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Dispersion relation in AdS/CFT
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Dispersion relation and quantum corrections

m In the context of AdS/CFT correspondence, one of the most
successful tests is the comparison between one-loop string
correction to the energy with the integrability-based
Thermodynamic Bethe Asantz predictions.

m In AdSs x S® the computation of the one-loop string
correction was carried out by Tseytlin, Arutyunov, Frolov,
Park, etc. during early 2000 from the perspective of quadratic
fluctuations. In [Gromov,Vieira, 2007] the same result was
obtained using the algebraic curve.

m This computation was generalized AdS3 x S3 x M, by
truncating modes, for example, in [Beccaria,Macorini, 2012]
and [Beccaria,Levkovich-Maslyuk,Macorini, Tseytlin, 2013].
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AdS3/ CFT, correspondence and integrability

AdSz x S3 x M, admits an additional NS-NS flux, apart from the
usual R-R flux. Here we are going to consider here the M, = T*
background with an arbitrary combination of RR and NS-NS
fluxes, controlled by a parameter g € [0,1]. This deformation was

proven to be integrable and conformally invariant [Cagnazzo,
Zarembo, 2012].

The g = 0 limit corresponds to the pure R-R flux limit, where the
usual AdSs x S° methods work without any change, up to
massless excitations. This is the set-up studied in the references
shown on the previous slide.

The g = 1 limit corresponds to pure NS-NS flux limit and can be
reinterpreted as a WZW model, thus we expect important
simplifications therein.
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Classical rigid spinning strings in R x S3
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Spinning string ansatz and Lagrangian for R x S3

We are going to focus on classical spinning strings at the center of
AdSs

Yitiva=0, Vst iYe = &M
X1+ Xy = rl(O') ei[w17’+cx1(cr)] . Xa+ iXa = I’2(O’) ei[sz—l—ag(U)] ’

with rZ(o) + r3(o) = 1. This ansatz has to be supplemented with
the periodicity conditions

ri(o +2n) =ri(o) , aj(oc+27) = aj(o) +2mrm; .
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Spinning string ansatz and Lagrangian for R x S3

We are going to focus on classical spinning strings at the center of
AdSs

Yitiva=0, Vst iYe = &M
X1+ Xy = rl(O') ei[w17’+cx1(cr)] . Xa+ iXa = I’2(O’) ei[w2T+C!2(0’)] ’

with rZ(o) + r3(o) = 1. This ansatz has to be supplemented with
the periodicity conditions

ri(o +2n) =ri(o) , aj(oc+27) = aj(o) +2mrm; .

Using the global target space symmetries we can define

2w 2
E =4rhwy , Jji= 2h/ do (rjzwj — Z qurzzaf-) .
0

i=1
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The (deformed) Neumann-Rosochatius Lagrangian

The Polyakov action takes the form

2

1 A

Lss=h Z 5 [(r1)? + r(af)? = rfw?] — §(r12 +r3-1)
i=1
+ h [qr22 (wiah — wzo/l)] ,
whereas the Virasoro constrains become
2

(PR ) =wd Y el =0,

i=1 i=1
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The (deformed) Neumann-Rosochatius Lagrangian

The Polyakov action takes the form

21

Lss=h Z 5[(’;)2 +r?(a})? — rfwf] -
i=1
+ h [qrz2 (wiah — wgo/l)] ,

N >

(rf+1r5—1)

whereas the Virasoro constrains become

1 1

2
=1 i=1

(r,f2 + r,-2(04;-2 + w,z)) =nd, Z rPwi =0 .

1

This Lagrangian is a deformation of the Neumann-Rosochatius
Lagrangian used to describe spinning strings in AdSs x S°
[Arutyunov,Russo, Tseytlin, 2003]. Such Lagrangian is integrable,
and the flux deformation we are studying does not spoil the
integrability.
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Integrability and constant radii solutions

Integrability is assured by the existence of the (deformed)
Uhlenbeck constant [Hernandez,Nieto, 2015]

- 1 Vi + qus)? V2
h = f12(1—q2)+m (nr —rn)*+ (rz)ff + r%ff
1 2
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Integrability and constant radii solutions

Integrability is assured by the existence of the (deformed)
Uhlenbeck constant [Hernandez,Nieto, 2015]

- 1 Vi + qus)? V2
h = f12(1—q2)+m (nr —rn)*+ (rz)f22 + r%ff
1 2

If we set r; = a; =const., the Virasoro constrains fix the radii to

32 . —Wwo2Mm»y . J1 + 47rhqm2 a, . vi + qr22wQ
1= = . E—
wimy —wamy  Amwh(wy + gmp) r? ’
2
5 w1m b , Vo — qriwi
32 = = y Oé2 = 72 y
wimy —womy  Amwh(wy + gmy) rs

Sadly, a closed dispersion relation cannot be written in general.
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Two particular limits

However, there are two regimes where we can write it:
m The pure NS-NS limit: g = 1.
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Two particular limits

However, there are two regimes where we can write it:

m The pure NS-NS limit: g = 1. In this case the equations of
motion are solved by

wy = J wy = J (m1 — my)
Y7 4nh >~ 4rnh ! 2/
while the first Virasoro constraint imposes
E=J4+4nhmy . (1)
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Two particular limits

However, there are two regimes where we can write it:

m The pure NS-NS limit: g = 1. In this case the equations of
motion are solved by

wy = J wy = J (m1 — my)
Y7 arn 27 4rxh ! 2/
while the first Virasoro constraint imposes
E=J+4rhm . (1)
m The su(2) sector: m; = —mo.
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Two particular limits

However, there are two regimes where we can write it:
m The pure NS-NS limit: g = 1. In this case the equations of
motion are solved by

J J

w1:m7 wzzm—(ml—m2)7
while the first Virasoro constraint imposes
E=J+4+4rhmy . (1)
m The su(2) sector: m; = —my. Here instead
=T+qgm, wp=T—qgm,

which fixes the dispersion relation to
E= \/J2 2)16m2h?m? = 4rh\/ T2 + k2m? . (2)
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Quadratic fluctuations
m S3 fluctuations
m AdS3 and T*# fluctuations
m Fermionic fluctuations
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Quadratic fluctuations

The classical solution we are interested in presents a linear
relationship between the worldsheet time and target space time
t = woT. This allows us to relate the spacetime energy and the
worldsheet energy as

woE = Ep_gim. -

Therefore the one-loop correction to the dispersion relation can be
obtained by summing the characteristic frequencies of fluctuations
around the classical background.
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S3 bosonic fluctuations

The Lagrangian for the quadratic fluctuations can be obtained by
substituting

ri cos p; — ajcos(aj + w;T) + Fi cos(aj + wiT) — pisin(a; + wiT) ,

rising; — ajsin(a; + w;T) + Fisin(a; + w;iT) + pi cos(a + w;T) ,

into the Polyakov action with the B-field.
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S3 bosonic fluctuations

The Lagrangian for the quadratic fluctuations can be obtained by
substituting

ri cos p; — ajcos(aj + w;T) + Fi cos(aj + wiT) — pisin(a; + wiT) ,

risin g — ajsin(a;j + w;T) + Fisin(o; + wiT) + pj cos(ej + wiT) ,

into the Polyakov action with the B-field. After imposing the
orthogonality a1/ + a»f = 0, the equations of motion are

. a o o
—p1+ p’l' + 2;? [(w1 + gmy)fo — (m1 + qwz)rﬁ] =0,

— pa+ph — 2 [(w2 + gm)fo — (M2 + qu1)B] =0,

= =1

r r- an .

27 a% - 2; (w1 + gm2)p1 — (m1 + quz)pl]
1 1 1

+2 (w2 + gmi)pa — (M2 + qui)ps] = 0. (3)
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Characteristic equation

Expanding in Fourier modes

00 6
Z ZA(k) iWk,nT+inc 7 Z Z k)eiwk7,,7-+ino— ’

n=—o0 k=1 n=—o0 k=

the equations of motion become algebraic equations on the mode
number n and the frequencies w,.

Juan Miguel Nieto Quantum corrections in flux-deformed AdS3 X S3x Tt



Characteristic equation

Expanding in Fourier modes

Z ZA(k) iwy, ,,7'+an Py = i i B,(,k)eiwk’”7—+ina ’

n=—o0 k=1 n=—00 k=1

the equations of motion become algebraic equations on the mode
number n and the frequencies w,.

The existence of non-trivial solutions requires

(Wi n — 1) {(wk = %) = 4a] [(w1 + gma)wjn — (M1 + quz)n]?

—433 [(w2 + gm1)wk,n — (M2 + qui)n)*} =0 . (4)
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Solving the characteristic equation (1)

In the su(2) sector we can solve the equation as a series in T

n’k?  qr?n(n® —2m?) 1
win =2T —ng+ T T T2 + 0O (T3> , (5)
2,2 2 (2 2
B n“k*  gr“n(n® —2m*) 1
wan = =21 = nq = = 272 +O<T3 ’
2. /2 2 202 2
nk*v'n?> —4m?  qk“n(n® —2m*) 1
Wan=nqt T Ty 1O <T3> ’
nk?V/n2 —4m?2  gr®n(n® —2m?) 1
W4,n = Nq — - 2 + ) 3 .
27 27 T
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Solving the characteristic equation (2)

On the contrary, in the pure NS-NS limit we can derive closed
expressions for the roots of the characteristic equation

w17,,:2<47rjh+m2)—n, w3.p=n, (6)

J
wop=—2 m—l—mz —n, Wap=n.
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Solving the characteristic equation (2)

On the contrary, in the pure NS-NS limit we can derive closed
expressions for the roots of the characteristic equation

J
wl,n:2<4ﬂ_h+m2>—”7 Ww3np=n"n, (6)
J

w27n:—2 m—i—mz - n, (U4’n:n.
In the overlap of both regimes the frequencies can be written as
follows

2 J m n=2T—n n (7)
w = —_— —_ = _— w =
1,n 4rh ) 3,n )

J
wgn_—2<—m)—n_2T—n, Wap=n.
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The AdS; and T* bosonic fluctuations

We proceed analogously for AdSs fluctuations using the
parameterization

zpcost — (1 + Z) cos(kT) — xosin(kT) , z1sing — Z1 ,
zpsint — (1 + Z)sin(k7) + xocos(KT) , z1COSh — X1 -

Following similar steps, the characteristic frequencies for the AdSs
modes are

Wi = i\/n2 + 2qwon + wg 2l a4+ wo . (8)
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The AdS; and T* bosonic fluctuations

We proceed analogously for AdSs fluctuations using the
parameterization

zpcost — (1 + Z) cos(kT) — xosin(kT) , z1sing — Z1 ,
zpsint — (1 + Z)sin(k7) + xocos(KT) , z1COSh — X1 -

Following similar steps, the characteristic frequencies for the AdSs
modes are

Wi = i\/n2 + 2qwon + wg 2l nt wo . (8)

Since we consider no classical dynamics on the torus, we are leaded
to a free Lagrangian for the fluctuations. Therefore, the
characteristic frequencies are

Wk,n = +n. (9)
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Fermionic Lagrangian

As our background solution is purely bosonic, the Lagrangian for
the fermionic fluctuations reduces to the usual fermionic type |I1B
Lagrangian computed up to quadratic order in the fermionic fields

ZF = i(n"‘ﬁéij — 6a5(0'3)ij)§lpa(D5)JK9K .
Here the covariant derivative is given by
i i 1 arb
(Da) j = (5 j <8a — Zwaabr r )
1 I a brc 1 I arbyrc
+*(0'1) JeaHabCI' I +f(03) JFabCI' °re.

3 48

whit fluxes

Ha — 2q [Ea(r012 + r345) 4+ (r012 + I—345)Ea] ’
Fabe = 125(T% + %) |

where k2 =1 — ¢°.

Juan Miguel Nieto Quantum corrections in flux-deformed AdS3 X S3x Tt



Solving the characteristic equation

Expanding in periodic modes in o, the characteristic frequencies
associated to the su(2) sector are

1
wk,n =+n+ (q — 2> wo , (10)

1
w4+k,n::|:\/n2—q2W§+'T‘2:i:§W0 , (11)

Note that half of the frequencies cancels the frequencies coming
from the T*.
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Solving the characteristic equation

Expanding in periodic modes in o, the characteristic frequencies
associated to the su(2) sector are

1
wk,n =+n+ (q — 2> wo , (10)

1
w4+k,n::|:\/n2—q2W§+'T‘2:i:§W0 , (11)
Note that half of the frequencies cancels the frequencies coming
from the T*.
If we also take g = 1, we obtain
1 3
Wik,n=n + —Wp , Wk44,n = —N + §W0 . (12)

2
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Algebraic curve
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Presentation of the method

In order to check our results, we are going to derive the
characteristic frequencies through a different method: the algebraic
curve [Kazakov,Marshakov,Minahan,Zarembo, 2004]. The central
object is a collection of quasi-momenta that define a many-sheet
Riemann surface. There exists a correspondence between the set of
classical solutions and geometrical data [Dorey,Vicedo, 2006].

Features of classical solutions are encoded in cuts on this Riemann
surface, hence quantum fluctuations around this classical solutions
amounts to add small cuts.

Although [Gromov,Vieira, 2007] used this method to find the
one-loop correction in AdSs x S°, it requires some modifications
before applying it to AdS3 x S3 x T# with flux
[Babichenko,Dekel,Ohlsson Sax, 2014].
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Steps of the computation

The

method [Gromov,Vieira, 2007] is the following:

Compute the Lax connection and monodromy matrix
associated to our solution. From that, compute the classical
quasi-momenta.

Perturb them by adding microscopic cuts (which behave like a
poles).

Reconstruct the perturbation from the known poles and
residues, and the asymptotic information (as the Lax
connection is chosen to be related to Noether currents).
Extract the asymptotic behaviour of the reconstructed
quasi-momenta associated to AdS sheets, as they encode the
correction to the energy.
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Classical quasi-momenta

The quasi-momenta, obtained from the logarithm of the

eigenvalues of the monodomy matrix, are
[Babichenko,Dekel,Ohlsson Sax, 2014], [Nieto,Ruiz, 2018]

o) == =2t (5) =2 (5) - T

~S x) = _aS x) = 27TXK(1/X)
pl() pZ() I{(X*S)(XJr%)’
27xK(x)

+2mtm ,

- _Ii(X—{-S) (x— %)

where K(x) = /m2x2x2 4 2grm?2x + T2,
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Graphical representation of the set-up

/30/2/
A OV "
Q)

Juan Miguel Nieto Quantum corrections in flux-deformed AdS3 X 3 x T4



Final result

A n v
WodA = Z [(n/@x qn — Wo> NAA 4 <)V<A/Z — qn) NAA
+2 - N
+ <(n)v<ssm) — qn> N2° + (nnx —qn—+ 2K(0)) N>°

n+m v N
(e~ an ) G+ R

n

+ (nlﬁ',X —qn— K(0) — fiWo) (NS + ’\AIEA)]

XY

where x;'" solve
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Pure NS-NS frequencies

The method leads to the following frequencies in pure NS-NS

regime
Qé‘ilzn-i-zr, S\!Zé\ilzn—2'r,
flf,ilzn—i-ﬂ", Q2i1:n+4m—2'T,
Qf =n+2rv, Qf ,=n+2m-27. (13)
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Computation of the one-loop correction
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Pure NS-NS one-loop correction

In terms of the characteristic frequencies

1
El-loop =Ey+E s 0E = TWOZ(W;? _wrfr:) . (14)
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Pure NS-NS one-loop correction

In terms of the characteristic frequencies

1
El-loop =Ey+E y 0E = TW() Z (wr‘? - wrfr:) . (14)
nezZ

Substituting the frequencies obtained from quadratic fluctuations
wB=2n+(n+w)+(n—w)+4n=28n,

wf:2[2(n+%>+2<n—%>}:8n. (15)
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Pure NS-NS one-loop correction

In terms of the characteristic frequencies

1
El-loop =Ey+E y 0E = TW() Z (wr‘? - wrfr:) . (14)
nezZ

Substituting the frequencies obtained from quadratic fluctuations
wB=2n+(n+w)+(n—w)+4n=28n,

wf:2[2(n+%>+2<n—%>}:8n. (15)

As their difference vanish, we have

5E L0 . (16)
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General case

The frequencies for general values of g are

2072 _ m2(1 & o2

wfp=n+ (- g+ T TED o2y
2172 _ m2(1 4 o2

wfp=n— (1 quy+ T TEDN o2y

A :\/n2+2qnwo+wg+\/n2—2qnwo+wg

= \/(n+ qwo)? + K2wg + \/(n — qwp)? + k2w ,

w,;r:4n,

wf:4n+4\/n2—q2W§+T2.
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Finiteness of the contribution

OE o2 Z [2n + R = mi (1 + 6)] + O(nz)] + I(qwo, Kwo)

n
neZ*
+ I(—qwp, kwp) — 41 (0, \/ T2 — q2wg> ,
where the log divergence cancels due to the identity
2k2[T2 — m*(1 4 ¢°)] = 4(T? — ¢*wd) — 2k%wg .

This proves that the correction is finite for all values of the mixing
parameter q.
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Conclusions

m We have computed the characteristic frequencies and
one-loop correction for the rigid spinning string solution on
flux-deformed AdSz x S3 x T4.

m This correction has been computed through two different
methods to check the results.

m The correction is finite for all values of the mixing parameter
g, and it vanishes in the pure NS-NS limit.

m This argument, in principle, seems to be generalizable to
non-rigid strings under some assumptions. However, an
explicit computation is needed.
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The importance of this computation

As commented in the introduction, this results is important as it
can be compared with the one Bethe string solution of the string
Bethe ansatz (Ohlsson Sax, Sfondrini, Stefanski, Torrielli, et al.).
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The importance of this computation

As commented in the introduction, this results is important as it
can be compared with the one Bethe string solution of the string
Bethe ansatz (Ohlsson Sax, Sfondrini, Stefanski, Torrielli, et al.).

However, it was shown for the pure R-R flux case that massless
excitations are an obstruction to this computation [Abbot,Aniceto,
2016]. This is because finite volume correction are exponentially
suppressed by the mass of the particle involved in the loop.

We expect that the mixing parameter might be used as a way to
control the Lischer corrections.
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The importance of this computation (2)

Although at g = 1 a remarkable simplification has to happen, it
can be associated not to a control from the g parameter but to the
dispersion relation becomes linear and the S-matrix becoming
equal for bosonic and fermionic excitations, which imply the
cancellation of the Liischer corrections due to supersymmetry.
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The importance of this computation (2)

Although at g = 1 a remarkable simplification has to happen, it
can be associated not to a control from the g parameter but to the
dispersion relation becomes linear and the S-matrix becoming
equal for bosonic and fermionic excitations, which imply the
cancellation of the Liischer corrections due to supersymmetry.

Despite so, we hope that the comparison between the one-loop
string correction and the Thermodynamical String Bethe Ansatz
for mixed flux can shed some light on the understanding of
massless Liischer corrections.
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Thank you for your attention
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Representative and Lax connection

Choosing the representative g; ® gr = g ® 1 € psu(1,1]2)? where,
for classical spinning strings,

eiWOT 0 0 0
0 e—iWoT 0 O
g = 0 0 alei(w17+m1a) a2ei(w27+m2(7) 5
0 0 _aze*i(wz‘rerzo) a1 efi(wlrerla)

the Lax connection becomes

2= (60 0) = (8 t)

X

wo /K 0 0 0

R ix 0 —WO/K/ 0 0
L(X)= ——mm—F———— T2 _m2g2
9| 0 0 mog YT
0 0 < T;m 9 m(% X)

with € = g2im(o+ar)
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A small trick to compute infinite sums

To perform the infinite sums on the mode number we used the
relation [Schafer-Nameki, 2006]

27r/Zw,, = 7{ dz 7 cot(nz)w; . (17)

neZ

In the semiclassical limit we can approximate the cotangent to 1,

and use that
/ dz\/(z —a)? + b%2 = / \/(z +ia)? — b2
a+ib

=1 [ 2A% — 4ial — 2a% + b*(1 + log 4)
—2b%(log b — log \)] + O(A™1) .
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A non-rigid generalization

A general non-rigid solution is given by
rf(c) = c1 + csn?(czo,v) |

with the same functional form as its AdSs x S® counterpart.
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A non-rigid generalization

A general non-rigid solution is given by
ri(0) = a1 + crsn?(cz0,v) |

with the same functional form as its AdSs x S® counterpart.

The characteristic equation for spinning folded and pulsating
strings in AdSs x S° can be rewritten as the eigenvalue problem of
a single-gap Lamé operators

(02 + 20250 (x|P) + Q] fa(x) = Mar(X) . (18)
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A non-rigid generalization

A general non-rigid solution is given by
ri(0) = a1 + crsn?(cz0,v) |

with the same functional form as its AdSs x S® counterpart.

The characteristic equation for spinning folded and pulsating
strings in AdSs x S° can be rewritten as the eigenvalue problem of
a single-gap Lamé operators

(02 + 20250 (x|P) + Q] fa(x) = Mar(X) . (18)

Since v vanishes in the limit g = 1, all the Lamé equations reduce
to a wave equation in such limit as long as the functional form of
this eigenvalue problem remains unaltered when we include the

NS-NS flux.
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