

Possibility of proton driven positron acceleration in the nonlinear regime in hollow plasma

Y. Li^{1,*}, G. Xia¹, K. Lotov², A. Sosedkin², K. Hanahoe¹, O. Mete-Apsion¹

¹The University of Manchester/Cockcroft Institute ²Budker Institute of Nuclear Physics/Novosibirsk State University

*yangmei.li@manchester.ac.uk

Outline

Proton Driven Plasma Wakefield Acceleration

■ Multiple PD-HPWFA in the nonlinear regime

Proton Driven Hollow Plasma Wakefield Acceleration

Possibility of positron acceleration in this scenario
Summary & Outlook

Why PD-PWFA?

PWFA

Stanford Linear Accelerator Center ^[1]

85-cm-long column of lithium vapour ne 2.7×10^{17} cm⁻³ 42 GeV electron driver

85 GeV electrons 3×10^6 electrons per GeV

[1] Blumenfeld, I. et al. Nature 445, 741-744 (2007).

[2] Leemans, W. P. et al. Phys. Rev. Lett. 113, 245002 (2014).

LWFA

Lawrence Berkeley National Laboratory ^[2]

9 cm long preformed plasma channel plasma density 7×10^{17} cm⁻³ laser peak power 0.3 PW

4.2 GeV electrons; 6% rms energy spread; 6 pC charge; 0.3 mrad rms divergence

2018/02/09

Why PD-PWFA?

Limited energy content in e- bunches/lasers

D PWFA Transformer ratio $R = \frac{E_{\text{max}}^{\text{witness}}}{E_{\text{max}}^{\text{drive}}} \le 2 - \frac{N_{\text{witness}}}{N_{\text{drive}}}$

- SLAC (50 GeV, 2e10 e/bunch)
- ILC (250 GeV, 2e10 e/bunch)
- SPS (400 GeV, 3e11 p/bunch) ~ 20 kJ
- LHC (7 TeV, 1.15e11 p/bunch) ~ 130 kJ
- LWFA
 - A PW laser, ~40 J.
 - 3D effect: Dephasing, Diffraction, Depletion

Technically challenging multi-stage acc

Tight synchronization and alignment requirements of the drive and witness bunches and of each accelerator module

PD-PWFA

Proton driven plasma wakefield acceleration

Table 1 Table of parameters for the simulation.				
Parameter	Symbol	Value	Units	
Protons in drive bunch	NP	10 ¹¹		
Proton energy	EΡ	1	TeV	
Initial proton momentum spread	$\sigma_{\rm p}/p$	0.1		
Initial proton bunch longitudinal size	σ_z	100	μm	
Initial proton bunch angular spread	$\sigma_{ heta}$	0.03	mrad	
Initial proton bunch transverse size	$\sigma_{x,y}$	0.43	mm	
Electrons injected in witness bunch	Ne	1.5×10^{10}		
Energy of electrons in witness bunch	Ee	10	GeV	
Free electron density	np	6 × 10 ¹⁴	cm ⁻³	
Plasma wavelength	λρ	1.35	mm	
Magnetic field gradient		1,000	T m ⁻¹	
Magnet length		0.7	m	

A. Caldwell, et al., Nature Phys. 5, 363 (2009).

AWAKE at CERN

Compression of currently available proton bunches to plasma wavelength by a factor of several orders of magnitude is technically challenging.

Table 1. Dasenne parameters of the Twitting experiment.

Parameter & notation	Value	
Plasma density, n_e	$7 imes10^{14}\mathrm{cm}^{-3}$	
Plasma ion-to-electron mass ratio (rubidium), M_i	157 000	
Proton bunch population, N_b	3×10^{11}	
Proton bunch length, σ_z	12 cm	
Proton bunch radius, σ_r	0.02 cm	
Proton energy, W_b	400 GeV	
Proton bunch relative energy spread, $\delta W_b/W_b$	0.35%	
Proton bunch normalized emittance, ϵ_{bm}	3.5 mm mrad	

SMI enables multi-microbunch driven plasma wakefield acceleration.

A. Caldwell, et al. AWAKE design report: a proton-driven plasma wakefield acceleration experiment at CERN. No. CERN-SPSC-2013-013. (2013).

Outline

PD-PWFA

Proton Driven Plasma Wakefield Acceleration

■ <u>Multiple PD-HPWFA in the nonlinear regime</u>

Proton Driven Hollow Plasma Wakefield Acceleration

Possibility of positron acceleration in this scenario
Summary & Outlook

Multiple PD-HPWFA in the nonlinear regime

- SMI of the long proton bunch in the uniform plasma limits the beam-plasma interaction to the linear or weakly nonlinear regimes.
 - Wave period elongates
 - Most of the bunch defocuses

if NOT

- Nonlinear plasma focusing both across and along the witness bunch
- Radially nonlinear accelerating fields

Multiple PD-HPWFA in the nonlinear regime

Simulation Parameters

Parameters	Values	Units
Initial proton beam:		
Population of a single bunch, N_b	1.15×10 ¹⁰	
Energy, W _{d0}	1	TeV
Energy spread	10%	
Single bunch length, σ_z	63	μm
Beam radius, σ_r	71	μm
Bunch train period	631	μm
Initial witness electron beam:		
Population	2×10 ⁹	
Energy, W	10	GeV
Energy spread, $\delta W/W$	1%	
Normalized emittance, ε_n	2	mm mrad
Unperturbed hollow plasma:		
Plasma density, n _p	6×10 ¹⁵	cm-3
Hollow channel radius, r_c	200	μm
External quadrupole magnets:		
Magnetic field gradient, S	0.5	T/mm
Quadrupole period, Lq	0.9	m

2018/02/09

Mini-Workshop

Characteristics of proton bunches

Spatial distributions (a, b, c) of wakefield potential and driver protons (red dots for trapped and black for untrapped ones). (d) Radial dependencies of the potential at different ξ -positions.

Basin-like radial profile of the wakefield potential in the channel.

$$W_t = p_r^2/(2\gamma_b) + \Delta\psi(r,\xi)$$

Survival rates for the whole proton driver and the first driving bunch, respectively.

Proton survival rate vs. Initial angular divergence

$$W_t = p_r^2/(2\gamma_b) + \Delta\psi(r,\xi)$$

- Self-modulation results in large radial momenta of the protons.
- Other methods to generate bunches (longitudinal modulation?)

A. Petrenko and I. Sheinman, "High-energy micro-buncher based on the mm-wavelength dielectric structure," in 25th Russian Particle Accelerator Conference (RuPAC'16), St. Petersburg, Russia, 21–25 November 2016

Outline

PD-PWFA

Proton Driven Plasma Wakefield Acceleration

■ Multiple PD-HPWFA in the nonlinear regime

Proton Driven Hollow Plasma Wakefield Acceleration

Possibility of positron acceleration in this scenario

Summary & Outlook

 We simply introduce a positron bunch to the accelerating phase in the multiple PD-HPWFA case.

Parameters	Values	Units
Positron bunch:		
Bunch charge	160	рC
Energy, W	10	GeV
Energy spread	1%	
Bunch length, σ_z	15	μm
Beam radius, σ_r	5	μm
Normalized emittance, ε_n	1	μm

Lq is the quadrupole period, W is the beam energy, S is the magnetic field gradient, ε_{p} is rms emittance.

- With S =0.5 T/mm and Lq=0.9 m, it gives W>>3.1 GeV.
- $\sigma_{r_eq} = 5.4 \ \mu m$

Quadrupole focusing period is much shorter than the period of transverse particle oscillations.

$$L_q \ll 2\pi \sqrt{\frac{W}{eS}}$$

The average quadrupole focusing corresponds to the betatron function:

$$3 = \sqrt{\frac{rW_P}{F_q}} = \frac{2\pi\sqrt{2}W_P}{SL_q e\sqrt{\kappa}}$$

The equilibrium radius:

$$\sigma_r = \sqrt{\epsilon_P \beta}$$

Multiple proton bunch driven e+ acc in hollow plasma z= 0 m

Transverse dynamics

Acc characteristics and beam quality

More exciting published results

- ✓ Good radial confinement
- ✓ Novel effect in reducing energy spread
- ✓ Low radiation losses
- ✓ Emittance preservation

L. Yi *et al.*, Positron acceleration in a hollow plasma channel up to TeV regime, Sci. Rep. 4, 4171 (2014).

Summary & Outlook

- The hollow plasma eliminates the defocusing from background ions within the channel; broadens the region where the protons can stay; enables the operation of multiple PD-PWFA in the blowout regime.
- The majority of protons survive after a long distance;
- Multiple proton bunches are more likely yielded through long realistic proton drivers.
- With proper parameter optimization, a favorable region for both positron acceleration and quality conservation is possible.
- Experimental implementation of a long and stable hollow channel is still a challenge.

References

- Y. Li *et al.*, Multi-proton bunch driven hollow plasma wakefield acceleration in the nonlinear regime, Phys. Plasmas **24**, 103114 (2017).
- Y. Li *et al.*, High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator, Phys. Rev. Accel. Beams **20**, 101301 (2017).
- L. Yi *et al.*, Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel, Phys. Rev. ST Accel. Beams 16, 071301 (2013).
- L. Yi *et al.*, Positron acceleration in a hollow plasma channel up to TeV regime, Sci. Rep. 4, 4171 (2014).

Thank you for your attention!