right] - \frac{(m_{1}^{4} + m_{2}^{4})}{m_{1}m_{2}\sqrt{6}}\frac{c_{1}}{4} + \frac{m_{1}m_{2}(m_{1}^{2} - m_{2}^{2})}{m_{X}^{2}\sqrt{6}}\left[c_{41} - c_{42}\right)2x \\ &+ \frac{(m_{1}^{8} + m_{2}^{8})}{m_{X}^{4}m_{1}m_{2}\sqrt{6}}\frac{c_{1}}{8} + \frac{m_{1}^{3}m_{2}^{3}}{m_{X}^{4}\sqrt{6}}\left[c_{1}\left(\frac{3}{4}+x\right) - c_{2}\left(4x + 8x^{2}\right) - c_{3}8x^{2}\right] + \frac{m_{1}m_{2}(m_{1}^{4} + m_{2}^{4})}{m_{X}^{4}\sqrt{6}}\left[-c_{1}\frac{1}{2}\left(1+x\right) + c_{2}2x\right], \\ &A_{++} = \frac{m_{X}^{2}}{\sqrt{6}}\frac{c_{1}}{4} - \frac{(m_{1}^{4} + m_{2}^{4})}{m_{X}^{2}\sqrt{6}}\frac{c_{1}}{4} + \frac{m_{1}^{2}m_{2}^{2}}{m_{X}^{2}\sqrt{6}}\left[c_{1}\left(\frac{1}{2}+x\right) + c_{2}8x\right] - i\frac{m_{1}m_{2}}{m_{X}}c_{6}4\sqrt{x} + i\frac{m_{1}^{3}m_{2}^{3}}{m_{X}^{4}\sqrt{6}}c_{5}8x\sqrt{x}, \\ &A_{--} = \frac{m_{X}^{2}}{\sqrt{6}}\frac{c_{1}}{4} - \frac{(m_{1}^{4} + m_{2}^{4})}{m_{X}^{2}\sqrt{6}}\left[c_{1}\left(\frac{1}{2}+x\right) + c_{2}8x\right] - i\frac{m_{1}m_{2}}{m_{X}}c_{6}4\sqrt{x} - i\frac{m_{1}^{3}m_{2}^{3}}{m_{X}^{4}\sqrt{6}}c_{5}8x\sqrt{x}, \\ &A_{--} = \frac{m_{X}^{2}}{m_{X}^{2}}\frac{c_{1}}{4} - \frac{m_{X}m_{2}}{m_{X}^{2}\sqrt{6}}\left[1 - \frac{m_{1}^{2}}{m_{X}^{2}}\right]\frac{c_{1}}{8} + \frac{m_{1}^{2}m_{2}^{2}}{m_{X}\sqrt{2}}\left[c_{1}\left(\frac{1}{4} + \frac{1}{2}x - \frac{m_{2}^{2}}{8m_{1}^{2}} - \frac{m_{1}^{2}}{8m_{2}^{2}}\right] + c_{41}2x\right] \\ &+ \frac{m_{1}^{2}m_{X}^{3}}{m_{X}^{2}}\frac{c_{1}}{2}\left[\frac{1}{8}\left(\frac{m_{1}^{4}}{m_{1}^{4}} - \frac{m_{1}^{2}}{m_{2}^{2}}\right)\frac{c_{1}}{8} + \frac{m_{1}m_{2}^{2}}{m_{X}\sqrt{2}}\left[c_{1}\left(\frac{1}{4} + \frac{1}{2}x - \frac{m_{2}^{2}}{8m_{1}^{2}} - \frac{m_{1}^{2}}{8m_{2}^{2}}\right) + c_{41}2x\right] \\ &+ \frac{m_{1}^{2}m_{X}^{3}}{m_{X}^{3}\sqrt{2}}c_{1}\left[\frac{1}{8}\left(\frac{m_{1}^{4}}{m_{1}^{4}} - \frac{m_{1}^{2}}{m_{2}^{2}}\right)\frac{c_{1}}{8} + \frac{m_{1}m_{2}}{m_{X}\sqrt{2}}\left[c_{1}\left(\frac{1}{4} + \frac{1}{2}x - \frac{m_{2}^{2}}{8m_{1}^{2}} - \frac{m_{1}^{2}}{8m_{2}^{2}}\right) + c_{42}2x\right] \\ &+ \frac{m_{1}^{3}m_{X}^{3}}{m_{X}^{3}\sqrt{2}}c_{1}\left[\frac{1}{8}\left(\frac{m_{1}^{4}}{m_{1}^{4}} - \frac{m_{1}^{2}}{m_{2}^{2}}\right)\frac{c_{1}}{8} + \frac{m_{1}m_{2}}{m_{X}\sqrt{2}}\left[c_{1}\left(\frac{1}{4} + \frac{1}{2}x - \frac{m_{2}^{2}}{8m_{1}^{2}} - \frac{m_{1}^{2}}{8m_{2}^{2}}\right) + c_{42}2x\right] \\ &+ \frac{m_{1}^{3}m_{X}^{3}}\sqrt{2}c_{1}\left[\frac{1}{8}\left(\frac{m_{1}^{4}}{m_{1}^{4}} - \frac{m_{1}^{2}}{$$

S. Bolognesi et al. Phys.Rev. D86 (2012) 095031

spin/parity variables

John Conway - SSI 2018

- Form ratio of likelihoods for alternative and SM hypothesis (0+)
- Compare observed likelihood ratio to expected distributions under each alternative hypothesis

S. Bolognesi et al. Phys.Rev. D86 (2012) 095031

With data from Run 1 CMS was able to exclude a wide range of alternative hypotheses at > 99% CL

spin/parity variables

ATLAS as well did an exhaustive search using a matrix element likelihood analysis (MELA) with similar conclusions

spin/parity variables

40

John Conway - SSI 2018

Spin/Parity

BSM Higgs

There exists a boson consistent with $J^P = 0^+$ with mass ~125 GeV and couplings to fermions and vector bosons consistent with this predicted in the standard model

- But such a Higgs boson might not be the only one!
 - the SM has <u>minimal</u> Higgs content

Run I legacy

- can be more Higgs doublets, as in supersymmetry
- the light Higgs scalar in MSSM could be very SM-like

SM Higgs suffers hierarchy problem ⇒ Higgs sector is more complicated?

Couplings Mass/Width Spin/Parity BSM Higgs

SM Higgs suffers hierarchy problem ⇒ Higgs sector is more complicated?

<u>MSSM</u>: minimal supersymmetric model greatly reduces hierarchy problem (scalars cancel fermion loops)

Couplings Mass/Width Spin/Parity BSM Higgs

SM Higgs suffers hierarchy problem ⇒ Higgs sector is more complicated?

<u>MSSM</u>: minimal supersymmetric model greatly reduces hierarchy problem (scalars cancel fermion loops)

MSSM:Type-II two-Higgs doublet models - one doublet gives mass to up type quarks - other doublet gives mass to down-type quarks/leptons Couplings Mass/Width Spin/Parity BSM Higgs

SM Higgs suffers hierarchy problem ⇒ Higgs sector is more complicated?

<u>MSSM</u>: minimal supersymmetric model greatly reduces hierarchy problem (scalars cancel fermion loops)

MSSM:Type-II two-Higgs doublet models - one doublet gives mass to up type quarks - other doublet gives mass to down-type quarks/leptons

Five Higgs bosons, masses governed by m_A , tan β

MSSM a no-lose situation: must be a light scalar h

Even more striking the mass of the light scalar ~120 GeV

MSSM

See A, H, H^{\pm} A, H^{\pm} h h h h A, H^{\pm} A, H^{\pm} A, H^{\pm} A, H^{\pm} A, H^{\pm} A, H MSSM a no-lose situation: must be a light scalar h

Even more striking the mass of the light scalar ~120 GeV

H/A/H[±] nearly equal mass when m_A large

MSSM

MSSM a no-lose situation: must be a light scalar h

Even more striking the mass of the light scalar ~120 GeV

H/A/H[±] nearly equal mass when m_A large

Production of H/A greatly enhanced if $tan\beta$ large

MSSM a no-lose situation: must be a light scalar h

Even more striking the mass of the light scalar ~120 GeV

H/A/H[±] nearly equal mass when m_A large

Production of H/A greatly enhanced if $\tan\beta$ large

If m_A large may not be able to distinguish SM/MSSM

Spin/Parity

These processes all have cross sections proportional to tan²β

 $\tan\beta \sim m_t/m_b \sim 35?$

Spin/Parity

- bb and TT decay modes dominate experimentally
- TT is the most sensitive: main background is Z

MSSM H/A \rightarrow TT has the best sensitivity here Use eµ, eT, µT,TT modes with/without b tagging

John Conway - SSI 2018

MSSM A/H $\rightarrow \tau\tau$

MSSM H/A \rightarrow TT has the best sensitivity here Use eµ, eT, µT,TT modes with/without b tagging

MSSM A/H $\rightarrow \tau\tau$

Model-independent limits on $gg\phi$ and $bb\phi$

MSSM A/H \rightarrow TT

Limits on particular MSSM scenarios

 $MSSM A/H \rightarrow TT$

Limits on particular MSSM scenarios

We may always have "the wedge" at the LHC...

MSSM A/H \rightarrow TT

Charged Higgs in SUSY/2HDM scenarios

Spin/Parity

ATLAS search (Jul 2018): $H^+ \rightarrow \tau \nu$ produced with top quark

- T_h + jets (inc. b tag)
- T_h + lepton + jets (inc. b tag)
- form BDT discriminant

 $H^+ \rightarrow \tau \nu$

BSM Higgs

Charged Higgs in SUSY/2HDM scenarios

John Conway - SSI 2018
Charged Higgs in SUSY/2HDM scenarios

Spin/Parity

Bottom line: no excess observed, set limits in the plane of $tan\beta$ versus m_A

Dramatic improvement over Run 1

$$H^+ \rightarrow \tau v$$

Charged Higgs in SUSY/2HDM scenarios

Spin/Parity

Bottom line: no excess observed, set limits in the plane of $tan\beta$ versus m_A

Dramatic improvement over Run 1

However...constraints from B decays!

BSM Higgs has an effect on B meson decay:

Spin/Parity

BSM Higgs

I'm not an expert here...but rare B decays seem to rule out a great deal if not all 2HDM space!

Crivellin, Andreas et al. Phys.Rev. D87 (2013) no.9, 094031 arXiv:1303.5877 [hep-ph]

B physics constraints

ohn Conway - SSI 2018

Highlighted just two BSM searches here...there are many more!

Spin/Parity

- nMSSM: light pseudoscalars in the < 60 GeV range? $H\rightarrow$ aa
- Higgs+DM production: EFT searches in multiple channels
- New heavy vector bosons, vector-like quarks with Higgs decays
- LFV Higgs decays
- invisible Higgs decays

Highlighted just two BSM searches here...there are many more!

Spin/Parity

- nMSSM: light pseudoscalars in the < 60 GeV range? $H\rightarrow$ aa
- Higgs+DM production: EFT searches in multiple channels
- New heavy vector bosons, vector-like quarks with Higgs decays
- LFV Higgs decays
- invisible Higgs decays

BSM Higgs searches are statistics-limited: stay tuned for Run 3 and HL-LHC!

slide topic

The Higgs boson is there, and we can now begin to answer the question of electroweak symmetry breaking

Hopefully we will find something unexpected!

It's never been a more exciting time in particle physics!