Machine Learning Solutions for Simulation and Reconstruction in Highly Granular Calorimeters

Jan Kieseler 26.2.2018

CMS HGCal as an Example

- HGCal produces 3D shower images
 - Space
 - Energy (+time) as colour
- Large amount of 'noise' from pile-up, close by particles
- Large number of inputs: 6M channels

• Tasks:

- Identify showers in noise
- Identify particle type from shower shape
- Measure energy

strong similarity to pattern recognition/ computer vision

Deep Neural Networks (Computer Vision)

- Approach to handle large amount of raw inputs: DNN
- Three basic DNN types
 - ▶ Fully connected 'dense' (very powerful but many parameters)
 - Recurrent ('time' series, good for sparsity, slower*)
 - ✓ Convolutional (translation invariant structures)
- For image processing: usually **convolutional** layers followed by a set of dense layers

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US UNETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

NO YES

xkcd.com

ANSWER QUICKLY-OUR SELF-DRIVING
CAR IS ALMOST AT THE INTERSECTION.

SO MUCH OF "AI" IS JUST FIGURING OUT WAYS
TO OFFLOAD WORK ONTO RANDOM STRANGERS.

• DNNs are fast and highly parallelizable

*in Tensorflow

Jan Kieseler

Reconstruction and Fast Simulation

Reconstruction

• 3D Convolutional kernels <u>scan</u> 3D image and identify shower shapes / sum corresponding energies

Fast Simulation (GAN)

- 3D Convolutional kernels generate 3D image and assign energy
- ⇒Both can be way faster than classical methods
- →Possibility to implement directly in hardware (FPGAs)
 - Trigger applications
- →Studies have just begun (also other architectures will be investigated)

* and more details on simulation https://indico.cern.ch/event/699252/

Jan Kieseler

Map Detector Structure to Neural Network

- Sensors hexagonal
- Sensor size/area changes with z,x,y
 - Physics based
- →Correct representation of the geometry is an issue for **any** non-uniform non-squared sensor design

• Uniform pixel size in all dimensions

Mapping of Sensors to Pixels: One Approach

- Chose rather coarse pixelisation
- Per sensor information
 - Position, area within the pixel
 - ▶ Energy, ...
- Add per-pixel position information
- Build pixel "colours" with a small dense, translation invariant network
- Works fairly well (CMS TDR-17-007)
- Not optimal in terms of resources
 - adds huge amount of sparsity
 - increases training time (here about a week on 1080Ti)
- Even less optimal for simulation

• Solving the mapping/geometry issue in a generic way will be important for future reconstruction techniques (or detector design choices)

Jan Kieseler

Summary / Requirements

- DNNs will become very important for high granularity calorimeters
 - ▶ Fast, high performance
- Need input from / collaboration with DNN experts
- GPU resources are THE limiting factor for many studies
- For efficient studies, resources need to be available in a simple way and on-demand