
Experience with containers on
Titan supercomputer at OLCF

Sergey Panitkin
(BNL)

Outline

• Introduction
• Singularity on Titan
• Container build setup
• Container tests on Titan
– Performance of ATLAS simulations in containers
• Singularity “tune”

– I/O Properties
• Summary

2

Containers in ATLAS
• Containers are viewed as a light weight

virtualization technology that allows to run
experiment/user specific environment regardless
of host site environment

• ATLAS started testing containers on Grid in 2017
– Docker, Singularity

• Typically requires Centos 7 installed on a site for full
Singularity support

• Site Singularity configuration plays large role
• Containers for HPC were tested at NERSC with

Shifter and Singularity
• For HPC machines without CVMFS (like Titan)

containers are viewed as a software distribution
tool

3

Containers on Titan
• Singularity container platform became available for tests on

Titan in 2017
– Accessible on batch worker nodes and interactive worker nodes
– Supported semi-officially
– Some documentation and scripts are available in github

• Currently Singularity v2.4.0 is installed as a module
• Singularity on Titan imposes a few requirements on user

container images
– No run-time mount points, all file system bindings have to

defined in the image. Run time bindings (-b fs1:fs2) are not
supported, since CNL kernel does not support overlayfs.
(Singularity on Summitdev@OLCF machine supports this option)

– A placeholder file for Titan specific setup script in the image (to
be invoked at run time)

4

Container build for Titan I
• Singularity installed from scratch on my laptop, since root privileges are needed for

container image building
– MacBook Pro 2016 laptop with VirtualBox, Vagrant VM with Singularity 2.4, following

Singularity documentation
– Manual install of Singularity v2.4.2 in Vagrant VM later on. A lot of bug fixes in this version.

• Build Singularity images with CentOS 6, 7 as base OS, imported at build time from
Docker Hub
– Tried several different OS versions, did not see much difference for container performance
– Added a few system libraries required by ATLAS software
– Some extra rpms for common tools required for ATLAS release install scripts (git, perl, wget, …)

• “Post”-stage script (from Adam Simpson’s (ORNL) Github) was used to define Titan
specific mount points
– Makes Titan’s shared file system visible at run time

• ATLAS release 21.0.15 installed using Pavlo’s scripts from Github
– Same script is used for ATLAS releases installation on Titan
– Current production release for Geant simulations on Titan

• ATLAS DBRelease installed
– Special handling for installation of ATLAS DBRelease fix for rel. 21.0.15
– Installed DBRelease configuration files customized for the container

• Several users added with proper Titan userIDs – required for asetup

5

Container build for Titan II

• Image build time ~2 hours on MacBook Pro
– Max system load during build ~40%

• Container file sizes
– Image file on top of Ext3 filesystem ~29GB

– SquashFS based image file ~7GB
• Support for SquashFS was introduced recently in Singularity

• SquashFS supports compression

– Same ATLAS release installed directly on Titan’s FS: ~27GB

• For comparison: some containers build at BNL by Wei
Yang (SLAC)
– “Fat” ATLAS container ~600GB

• Full ATLAS (deduplicated) CVMFS tree

– Container with rel. 21.0.15 and DBRelease ~ 50GB
• Also extracted from CVMFS

6

ATLAS container tests on Titan
• Ext3 and Squash containers were copied to Lustre

and NFS on Titan
– Tried several container placement options including

RAMdisk
• Tested with an ATLAS production job
– Short, single node job with 16 events on 15 CPU cores

• Jobs submitted manually to the batch queue, f.e.
– aprun -n 1 -N 1 -d 15 -r1 singularity exec

/ccs/proj/csc108/AtlasReleases/containers/my_centos_6_docker_Titan_DBRelease
_with_gcc_v2.simg ./run.sh

– Release setup done at run time via shell script (run.sh)
– Job working directory is on Lustre or RAMDisk depending on the test
– Root input file with events on NFS, Lustre or RAM disk depending on the test

• Timing information from Athena logs
7

ATLAS container tests on Titan: First results

Type Location Size, GB Setup time, s Run time, s Job ID
Direct Release NFS 26.7 357 1610 3801346

SquashFS NFS 7.2 742 4272 3800895

Ext3 NFS 29 766 4029 3801075

SquashFS Lustre 7.2 746 4157 3807410

Ext3 Lustre 29 773 4023 3807409

SquashFS RAM disk 7.2 722 4124 3801346

8

Setup time: from the transformation start to the event loop start
Run time: from the transformation start to exit

Some initial observations:
• Simulations in containers run ~x2 longer than the simulation ran from disk installed release

• Unexpected!
• Is this related to access to the large container files?

• No big difference between run times for containers placed on NFS or Lustre (NFS is
optimized for read and is used for software installation on Titan)

• No big difference between Ext3 and SquashFS based containers
• Container started from RAM disk on worker node runs similar to the containers on shared FS

• Indication that the slowdown is not IO related?!

Solving the slow containers puzzle
• After discussing test results with Adam Simpson

(OLCF) and trying several other possibilities I looked
at ld-intercept feature

• This feature is active by default on Titan and is used
to intercept loading of MPI related shared libraries
within containers

• Probably an important feature for other use cases
but not needed for ATLAS simulations

• In the current Singularity setup at OLCF dl-intercept
is always “ON” but can be switched off after
Singularity module is loaded with:
– unset SINGULARITYENV_LD_AUDIT

9

Running with DL AUDIT OFF

• Simulations in containers run ~x3 faster when LD AUDIT is turned off. Good!
– “unset SINGULARITYENV_LD_AUDIT” works!

• Simulations in containers now run noticeably faster than in case with ATLAS release
installed on NFS. Good!
– ~1.5 min. improvement in transformation start up time
– ~3 min. improvement in overall run time

• Not much difference in performance between SquashFS and Ext3 based containers
– No visible penalty for using compression in SquashFS . Good!

• Perhaps SquashFS container is even a bit faster
– SquashFS based containers are much smaller (x4). Good!

• Significant improvements in IO in case of container (see next slides). Very good!
– Much lower load on Lustre metadata server due to change in file access pattern

• Single file access for Singularity container vs multiple files access for release installed on disk (direct release)
• NB: ATLAS simulation reads/loads hundreds of files (Python scripts, shared libraries, etc) during execution especially at

start up

10

Type Location Size, GB Setup time, s Run time, s Job ID
Direct Release NFS 26.7 357 1610 3801346

SquashFS ld_audit ON NFS 7.2 742 4272 3800895

SquashFS ld_audit OFF NFS 7.2 221 1425 3822559

Ext3 ld_audit OFF NFS 29 239 1491 3822317

Typical Splunk profile for a single AthenaMP job on Titan

11

_time

File Opens
File Closes

8:15 PM
Wed Aug 9
2017

8:25 PM 8:35 PM

1,000

2,000

3,000

• The figure shows file open/close operations on Lustre MDS as a function of time
• Single AthenaMP production test job with 16 workers, 16 events

• Atlas release on NFS. Job working directory on Lustre. sqlite200 DB in RAM
• Large spike in reads at Athena start up
• Large spike at the end of the job due to merging of AthenaMP workers outputs
• More file open() than file close() operations!

• Shared libraries and Python includes searches. Confirmed with strace profiling

Not in container!

Presentation name 9

Evolution of IO profiles for ATLAS production jobs
on Titan

14

Before optimization Environment cleanup ATHENA 'hack' Working dir in RAM Disk

Start Time: Aug 15, 201723:56:11
End Time: Aug 16, 201701:01:16
Nodes Used: 350
batch id: 3567126

Start Time: Aug 18, 201701:46:04
End Time: Aug 18, 201702:58:22
Nodes Used: 350
batch id: 3570319

Start Time: Aug 21, 201701:02:42
End Time: Aug 21, 201702:16:04
Nodes Used: 350
batch id: 3573737

Start Time: Sep 04, 2017 03:19:01
End Time: Sep 04, 2017 04:00:00
Nodes Used: 350
batch id 3602038

•Significant reduction of IO. Number of ‘open' operations almost matches with number of close operations.
•Initial spike came form MPI wrapper which used to launch ATHENA Job on computing node. Already reduced with same

fix like athena.py
•Current setup of ATLAS production at OLCF

•ATLAS releases: NFS
•Job working directories and input data: RAM disk of computing node

•Output data moved to Lustre at the end of the job
Ack: Danila Oleynik

350 jobs running in parallel. Not in container
Problem! Much better!

We can run simultaneously up to 20 of such job groups. I/O can limit scalability

Container I/O. I
• Splunk profile for simulation in SquashFS based container located on NFS
• The plot shows Lustre file open()/close() operations
• Almost no file open/close on Lustre!

13

_time

File Opens
File Closes

11:20 PM
Fri Jan 12
2018

11:30 PM 11:40 PM 11:45 PM

25

50

75

100

Job 3822559 To compare with previous slides!

Container I/O. II

14

• Splunk profile for simulation in SquashFS container located on NFS
• Very low metadata activity on Lustre shared filesystem

Job 3822559

Containers on RAMdisk

15

Type Location Size, GB Setup time, s Run time, s Job ID

Direct Release NFS 26.7 357 1610 3801346

SquashFS ld_audit ON NFS 7.2 742 4272 3800895

SquashFS ld_audit OFF NFS 7.2 221 1425 3822559

SquashFS ld_audit OFF RAMdisk 7.2 209 1477 3828894

SquashFS ld_audit OFF RAMdisk+ 7.2 208 1481 3828925

• Small size SquashFS containers allow placement on RAMdisk on Titan
• Container copy time ~40s

• Tests show that job start up time for RAMdisk based container is ~2.5 min shorter
compared to running with disk based (direct) release

• Tests show no significant acceleration in setup or run time compared to container on
NFS
• Timing changes consistent within normal runtime fluctuations on Titan
• Probably already reached IO performance plateau. Effective cashing at FS level.

RAMdisk+ : container, input data and working directory on RAMdisk

Summary
• Started work with Singularity containers for Titan
• ATLAS simulations in containers performed well (after

the default Singularity option is turned off)
– Start up and run time improvements compared to

standard release install on shared file system
• Containers showed very good IO properties with

almost no load on Lustre MDS
– Due to change in file access pattern
– Important from operational point of view for the host site
– Important for scalability

• Use of containers should allow to scale up number of
simultaneously launched jobs, especially with
Harvester in production on Titan

16

Plans
• Jan.- May. Containers on Titan for ATLAS

– Scaling studies.
• MPI wrapper for containers
• Study strong scaling

– Work with Danila on using containers in ATLAS production on Titan
• Integration with current Pilot setup (with Danila)
• IO properties and timing for production

– Containers integration with Harvester (with Danila and Pavlo)
• Pavlo launched my container on Titan via Harvester this week

– Containers created by ATLAS (Wei Yang) at BNL
• Need to be build and configured to reflect Titan specifics
• Large size, long transfer times, hard to modify on a laptop
• Started work with these, still do not work 100% on Titan, transformation crashes

– Titan specifics, DB configuration
• Hope to converge on a working container

– Work on container build machine at BNL
• Discussions yesterday with Doug , Wei and Xin Exchanged ideas on creation of automated

container build and distribution system for US HPC
• Containers with NGE (with Matteo Turilli)

• Containerized ATLAS simulations are probably the easiest case for NGE tests

17

