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Holographic Complexity. A Tale of two Dualities.

Complexity of quantum states: useful to investigate the duality be-
tween entanglement and spacetime geometries in quantum gravity.

Mainly addressed in the context of the AdS/CFT duality.

“Holographic complexity” as the CFT quantity that encodes the
continuous evolution of the interior of the black hole [Susskind 16] .

Two proposals for the quantum complexity of boundary states:

Complexity=Volume (CV) conjecture. [Susskind 16]

Complexity= Action (CA) conjecture. [Brown et al 16]
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Holographic Complexity. A Tale of two Dualities.

The eternal black hole: dual to an entangled state |Ψ〉 of two CFTs
that live on the boundaries.

CV: CΨ = Volume of the maximal spatial slice.

CA: CΨ = Action A of the Wheeler-DeWitt patch. (roughly cor-
responds to the black hole interior)
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CA and Complexification Rates.

The action of the black hole interior A increases at a rate such that

dCΨ

dt =
2M
π h̄

i.e, saturates a Margolus–Levitin like bound [Brown et al 16].
The ML bound is a universal bound on the speed of evolution of
any quantum system (Quantum Speed Limit, QSL).

d
dt 〈Ψ|Ψ(t)〉 ≤ 2EΨ

π h̄

In Computer Science, ML is a theoretical upper limit on the number
of operations that can be performed on unit time.
Black Holes Produce Complexity Fastest.



Introduction Entanglement Renormalization Complexity Functionals in cMERA Conclusions

CA and Quantum Circuits.

Logic gates (blue) in a quantum circuit (red).

Black hole interiors = quantum circuits that produce |Ψ〉 at the
fastest rate allowed by QM

C|Ψ〉 ∼ # gates required to produce |Ψ〉 from a simple reference
state |Ω〉.
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Complexity in QFT: An interesting research program.

1 Complexity measures the cost required to prepare |Ψ〉 from a
specific reference state |Ω〉 by applying an optimal unitarity U

|Ψ〉 ≈ U |Ω〉

2 U from iterating generators K taken from some elementary set

U(u) = P exp
(∫ u

uI
K (u′) du′

)

|Ψ〉 ≈ U(uF ) |Ω〉
3 A regularization procedure to deal with ultraviolet divergences.
4 A measure of complexity.
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Entanglement Renormalization. MERA.

[Vidal 2007]
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Entanglement Renormalization. MERA
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MERA circuits and Holography.

Proposal [Swingle, 2009] connecting the ideas of:
AdS/CFT [Maldacena, 1998]
Holographic Entanglement Entropy [Ryu-Takayanagi, 2006]
Quantum Renormalization Group [Vidal, 2007]
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Continuous MERA circuits

cMERA ≡ w.f of the system at each length scale u.
|0〉 |0〉 |0〉 |0〉 |0〉|0〉|0〉|0〉 |0〉|0〉|0〉|0〉|0〉|0〉|0〉 |0〉|0〉

|0〉|0〉

|ΨMERA〉

x

u
(scale)

|Ω〉

|ΨΛ〉

e−i
∫
du (L+K(u))

x

u
(scale)

|0〉

|ΨΛ〉 ≡ P exp
(
−i
∫ 0

uIR
dû K̃ (û)

)
|Ω〉

where K̃ (û) is the entangler operator.
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cMERA Free Boson Theory

For the free boson theory

S =
∫

dt dx
(
(∂tφ)2 + (∂x φ)2 −m2φ2

)
The entangler operator is given by the Gaussian ansatz

K̃ (u) = 1
2i

∫
dk
(

g(k, u) a†
ka†
−k − g∗(k, u) aka−k

)

with g(k, u) = g(u) Γ(|k |e−u/Λ) where Γ(|k |e−u/Λ) limits the
momentum integral to |k | ≤ Λeu
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Coherent State Formulation

The state at scale u can be written as a SU(1, 1) gaussian
squeezed state

|Ψ(u)〉 = N exp
(
−1
2

∫
dk
[

Φ(k, u) a†
ka†
−k −Φ∗(k, u) aka−k

])
|Ω〉

with

Φ(k, u) =
u∫

uIR

du′ gk(k, u′)

Scale dependent representations of the state are obtained by
adding left-right moving modes with |k | ≤ Λeu to |Ω〉
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cMERA Entanglement.
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cMERA Variational Optimization

The variational parameter Φ(k, u) of cMERA for the free boson

Φ(k, u) =
[
−1
4 log k2 + m2

Λ2 + m2

]
k=Λ eu

= −1
4 log Λ2e2u + m2

Λ2 + m2
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cMERA Coherent State Path Integral

ZcMERA = 〈ΨΛ|P exp
(
−i
∫ 0

uIR
K̃ (û) dû

)
|Ω〉

as a SU(1,1) coherent state path integral.

ZcMERA =
∫
DΦDΦ∗ exp (i A [Φ, Φ∗])

A [Φ, Φ∗] = −2 Vol
∫
|k |≤Λ

dk
∫ 0

uIR
du Φ∗∂Φ

= −2 Vol
∫
|k |≤Λeu

dk
∫ 0

uIR
du g(u) Φ(k, u)
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Our Proposal.

CA
[
|ΨΛ〉, |Ω〉

]
≡ A [Φ,Φ∗]on−shell

where on-shell indicates that the action is evaluated with the pa-
rameter Φ(k, u) obtained from the cMERA variational procedure.



Introduction Entanglement Renormalization Complexity Functionals in cMERA Conclusions

Results.

For the massless case

CA =
Vol ·Λ

2
we obtain divergencies ≈ CA and CV holographic complexity.

For the massive case

CA ≈
Vol ·Λ

2

[
1− m

Λ

(
1− log m

Λ

)]

UV divergences are naturally associated with existence of correla-
tions or entanglement down to arbitrarily small length scales.
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Comparison with Circuit Length.

Measures the complexity of a cMERA circuit as a minimal length
(in terms of the Fisher information metric) of a path running from
|Ω〉 to |ΨΛ〉 [Chapman 18].

CcMERA = Vol
∫ 0

uIR

du | g(u) |
∫
|k |≤Λeu

dk

= Vol
∫
|k |≤Λ

dk |Φ(k , 0) |

For the massive case

CcMERA ≈
Vol ·Λ

2

[
1− m

2Λ

(
π − arctan m

Λ

)]
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Complexodynamics. Complexity Growth Limit.

Is CA constrained in any sense?

∆CA

∆u = 2 EΨ

with
EΨ =

1
∆u

∫ uF

uI
du 〈K̃ (u)〉

CGL Margolus-Levitin type bound

Equality as opposed to a lower bound reflects the optimality of K̃
for the generation of complexity along the cMERA circuit.
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Complexity from Liouville Field Action.

Similar results can be obtained by considering the functional

CA = AL[Φ] =
1
4

∫
dx

∫ ∞

ε
dz
[
4 (∂z Φ(z))2 + Λ2 e−4Φ(z)

]

z = εe−u redefines the cMERA RG coordinate.
In the massless case

Φ(z) = 1
2 log Λz
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Complexity from Liouville Field Action.

From
Φ(z) = 1

2 log Λ− 1
2ϕL(z)

a Liouville Field Theory Action functional can be derived

CA = AL[ϕL] =
1
4

∫
dx

∫ ∞

ε
dz
[
(∂z ϕL(z))2 + e2ϕL(z)

]
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Complexity from Liouville Field Action.

LFT provides a quantum theory of 2D-gravity that is solved by the
metric

ds2 = e2ϕL(z)
(
dz2 + dx2)

For the massless cMERA ϕL(z) = − log z we obtain the hyperbolic
space

ds2 =
1
z2
(
dz2 + dx2)
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cMERA Gates and Vertex Operators.
A cMERA gate GcMERA is implemented by a Hamiltonian action,

GcMERA(z) ∼ e−iδ K̃ (z) = e−iδ Φ(z)O O ∈ su(1, 1)
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cMERA Gates and Vertex Operators.

We consider the LFT correlation functions

〈∏
i

eαi ϕL(zi )〉 =
∫

DϕL eAL ∏
i

eαi ϕL(zi )

V (αi , zi ) = eαi ϕL(zi )

The functional integral is dominated by configurations

ϕL(z) = − log z |z − zi | � ε i

ϕL(z) = −2αi log |z − zi |+ ϕi + · · · |z − zi | < ε i



Introduction Entanglement Renormalization Complexity Functionals in cMERA Conclusions

cMERA Gates and Vertex Operators.
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cMERA Gates and Vertex Operators.

After proper regularization [Seiberg 90]

AL(αi ,z) = AL(z)/∪ε i + ∑
i

(
αi ϕi − 2α2

i log ε2
i
)

the variation of the cMERA circuit complexity is given by

∆ CA = ∑
i

(
αi ϕi − 2α2

i log ε2
i
)
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Ground State Entanglement and Liouville Mode.

Entanglement between two neighboring “sites” at scale u∗, is given
by Φ(u∗).

This corresponds to the entanglement of the UV interval L = ε e−u∗ .
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Ground State Entanglement and Liouville Mode.

In the massless case of the free boson theory (c = 1)

S(L) = c
6 log Λ L

6
c S(z) = 2Φ(z) = log Λ− ϕL(z)

The entanglement structure of the quantum state arises from

∂

(
6
c S(z)

)
= Λe−

6
c S(z)
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Conclusions.

Path integral description of “complexity” in cMERA states
cMERA flow extremize the action functional in the cMERA
circuit path integral ≡ Circuit Complexity.
CA in cMERA saturate Complexity Growth Limits. CGL as
new constraints for a cMERA flow. Hints for an holographic
description?
Variational Φ ≡ Liouville mode in LFT ≡ Ground State
Entanglement.
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Future.

Time dependent cMERA circuits.
FiniteTemperature.



Introduction Entanglement Renormalization Complexity Functionals in cMERA Conclusions

Future.

Fermions and Bosons. SUSY. Complexity of SUSY states.
Topological Phases of matter. No adiabatic paths starting
from topologically trivial states.
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Thanks.
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