Beyond-the-Standard-Model Searches at the LHC

Masahiro Morii Harvard University On behalf of the ATLAS and CMS Collaborations

> SLAC Summer Institute July 30 – Aug. 10, 2018

Outline

Introduction

- Why and what do we search
- Large Hadron Collider and the ATLAS/CMS experiments

Selected results from ATLAS & CMS

- New heavy resonances
- Supersymmetric particles
- Dark Matter particles

Summary and prospects

Going Beyond the Standard Model

The Standard Model is "complete"

- All the particles (including the Higgs boson) have been discovered
- All (terrestrial) experimental data agree with its predictions

At the same time, it fails to explain:

- Why 3 forces (strong, EM, weak)? Are they unified at higher energies?
- Why leptons and quarks?
- Why 3 generations?
- Why does the Universe hold more matter than anti-matter?
- What is the Dark Matter?
- Dark Energy?
- Gravity?
- There must be more to it

→ Physics beyond the Standard Model (BSM)

Going Beyond the Standard Model

SSI2018 The Standard Model @ 50: Successer & Challenges										
Time/Date	30-Jul	31-Jul	1-Aug	2-Aug	3-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
9:00-10:00	Origins of the SM	SM Probes in Atoms/ Molecules/ Nuclei (II)	The Development of QCD	QCD at the LHC (I)	QCD at the LHC (II)	Higgs History	Physics of Neutrinos (I)	The Mysteries of Flavor (I)	What/Where is DM?	is there a no-Lose Theorem for Future Colliders?
	S. Weinberg	V. Cirigliano	G. Sterman	J. Butterworth	J. Butterworth	H. Haber	A. de Gouvea	J. Zupan	T. Slatyer	LT Wang
10:0010:30	SSI photo					Morning Break				
10:30-11:30	Precision EWK Theory	EWK Precision Measurements at Colliders	Precision QCD & the SM (I)	Precision QCD & the SM (II)	QCD on the Lattice	The Higgs in the SM	Physics of Neutrinos (II)	The Mysteries of Flavor (II)	What/Where is DM?	What Future Higgs Measurements Will Tell Us ?
	A. Freitas	R. Erbacher	F. Caola	F. Caola	A. Kronfeld	S. Dawson	A. de Gouvea	F. Wilson	T. Shutt	M. Peskin
11:4512:4 5	SM Probes in Atoms/ Molecules/ Nuclei (I)	Low Energy Probes of the SM (I)	Low Energy Probes of the SM (II)	Astro/Cosmo Window on the SM	Astro/Cosmo Window on the SM	Properties of the Higgs at the LHC	Neutrinos: What Will We Learn in the Next Decade	Why more baryon than antibaryons?	The Hierarchy & Fine-Tuning Problems	View Ahead
	V. Cirigliano	K. Kumar	B. Kiburg	8. Dodelson	K. Olive	J. Conway	S. Soldner-Rembold	A. Nelson	A. Nelson	Y. Kim
12:4613:30									The second s	
13:3014:00		Lunch			Lun	ich:			defeniter -	
14:0014:45	Evolution of EWK Theory		Critical Expts (hadron colliders)	Klystron Gallery Tour			Klystron Gallery Tour			
	W. Marciano		P. Jenni		CMB Constraints	Higgs Result			Project	
14:4515:45	Evolution of	Q&A	Critical Expts (flavor)	Q&A	Z Ahmed	C. Vernieri	Q&A	Q&A	Presentations	
	Accelerators &				Ice Cube	BSM Searches				
	Technology				S. Robertson	M. Morii				
15:4516:05	L. Evans	Break	D. Hitlin	Afternoon Break						
16:05-17:30	Break	Project Kickoff	Break	Projects	Projects	MiniBooNE	Projects	Belle II K. Kinoshita		
	Critical Expts		Critical Expts			A.Diaz			Project	
	(Early SLAC)	(neutrinos)			Waves		Projects	Presentations		
	M. Breidenbach		E. Kearns	Kavil Vislab Tour		J. Mciver	Kavil Vislab Tour	IR2 Tour		
18:00	Reception	Dinner	Poster social			Dinner	Poster social	Soccer	Dinner	

→ Physics beyond the Standard Model (BSM)

Large Hadron Collider

LHC collides protons with center-of-mass energies up to 14 TeV

- Counter-circulating beams of >1000 bunches of ~10¹¹ protons
- Bunches cross every 25 ns producing up to 70 p-p collisions
- Results presented today use 13 TeV data collected in 2015–17

ATLAS and CMS detectors

Each detector is built to surround a p-p collision point

- Near-4π coverage to detect all collision products (photons, leptons, hadrons) except for neutrinos and (possibly) new invisible particles
- - $\blacktriangleright p_T = \text{transverse momentum of } X$ (particle or group of particles)
 - ▶ MET = negative sum of p_T of all detected particles in an event
- Many BSM searches rely on MET

Looking for the Unknown

How can we look for things we don't know?

a) Signatures that stand out

■ Heavy new particle → Decays into many particles

- Are all particles detected?
 - Yes → Reconstruct the mass of the new particle
 - No → Add up the visible energy, and deduce what's lost
- Unusual behavior, e.g., flying some distance before decaying

b) Predictions from BSM models

- Motivated by theory, e.g., supersymmetry
- Motivated by cosmology, e.g., Dark Matter

Search Sampler

I will give you a small sample of recent results from ATLAS & CMS

- Resonances = Heavy short-lived particle decaying into a pair of SM particles
 - ► $X \rightarrow 2$ jets (= quark or gluon)
 - ► $X \rightarrow 2$ weak bosons (= W or Z)
 - ► $X \rightarrow 2$ Higgs bosons
- SUSY (supersymmetry) particles
 - Gluinos (\tilde{g}) and squarks (\tilde{q})
 - Top squarks (\tilde{t})
 - Charginos ($\tilde{\chi}^{\pm}$) and neutralinos ($\tilde{\chi}^{0}$)
 - Long-lived particles
- Dark Matter particle
 - MET + jet
 - MET + top quarks

Resonances

Golden mode of new particle discovery

- New particle X decays into a pair of known particles Y
- A peak shows up in the Y-Y invariant mass spectrum, as it did when the Higgs was discovered at m_{γγ} = 125 GeV

Y may be anything as long as we can measure the energy-momentum

Let's start with $Y = quark \rightarrow di-jet$ resonance

8 TeV Di-Jet Event in CMS

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

Di-Jet Resonance

Search for pairs of high-energy jets in 27–36 fb⁻¹ of CMS data

Signal would stick out above smoothly-falling background

Di-Boson resonance

Search for pairs of W or Z bosons in 80 fb⁻¹ of ATLAS data

Each W/Z boson decays into 2 quarks, reconstructed as "fat" jets

Di-Higgs Resonance

Merged-Jet Event in ATLAS

- Recorded in Oct. 2016
- Two broad jets
- Each jet contains 2 narrow jets of tracks, one of which is *b*-tagged
- Total invariant mass is 3.89 TeV

Supersymmetry

SUSY can solve many of the weaknesses of the Standard Model

- Unify the 3 forces at high energy
- Lightest SUSY Particle (LSP) may be the Dark Matter
- Solve the fine-tuning problem of the Higgs mass
- Higgs mass favors "light" gluino (\tilde{g}), stop (\tilde{t}) and higgsino (\tilde{H})

Listen to

Ann Nelson's

lecture!

Supersymmetry

SUSY can solve many of the weaknesses of the Standard Model

- Unify the 3 forces at high energy
- Lightest SUSY Particle (LSP) may be the Dark Matter
- Solve the fine-tuning problem of the Higgs mass
- Higgs mass favors "light" gluino (\tilde{g}), stop (\tilde{t}) and higgsino (\tilde{H})

Listen to

Ann Nelson's

lecture!

Supersymmetry

SUSY can solve many of the weaknesses of the Standard Model

- Unify the 3 forces at high energy
- Lightest SUSY Particle (LSP) may be the Dark Matter
- Solve the fine-tuning problem of the Higgs mass
- Higgs mass favors "light" gluino (\tilde{g}), stop (\tilde{t}) and higgsino (\tilde{H})

Listen to

Ann Nelson's

lecture!

Gluinos and Squarks

Gluinos (\tilde{g}) and squarks (\tilde{s}) are pair-produced by strong interaction

- Each gluino decays into quarks and the lightest SUSY particle (LSP = $\tilde{\chi}_1^0$)
- Signal events are firework of many (many!) jets and a large MET

Production cross-section is relatively large

- The sensitivity improves rapidly when the beam energy increases
- ATLAS & CMS published most 13-TeV results in 2016–17

ATLAS & CMS Limits on Gluinos

Gluino mass limits reach ≈ 2 TeV

Caveat: Only for $m(LSP) \leq 1 \text{ TeV}$

Next steps:

- Target heavier LSP and harder-to-find decay channels
- Update with full Run-2 data

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

6 August 2018

Gluino

Top Squark, aka "stop"

Stops are pair-produced, just like other squarks

Their decays are more complicated, and depends on $m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$

Top Squark, aka "stop"

Limits reach 1 TeV for $m(\tilde{t}) \gg m(t) + m(LSP)$

Things get messy for $m(\tilde{t}) \leq m(t) + m(LSP)$

Compressed Stop

CMS arXiv:1805.05784

Compressed Stop

CMS arXiv:1805.05784

Search for "compressed" top squarks by CMS, 36 fb⁻¹

- Multivariate analysis maximizes signal separation
- Sensitivity down to $m(\tilde{t}) m(LSP) = 10 \text{ GeV}$

Higgsino

Light Higgsino (\tilde{H}) \rightarrow 3 lightest chargino/neutralinos $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$

This is hard to detect:

- Electroweak production → small x-section
- Signal events look like SM background
 - Small (sub-GeV) mass differences
 - Very soft leptons & jets
 - ► LSPs are nearly at rest → small MET

Higgsino

Light Higgsino (\tilde{H}) \rightarrow 3 lightest chargino/neutralinos $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$

This is hard to detect:

- Electroweak production → small x-section
- Signal events look like SM background
 - Small (sub-GeV) mass differences
 - Very soft leptons & jets
 - ► LSPs are nearly at rest → small MET

Initial State Radiation (ISR) helps

- Incoming proton emits a gluon → jet
- SUSY particles recoil against the jet
- LSPs are moving fast → larger MET

Compressed EW SUSY

ATLAS PRD 97 (2018) 052010

Compressed EW SUSY

ATLAS PRD 97 (2018) 052010

Search for compressed EW SUSY by ATLAS, 36 fb⁻¹

First LHC limit for this very soft higgsino channel

Long-Lived Particles

New particles may not decay immediately

Long-lived particles (LLP) produce displaced decay vertices in the detectors SUSY-motivated search for LLP by CMS, 38.5 fb⁻¹

Look for events with two decay vertices separated by a few mm

Long-Lived Particles

CMS-PAS-EXO-17-018

SUSY-motivated search for LLP by CMS, 38.5 fb⁻¹

Limits are set on, e.g., R-parity violating stop decays:

Dark Matter

Dark Matter exists

Compelling evidences from astronomical data

DM particles may be produced at the LHC

- BUT Experiments cannot see the final state with only DM particles
- How do we record and count such events?

We need ≥1 extra particles produced with the DM particles

Candidate events contain X + MET and little else

We call it "mono-X" with X = jet, photon, Higgs, W, Z, etc.

Where does "X" come from?

X may be radiated by the incoming quarks

- Quarks couple most strongly to gluons
- If $q\overline{q} \rightarrow \chi \overline{\chi}$ happens, $q\overline{q} \rightarrow \chi \overline{\chi} + g$ must happen
- This gives us the "mono-jet" signature

X may be more closely connected to DM production, e.g.

- Cross-section depends on the exact model and the couplings
- May be large even if $q\bar{q} \rightarrow \chi \bar{\chi}$ is small

1.7 TeV Mono-Jet Event in ATLAS

6 August 2018

Mono-Jet

Search for DM + jet(s) by ATLAS, 36 fb⁻¹

Select events with ≥1 energetic jet (>250 GeV) and large MET (>250 GeV)

Mono-Jet

Search for DM + jet(s) by ATLAS, 36 fb⁻¹

$MET + t \overline{t}$

CMS-EXO-16-049

Suppose the DM particles couple only to a spin-0 mediator

- Like the Higgs, the coupling favors heavy fermions, i.e., top quarks
- Final state = $t\bar{t} + \chi\bar{\chi}$ (= MET)

Search for MET + $t \bar{t}$ events by CMS, 36 fb⁻¹

Event selection depends on how the top quarks decay:

Leptons	Jets (b-tagged)	MET
0	≥4 (≥1)	>200 GeV
1	≥3 (≥1)	>160 GeV
2	≥2 (≥1)	>50 GeV

Expect signal at high MET

 $MET + t \overline{t}$

CMS-EXO-16-049

Summary and Prospects

ATLAS & CMS take advantage of massive data at 13 TeV to search for New Physics beyond the Standard Model

- Resonances, SUSY particles, Dark Matter, leptoquarks, vector-like quarks, ...
- Also: don't forget flavor physics at LHCb & ATLAS & CMS

No discovery yet — Pushing limits higher and deeper

More data are coming: Run 3 (2021–23) and HL-LHC (2026–)

Prospects

What will Run 3 (300 fb⁻¹) and HL-LHC (3000 fb⁻¹) bring?

