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Introduction

Talk based on work:

Complexity Functionals and Complexity Growth Limits in Con-
tinuous MERA Circuits. [arXiv:1803.02356]

JMV in collaboration with A. del Campo, UMass, Boston.
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Introduction

Holographic Complexity. A Tale of two Dualities.

Complexity of quantum states: useful to investigate the duality be-
tween entanglement and spacetime geometries in quantum gravity.

Mainly addressed in the context of the AdS/CFT duality.

“Holographic complexity” as the CFT quantity that encodes the
continuous evolution of the interior of the black hole [Susskind 16] .

Two proposals for the quantum complexity of boundary states:
Complexity=Volume (CV) conjecture. [Susskind 16]
Complexity= Action (CA) conjecture. [Brown et al 16]



Introduction

Holographic Complexity. A Tale of two Dualities.

Complexity = Volume Complexity = Action
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The eternal black hole: dual to an entangled state |¥) of two CFTs
that live on the boundaries.

CV: Cy = Volume of the maximal spatial slice.

CA: Cy = Action A of the Wheeler-DeWitt patch. (roughly cor-
responds to the black hole interior)



Introduction

CA and Complexification Rates.

The action of the black hole interior A increases at a rate such that
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i.e, saturates a Margolus—Levitin like bound [Brown et al 16].

The ML bound is a universal bound on the speed of evolution of
any quantum system (Quantum Speed Limit, QSL).
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In Computer Science, ML is a theoretical upper limit on the number
of operations that can be performed on unit time.

Black Holes Produce Complexity Fastest.
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CA and Quantum Circuits.

Logic gates (blue) in a quantum circuit (red).

Black hole interiors = quantum circuits that produce |¥) at the
fastest rate allowed by QM

C\‘P> ~ # gates required to produce |'¥) from a simple reference
state |Q)).



Introduction

Complexity in QFT: An interesting research program.

@ Complexity measures the cost required to prepare |'¥) from a
specific reference state |Q)) by applying an optimal unitarity U

¥) =~ U]Q)

@ U from iterating generators K taken from some elementary set

Uu) = P exp (/ K(d) du’>
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¥) =~ U(ur) Q)
© A regularization procedure to deal with ultraviolet divergences.

@ A measure of complexity.



Entanglement Renormalization

Entanglement Renormalization. MERA.

[Vidal 2007]
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Entanglement Renormalization

Entanglement Renormalization. MERA
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Entanglement Renormalization

MERA circuits and Holography.

Proposal [Swingle, 2009] connecting the ideas of:
e AdS/CFT [Maldacena, 1998|
@ Holographic Entanglement Entropy [Ryu-Takayanagi, 2006]
@ Quantum Renormalization Group [Vidal, 2007]




Entanglement Renormalization

Continuous MERA circuits

cMERA = w.f of the system at each length scale u.
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where K (@) is the entangler operator.



Entanglement Renormalization

cMERA Free Boson Theory

For the free boson theory

S— / dt dx <(8t¢)2 + (0x)? — m2¢2)

The entangler operator is given by the Gaussian ansatz

=5 /dk Yata', —g*(k, u) aka,k>

with g(k, u) = g(u) T(|k|e "/ A) where T'(|k|e”“/A) limits the
momentum integral to |k| < Ae



Entanglement Renormalization

Coherent State Formulation

The state at scale v can be written as a SU(1, 1) gaussian
squeezed state

[¥(u)) = N exp (—;/ dk [Cb(k u) ata’, — ®*(k, u) axa_ k]) 1))

with

D(k,u) = /du' gr(k, u")
ur

@ Scale dependent representations of the state are obtained by
adding left-right moving modes with |k| < Ae" to |Q))



Entanglement Renormalization

cMERA Entanglement.




Entanglement Renormalization

cMERA Variational Optimization

The variational parameter ®(k, u) of cMERA for the free boson
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Complexity Functionals in cMERA

cMERA Coherent State Path Integral

o ~
Zevera = (Y2 P exp <—i/ K(@r) da) Q)
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as a SU(1,1) coherent state path integral.
ZCMERA = /D@Dq)* exp (I.A [CD, CI)*])

0
A[®, d*] = —2 Vol dk/ du &*3D
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Complexity Functionals in cMERA

Our Proposal.

CallFY), 10)] = A[®, @]

on—shell

where on-shell indicates that the action is evaluated with the pa-
rameter @ (k, u) obtained from the cMERA variational procedure.



Complexity Functionals in cMERA

Results.

For the massless case

Vol - A
2
we obtain divergencies ~ CA and CV holographic complexity.

Ca=

For the massive case

cam WE2 1= (11 )

UV divergences are naturally associated with existence of correla-
tions or entanglement down to arbitrarily small length scales.



Complexity Functionals in cMERA

Comparison with Circuit Length

Measures the complexity of a cMERA circuit as a minimal length
(in terms of the Fisher information metric) of a path running from
|Q) to [¥2) [Chapman 18].

0
Comira = Vol / du | g(u)| dk
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For the massive case

Vol - A m m
C.MERA ~ 5 [1 ~9A <7r — arctan Xﬂ




Complexity Functionals in cMERA

Complexodynamics. Complexity Growth Limit.

Is Ca constrained in any sense?

with

CGL Margolus-Levitin type bound

Equality as opposed to a lower bound reflects the optimality of K
for the generation of complexity along the cMERA circuit.




Complexity Functionals in cMERA

Complexity from Liouville Field Action.

Similar results can be obtained by considering the functional

Ca= A [® /dx/ dz[ 4(2,0(2))2 + A% e ()

z = €e” Y redefines the cMERA RG coordinate.
In the massless case

1
P(z) = 5 log Az



Complexity Functionals in cMERA

Complexity from Liouville Field Action.

From

(z) = log A~ ¢u(2)

a Liouville Field Theory Action functional can be derived

Ca=Allpl] = /dX/ dz [ 2¢1(z ))2+e24’L(Z)



Complexity Functionals in cMERA

Complexity from Liouville Field Action.

LFT provides a quantum theory of 2D-gravity that is solved by the

metric

ds? = e*t?) (dz? + dx?)
For the massless cMERA ¢ (z) = — log z we obtain the hyperbolic
space

ds® = % (dz* + dx?)

V4



Complexity Functionals in cMERA

cMERA Gates and Vertex Operators.

A cMERA gate Govgra is implemented by a Hamiltonian action,

Gemira (2) ~ e PK(2) = 71020 0 ¢ gu(1,1)




Complexity Functionals in cMERA

cMERA Gates and Vertex Operators.

We consider the LFT correlation functions
<H ea;fPL(Zi)> — / Do, AL H etioL(zi)

V(aj, z;) = e"it(z)
The functional integral is dominated by configurations
pL(z)=—logz |z—2z|>¢

QOL(Z):—2DC,'|Og ‘Z—Z,"—l—gD,'—f—"' ‘Z—Z," < €



cMERA Gates and Vertex Operators.
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Complexity Functionals in cMERA

cMERA Gates and Vertex Operators.

After proper regularization [Seiberg 90]
Ap(iz) = AL(2) jue, + Y (ai @i — 207 log €7)

the variation of the cMERA circuit complexity is given by

ACa =) (ajgi— 20 Iogs%)

1



Complexity Functionals in cMERA

Ground State Entanglement and Liouville Mode.

Entanglement between two neighboring “sites” at scale u,, is given
by ®(u,).

This corresponds to the entanglement of the UV interval L = € e™%.
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Complexity Functionals in cMERA

Ground State Entanglement and Liouville Mode.

In the massless case of the free boson theory (¢ = 1)

S(L) = % log A L

25(2) =2®(z) = log A — ¢(2)

The entanglement structure of the quantum state arises from

d <i 5(z)> = Ae ¢502



Conclusions

Conclusions.

@ Path integral description of “complexity” in cMERA states

@ cMERA flow extremize the action functional in the cMERA
circuit path integral = Circuit Complexity.

o CA in ctMERA saturate Complexity Growth Limits. CGL as
new constraints for a cMERA flow. Hints for an holographic
description?

@ Variational ® = Liouville mode in LFT = Ground State
Entanglement.



Conclusions

Future.

@ Time dependent cMERA circuits.

@ FiniteTemperature.




Conclusions

Future.

@ Fermions and Bosons. SUSY. Complexity of SUSY states.

@ Topological Phases of matter. No adiabatic paths starting
from topologically trivial states.
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Conclusions

Thanks.
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