Non-neutral fireball and possibilities for accelerating positrons with plasma

J.Vieira

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon **Portugal**

web.ist.utl.pt/jorge.vieira || epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Jorge Vieira | ALEGRO Positrojo Agecelenatio BLiA @lashaEMinis Works Moorks Moork ERAN Debutary 9 2018

Non-neutral fireball and possibilities for accelerating positrons with plasma

J.Vieira

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon **Portugal**

web.ist.utl.pt/**jorge.vieira** || **epp**.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Ζ

ш

Ч | /

0

(7

0

- Work in collaboration with:
 - J.T. Mendonça, R.A. Fonseca, L.O. Silva (IST); W. Mori (UCLA)
- Simulation results obtained at SuperMUC through PRACE awards

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

OSIRIS 3.0

osiris framework

•

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- $\begin{array}{r} \text{Developed by the osiris.consortium} \\ \Rightarrow \text{UCLA} + \text{IST} \end{array}$

code features

- Scalability to \sim 1.6 M cores
- Dynamic Load Balancing
- GPGPU and Xeon Phi support
- Particle merging
- QED module
- Quasi-3D
- Current deposit for NCI mitigation
- · Collisions
- Radiation reaction
- Ponderomotive guiding center

UCLA

Ricardo Fonseca

ricardo.fonseca@tecnico.ulisboa.pt **Frank Tsung** tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

Positron acceleration in the nonlinear regime using higher order laser drivers

Positron acceleration in the nonlinear regime with particle beam drivers

Conclusions & future work

Two paths for positron acceleration in plasmas: enhance electron density or create a hollow plasma channel

Hollow plasma channel	On-axis electron concentration
 Remove plasma electrons and plasma ions to form a hollow channel. No focusing force: positrons/electrons still diffract 	 On-axis, high density plasma e-filament could focus positrons. Is it possible to create positron focusing structures in a controllable way?
 Beam breakup may be a challenge Positron self-driven hollow channel Image: Comparison of the second sec	Note: <th< th=""></th<>
L.D. Amorim et al. to be submitted	Challenge: controlled regimes may require shaped plasma waves and drivers

The orbital angular momentum of light (OAM)

Orbital angular momentum Twisted light in the lab spiral phase plate ħk • azimuthally dependent phase delay due to $E_{\text{laser}} \propto \left(\frac{r}{w_0}\right)^{|\ell|} \mathcal{L}_p^{|\ell|}(\frac{r}{w_0}) \exp\left(-\frac{r^2}{w_0^2}\right) \times$ dispersion • pure OAM level ℓ when phase delay over 2 $\cos\left(\omega_0 t - k_0 z + \ell\phi\right)$ Pi corresponds to $\ell \lambda_0$ • also used to create Bessel beams (to drive a hollow channel) M. Padgett et al., Phys. Today 57(5), 35 (2004) First experiments to generate twisted light at ultra-high intensities have been done e.g. at GSI

[C. Brabetz et al., PoP 22, 013102 (2015)] **and CEA** [Denoeud et al. PRL 118 033902 (2017)]

Twisted light drives doughnut plasma waves

Laguerre-

Gaussian laser

50

40

x, [c/w,] 30

20

10

Ser. Ser.

positrons can

accelerate here

Non-linear doughnut blowout

Doughnut plasma waves have novel focusing properties: positron focusing in strongly non-linear regimes

Longitudinal electric field

Plasma density: slice from 3D simulation Propagation direction position Transverse Positron focusing electron filament Simulation box zoom Distance electrons merge on-axis providing positron focusing when $W_0 \approx r_b$: $a_0 \approx (8W_0[c/\omega_p])^{1/2}$

Wakefield structure

3D simulations show positron acceleration in strongly non-linear regimes

Proof-of-concept using a Gaussian laser pulse as a driver

Laguerre-Gaussian laser driver

on-axis ponderomotive force for Laguerre-Gaussian pulse

$$F_p \propto -\nabla a^2 = -a^2 \left(\frac{2}{r} - \frac{4}{r^2}\right) \simeq -\frac{2a_0^2 r}{w_0^2} + \mathcal{O}(r^2)$$

provides on-axis focusing that generates positron focusing electron filament

Gaussian laser and positron bunch

- Gaussian beam electrons **defocused** from the axis
- Gaussian beam + positron bunch electrons can be focused on-axis
- Positron focusing requirement $(a_0 \gg I)$

Related configurations using Gaussian lasers are possible

Proof-of-concept simulations

balance laser ponderomotive force with positron attraction

On-axis filament

Positron acceleration in the nonlinear regime using higher order laser drivers

Positron acceleration in the nonlinear regime with particle beam drivers

Conclusions & future work

Plasma wakefield accelerator driven by a doughnut electron beam

Doughnut plasma wave in the blowout regime

IJ

propagation direction

J. Vieira et al Proceedings of AAC (2014); N. Jain et al arXiv (2015)

Wakefield structure shows positron focusing and accelerating regions.

- Linear focusing force for e⁺
- Width of linear focusing region on the order of the skin depth
- Focusing varies but may not compromise divergence/emittance growth

Accelerating force

- e+ can accelerate at the front
- Beam loading is possible
- Energy spread growth can be controlled

Positrons gain 8 GeVs in 118 cm with low energy spread and low divergence (emittance)

Driver: **Ring profile, 10 GeV; 3.4 nC;** σ_z =23 µm; no emittance

Energy doubling of some of witness positron in 1 meter with 5 nC e- driver

Approach to realise scheme without ring e- drivers: Nonneutral fireball beam

Scheme could be realised superimposing Gaussian e- driver with e+ witness

Wakefields are similar to doughnut

Fireball positron acceleration could double the energy of some of the positrons in 85 cm

Jorge Vieira | SLAC FACET ii Science Workshop | October 18 2018

Positron acceleration in the nonlinear regime using higher order laser drivers

Positron acceleration in the nonlinear regime with particle beam drivers

Conclusions & future work

Ring shaped lasers or particle bunches could drive nonlinear plasma waves suitable for positron acceleration

A Gaussian particle bunch (or laser) could also be used provided that the positron bunch strongly loads the plasma wave (connection with current filamentation)

Future work

Tolerances related to misalignments and overall beam profile Explore the role of other instabilities (e.g. hosing)