TrackML : Tracking Machine Learning challenge

<u>David Rousseau (LAL-Orsay, U Paris-Saclay)</u> (rousseau@lal.in2p3.fr),

with Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch Vlimant (CalTech), Yetkin Yilnaz (LAL), Cécile Germain (LAL/LRI), Isabelle Guyon (ChaLearn, U Paris Saclay), Vincenzo Innocente, Andreas Salzburger (CERN), Tobias Golling, Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex)

Special thanks for the preparation of the slides : Andreas Salzburger, Jean-Roch Vlimant

CERN seminar, 7th Mar 2018

Outline

Why a Tracking challenge now ?
HiggsML challenge recap
Simulation
Metric

Conclusion

Who are we ?

Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch Vlimant (CalTech), Cécile Germain (LAL/LRI U Paris Saclay), Isabelle Guyon (ChaLearn, U Paris Saclay), David Rousseau, Yetkin Yilnaz (LAL Orsay U Paris Saclay), Vincenzo Innocente, Andreas Salzburger (CERN), Tobias Golling, Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex)

- Particle physics tracking experts from three large CERN experiments on the LHC ATLAS, CMS and LHCb
- Machine Learning scientists
- Some of us have organised challenges on Kaggle

- The <u>Higgs Machine Learning challenge</u> 2014 (<u>proceedings of NIPS 2014</u> <u>workshop</u>)
- o <u>Flavour of Physics challenge</u> 2015
- U We have been preparing this new challenge since 3 years...

Partners

LHC tracking

HL-LHC upgrade

Tracking crisis

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- High Luminosity-LHC perspective : increased rate of parasitic collisions from 40 (2017) to 200
- CPU time of current software quadratic/exponential extrapolation (difficult to quote any number)
- (current software give sufficiently good results in terms of accuracy, but x10 too slow)
- Distant future FCC-hh would reach 1000

Particle Tracking

П

Point precision ~5 μm to 3mm 100k points 10k tracks / event

10-100 billion events/year

6 m

Current situation: 20 parasitic collisions High Lumi-LHC : 200 parasitic collisions

Pile-up

Motivation

- LHC experiments future computing budget flat (at best) (LHC experiments use 300.000 CPU cores on the LHC world wide computing grid)
- Installed CPU power per \$==€==CHF expected increase factor <10 in 2025</p>
- \Box Experiments plan on increase of amount of data recorded (by a factor ~10)
- ➡ HighLumi reconstruction to be as fast as current reconstruction despite factor 10 in complexity
- \Box \rightarrow requires very significant software CPU improvement, factor ~ 10
- Large effort to optimise current software and tackle micro and macro parallelism
 - Also development of dedicated hardware for fast tracking
- □ >20 years of LHC tracking development. Everything has been tried!
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed ?
 - Maybe no, brand new ideas from ML
- Need to engage a wide community to tackle this problem

Current Algorithms

- Pattern : connect 3D points into tracks
- Essentially combinatorial approach
- Tracks are (not perfect) helices pointing (approximately) to the origin
- Challenge : explore completely new approaches
- (not part of the challenge : given the points, estimate the track parameters)

Pattern recognition in ML

Pattern recognition, tracking, is a very Artificial Intelligence : examples ->

Note that these are real-time applications,

- with CPU constraints
- □ Worry about efficiency, "track swap",...
- But no on-the-shelf algorithm will solve our problem
- (in fact a few lines calling DBScan in sklearn does find some tracks)

David Rousseau, CERN

An early attempt

' PHYSIC

December 1

e Learnin

-11705010

 $T = 2.0\tau$

inergy

ce

known

- Losely inspired from Traveling Salesman Problem with NN by Hopfield & Tank Biological Cybernetics 52 (1985) 141. or with Minimal Tree Span Cassel & Kowalski Nucl Inst; and Meth 185 (1981) 235
- (large litterature since, e.g. Neural Combinatorial Optimization with reinforcement learning, Bello et al Google Brain 1611.0994)
- Full implementation in ALEPH Stimpfl & Garrido (1990) Computer Physics Comm. 64 (1991) 46.
- However never deployed

ALEPH

A recent attempt : NOVA

Inception

Module

Max Pooling

3×3, stride 2

Inception

Module

Inception

Module

Max Pooling

3×3, stride 2

LRN

Convolution

3×3

Convolution

1×1

LRN

Max Pooling

3×3, stride 2

Convolution

7×7, stride 2

Y View

V plots

Tracks are not visible by eye

CHEP04

- □ How ever they are with a clever projection :Eta phi projection with $\delta\eta$ =+/- ϵ (r_{max} -r)
- See G. Taylor Nucl. Inst. and Meth. A 549 (2005) 183–187

20 parasitic collisions

19

TrackML Ramp

- A simplified tracking challenge setup on RAMP (Center for Data Science Paris-Saclay) platform, Balazs Kégl)
- A (non completely trivial) 2D simulation with ~ 10 tracks instead of 3D/10.000 tracks
- Run as a 40 hours hackathon during CTDWIT 6-9th March 2017 LAL-Orsay
- Allowed to validate robustness a scoring variable and show richness of possible algorithms: combinatorial (HEP baseline), conformal mapping, MCTS, LSTM (See also S. Farrell et al paper accepted by NIPS 2017 "Deep Learning for Physical Science"

Belle II Experiment @belle2collab · 15 min Congrats to four #Belle2 PhD students for winning the Tracking Challenge at this year's Connecting the DotsD Conference! #ctdwit #hackathon

A l'origine en anglais

David Rousseau @dhpmrou

@SteveAFarrell winner of #CTDWIT TrackMLRamp 2D #hackathon at @LALOrsay in the ML category. Congrats !

Convolution NN

See: Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, EPJ Web of Conferences 150, 00003 (2017) David Rousseau, CERN Seminar, 7th March 2018

RNN

2014 HiggsML challenge recap

Higgs the Higgs ML challenge

May to September 2014

When High Energy Physics meets Machine Learning

Organization committee			Advisory committee			
Bolázs Kégl - <i>Appstat-LAL</i>	David Rousseau - Atlas-LAL	Isabelle Guyon - <i>Chalearn</i>	Thorsten Wengler - <i>Atlas-CERN</i>	Joerg Stelzer - Atlas-CERN		
Cécile Germain - TAO-LRI	Glen Cowan - Atlas-RHUL	Claire Adam-Bourdarios - <i>Atlas-LAL</i>	Andreas Hoecker - <i>Atlas-CERN</i>	Marc Schoenauer - INRIA		

HiggsML in a nutshell

- (see <u>JMLR proceedings</u> http://proceedings.mlr.press/v42/cowa14.html)
- ATLAS Htautau MC analysis ntuple released

- Competition on kaggle to optimise Higgs selection : <u>https://higgsml.lal.in2p3.fr</u>
- 1785 teams (1942 people) have participated (participation=submission of at least one solution)
 - (6517 people have downloaded the data)
 - →most popular challenge on the Kaggle platform (until spring 2015)
 - o 35772 solutions uploaded
- 136 forum topics with 1100 posts

What data did we release ?

From ATLAS full sim Geant4 MC12 production

- 30 variables
- Signal is $H \rightarrow$ tautau, Background a mixture of : Z, top, W
- Based on November 2013 ATLAS Htautau conf note ATLAS-CONF-2013-108
- Preselection for lep-had topology : single lepton trigger, one lepton identified, one hadronic tau identified
- $\square \rightarrow 800.000$ events (all that was available):
 - o 250.000 training data set
 - 550.000 test data set without label and weight
- Reproduces reasonably well (~20%) content of 3 highest sensitivity bins (x 2 categories) in conf note
- (some background and many correction factors deliberately omitted so that the sample cannot be used for physics, only for machine learning studies)

Dataset

Permanently available and usable by anyone (also non ATLAS) on CERN Open Data: http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014 ASCII csv file, with mixture of Higgs to tautau (lephad) signal and corresponding backgrounds, from official GFANT4 ATLAS simulation Weight and signal/background (for training dataset only) weight (fully normalised) label : « s » or « b » Conf note variables used for categorization or BDT: DER mass MMC DER mass transverse met lep DER mass vis DER_pt_h DER_deltaeta_jet_jet DER_mass_jet_jet DER_prodeta_jet_jet DER deltar tau lep DER pt tot DER sum pt DER pt ratio lep tau DER met phi centrality DER lep eta centrality

Primitive 3-vectors allowing to compute the conf note variables (mass neglected),

16 independent variables:

PRI tau pt PRI tau eta PRI tau phi PRI_lep_pt PRI lep eta PRI lep phi PRI met PRI met phi PRI met sumet PRI jet num (0,1,2,3, capped at 3)PRI jet leading pt PRI jet leading eta PRI_jet_leading_phi PRI_jet_subleading_pt PRI_jet_subleading_eta PRI_jet_subleading_phi PRI jet all pt

Real life vs challenge

- 1. Systematics (and data vs MC)
- 2. 2 categories x n BDT score bins
- 3. Background estimated from data (embedded, anti tau, control region) and some MC
- 4. Weights include all corrections. Some negative weights (tt)
- 5. Potentially use any information from all 2012 data and MC events
- 6. Few variables fed in two BDT
- 7. Significance from complete fit with NP etc...
- 8. MVA with TMVA BDT

- 1. No systematics
- 2. No categories, one signal region
- 3. Straight use of ATLAS G4 MC
- 4. Weights only include normalisation and pythia weight. Neg. weight events rejected.
- 5. Only use variables and events preselected by the real analysis
- 6. All BDT variables + categorisation variables + primitives 3-vector
- 7. Significance from "regularised Asimov"
- 8. MVA "no-limit"

Simpler, but not too simple!

Final leaderboard

#	∆rank	Team Name ‡model uploaded * in the money	Score 🕜	Entries	Last Submission UTC (Best – Last Submission)
1	↑1	Gábor Melis $\ddagger * 7000$ « deep » learning	3.80581	110	Sun, 14 Sep 2014 09:10:04 (-0h)
2	↑1	Tim Salimans ‡ * 4000\$ BDT ensemble	3.78913	57	Mon, 15 Sep 2014 23:49:02 (-40.6d)
3	↑1	nhlx5haze ‡ * 2000\$	3.78682	254	Mon, 15 Sep 2014 16:50:01 (-76.3d)
4	↑ 38	ChoKo Team 🍂	3.77526	216	Mon, 15 Sep 2014 15:21:36 (-42.1h)
5	↑35	cheng chen	3.77384	21	Mon, 15 Sep 2014 23:29:29 (-0h)
6	↑16	quantify	3.77086	8	Mon, 15 Sep 2014 16:12:48 (-7.3h)
7	↑1	Stanislav Semenov & Co (HSE Yandex)	3.76211	68	Mon, 15 Sep 2014 20:19:03
8	↓7	Luboš Motl's team 🎩 🛛 Best physicist	3.76050	589	Mon, 15 Sep 2014 08:38:49 (-1.6h)
9	↑8	Roberto-UCIIIM	3.75864	292	Mon, 15 Sep 2014 23:44:42 (-44d)
10	↑ 2	Davut & Josef 📭	3.75838	161	Mon, 15 Sep 2014 23:24:32 (-4.5d)
45	↑5	crowwork 📭 ‡ HEP meets ML award XGBoost authors Free trip to CERN	3.71885	94	Mon, 15 Sep 2014 23:45:00 (-5.1d)
782	↓ 14 9	Eckhard TMVA expert, with TMVA	3.4994	5 29	Mon, 15 Sep 2014 07:26:13 (-46.1h)
991	1 †4	Rem.	3.20423	2	Mon, 16 Jun 2014 21:53:43 (-30.4h)
		simple TMVA boosted trees	3.19956		

Why challenges work ?

MOTIVATION OF ORGANIZING CONTESTS: EXTREME VALUE Courtesy : Lakhani 2014

From domain to challenge and back

The tracking challenge

In a nutshell

- Accurate simulation engine (ACTS https://gitlab.cern.ch/acts/actscore) to produce realistic events
 - One file with list of 3D points

- Ground truth : one file with point to particle association
- Ground truth auxiliary : true particle parameter (origin, direction, curvature)
- Typical events with ~200 parasitic collisions (~10.000 tracks/event)
- Large training sample 100k events, 10 billion tracks ~100GByte
- Participants are given the test sample (with usual split for public and private leaderboard) and run the evaluation to find the tracks
- They should upload the tracks they have found
 - A track is a list of 3D points
 - o (do not consider estimation of particle parameter)
 - Score : fraction of points correctly grouped together
 - Evaluation on test sample with per-mille precision on 100 event

Detector : layout

Detector resolution

Clustering : analog in Pixel, digital in Strips Different pitches

→very different residuals (see examples)

→we'll let participants figure out given $(x,y,z)_{measured} \Leftrightarrow (x,y,z)_{true}$

Non trivial simplification : one true track ⇔one reco hit (except for 1% inefficiency) =>no hit merging/splitting

Magnetic Field

- □ If B field uniform→tracks are perfect helices (except for MS)
- However ATLAS/CMS magnetic field not perfectly uniform (Solenoïd too shorts, Tilt)
- \square \rightarrow Event simulated with ATLAS field map
- →systematic departure from perfect helix reaches ~1mm at middle radius at high rapidity
- \Box \rightarrow broken azimuthal symmetry
- \Box \rightarrow taking this into account not mandatory to get started, but ultimately needed
- We don't provide the field map to participant

Material

- □ Per layer : Radiation length : 2-3%, Interaction length : 1%
- As uniform cylinder and slabs, no attempt for detailed electronics, services description

Event simulation

- Pythia tt-bar event
- Overlaid with Poisson(200) Pythia minimum bias
- Luminous region : gaussian σ_z =5.5 cm, transverse σ =15µm
- 15% of random hits
- Trajectories are deterministic, except for Multiple Scattering, Energy Loss and hadronic interaction

David Rousseau, CERN Seminar, 7th March 2018

Datasets

	HIT TILE (measured position n					ion mm)	nm) (pixel location and charge)				
	hit_id	volume_id	layer_id	module_id	x		y z	ncells		pixels	
0	1	7	2	1	-63.9659	-3.7051	3 -1502.5	1	[[141, 605,	0.297491]]	
1	2	7	2	1	-40.2738	2.8238	6 -1502.5	1	[[48, 176,	0.291861]]	
2	3	7	2	1	-88.1049	-11.7238	0 -1502.5	1	[[263, 1044,	0.327308]]	
3	4	7	2	1	-39.7041	-8.7170	2 -1502.5	1	[[279, 182,	0.327097]]	
4	5	7	2	1	-30.4918	-8.1926	2 -1502.5	1	[[283, 18,	0.258165]]	
	Tru	uth file		(true p	osition mr	n l	particle mo	omentum	n GeV)		
hit_id particle_id		tx	ty	tz	tpx	tpy	y tpz	weight			
0	1	5856260063	35465728	-63.972698	-3.72889	-1502.5	-0.342366	-0.001899	-7.83544	0.018565	
1	2	10358299758	37951616	-40.287201	2.84328	-1502.5	-0.366049	0.013878	-13.55470	0.035088	
2	3	10808804032	24333568	-88.089600	-11.72360	-1502.5	-0.550128	-0.041929	-9.22279	0.018542	
3	4	10809092654	42356480	-39.712601	-8.71581	-1502.5	-0.363936	-0.094646	6 -14.01150	0.035088	
4	5	10810350220	06599168	-30.470400	-8.18647	-1502.5	-0.413489	-0.123403	-20.65790	0.000000	

Datasets

FT

	Particle file	origin ve	ertex (mm)		charge				
particle_id		vx	vy	vz px		ру	pz	q	
0	4503805785800704	-0.021389	-0.012618	-0.624757	38.907001	-16.146099	-84.311096	-1	
1	4504011944230912	-0.021389	-0.012618	-0.624757	-0.661993	0.118267	249.181000	1	
2	4504080663707648	-0.021389	-0.012618	-0.624757	0.821614	0.954217	0.948994	-1	
3	4504149383184384	-0.021389	-0.012618	-0.624757	0.300791	0.080450	2.656530	1	
4	4504218102661120	-0.021389	-0.012618	-0.624757	-0.552250	-0.481988	-0.888733	1	
(note : we do not ask participant to reconstruct these track parameters but these could be useful latent variables)									

□ (static)Detector file center position (mm) 3x3 rotation matrix

	volume_id	layer_id	module_id	сх	су	CZ	rot_xu	rot_xv	rot_xw	ro
0	6	2	1	-65.7965	-5.17830	-1502.5	0.078459	-0.996917	0.0	-0.99
1	6	2	2	-139.8510	-6.46568	-1502.0	0.046183	-0.998933	0.0	-0.99
2	6	2	3	-138.6570	-19.34190	-1498.0	0.138156	-0.990410	0.0	-0.99
3	6	2	4	-64.1764	-15.40740	-1498.0	0.233445	-0.972370	0.0	-0.97:

Score

- CMS tracker TDR : Chapter 6 expected performance 31 pages 58 figures
- ATLAS Si strip TDR Chapter 4 ITk Performance and Physics Benchmark Studies 54 pages 80 figures

Track evaluation

good track not so good track

many compatible short tracks hits

completeness

uniqueness

shared hits

bad fit quality,

holes

outliers

TAS

low χ^2 /ndf

small impact parameter (for primaries)

clusters are compatible

FR

Hit weighting

Define : weight=weight_{order} x weight_{pt}

Weighted track score

- Weight_{order}: more emphasis on first and last hits
- Weight_{pt}: more emphasis on high pT tracks
- \Box Weight=0 for noise hits or hits from particle with <=3 hits

Track scoring

Overall scoring defined at hit level

- Loop on reco tracks
 - Require >50% of hits from same true particle
 - Require >50% of hits from this true particle in this reco track
 - At this point $1 \Leftrightarrow 1$ relationship between true and reco tracks
 - Sum the weights of the intersection (hits belonging both to true and reco track)
- Event score normalised to the sum of weights of all the hits
 - \rightarrow ideal algorithm has score==1.
- □ Final score averaged of 100 events→statistical precision ~0.1%

Attempt with 2 simple algs

Real life vs challenge

- 1. Wide type of physics events
- 2. Full Geant 4 / data
- 3. Detailed dead matter description
- 4. Complex geometry (tilted modules, double layers, misalignments...)
- 5. Hit merging
- 6. Allow shared hits
- 7. Output is hit clustering, track parameter and covariance matrix
- 8. Multiple metrics (see TDR's)

- 1. One event type (ttbar)
- 2. ACTS (MS, energy loss, hadronic interaction, solenoidal magnetic field, inefficiency)
- 3. Cylinders and slabs
- 4. Simple, ideal, geometry (cylinders and disks)
- 5. No hit merging
- 6. Disallow shared hits
- 7. Output is hit clustering
- 8. Single number metrics

Simpler, but not too simple!

Challenge phases

- We have decided to run in two phases
 - Accuracy Phase : focus only on accuracy, no CPU incentive
 - Goal is to expose innovative algorithms
 - Training time unlimited
 - Evaluation time unlimited
 - To run March-June 2018
 - Throughput Phase: focus on CPU, preserving accuracy
 - Goal is to expose the fastest algorithms
 - Training time (still) unlimited
 - Require the challenge platform to run the algorithm evaluation within fully reproducible controlled environment (VM with x86 processor with 2GB memory, but do not exclude a GPU track in addition)
 - To run in July-October 2018
- Discussion with Kaggle being finalised : they want to run the TrackML challenge and are even ready to sponsor the prize money
- Prizes :
 - From leaderboards of both phases: 8k\$ 5k\$ 2k\$
 - From jury examining the algorithms: what are the more likely to be beneficial to HEP ? Invitation to NIPS workshop (if confirmed) and to CERN workshop

Events

- Challenge Schedules
 - March to June Run challenge Accuracy phase
 - **July to October** : Run challenge Throughput phase
- Conference/workshops
 - Connecting The Dots 20-22nd March 2018 Seattle hackathon
 - July 2018 : Accuracy Phase accepted as an official competition for the IEEE World Congress on Computational Intelligence at Rio de Janeiro
 - July 2018 : (submitted) as a talk at CHEP Sofia and ICHEP Seoul
 - December 2018 : (submitted) Throughput Phase as a NIPS 2018 competition and workshop
 - Spring 2019 : grand finale workshop at CERN with prize delivery

Conclusion

- Setting up TrackML : a particle tracking challenge
- Goal is to involve ML community in overhauling core algorithms of CERN LHC experiments.
 - Looking for new approaches rather than hyper-optimised (HEP) approaches
- □ Very large training dataset ~100GB
 - Will be released (CERN Open Data portal most likely) after the challenge
- Wealth of possible ML techniques (NN, CNN, RNN, Reinforcement learning, clustering techniques, MCTS...) ... which makes it all the more interesting
- Separate Accuracy phase (most accurate algorithm) and Throughput phase (fastest algorithm to reach similar accuracy)
- Sponsorship more or less OK for Accuracy Phase, still looking for ~40k€ for Throughput phase
- Contact : <u>trackml.contact@gmail.com</u>
- More details, news, etc... : <u>https://sites.google.com/site/trackmlparticle/</u>, twitter @trackmllhc
- HEP physicists more than welcome to participate* : on one's own, or good opportunity to team-up with a friendly ML scientist on your campus !
 - *CERN employees can participate but not claim any price, per Kaggle rule