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Dispersion relation and quantum corrections

In the context of AdS/CFT correspondence, one of the most
successful tests is the comparison between one-loop string
correction to the energy with the integrability-based
Thermodynamic Bethe Asantz predictions.

In AdS5 × S5 the computation of the one-loop string
correction was carried out by Tseytlin, Arutyunov, Frolov,
Park, etc. during early 2000 from the perspective of quadratic
fluctuations. In [Gromov,Vieira, 2007] the same result was
obtained using the algebraic curve.

This computation was generalized AdS3 × S3 ×M4 by
truncating modes, for example, in [Beccaria,Macorini, 2012]
and [Beccaria,Levkovich-Maslyuk,Macorini,Tseytlin, 2013].
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AdS3/CFT2 correspondence and integrability

AdS3 × S3 ×M4 admits an additional NS-NS flux, apart from the
usual R-R flux. Here we are going to consider here the M4 = T 4

background with an arbitrary combination of RR and NS-NS
fluxes, controlled by a parameter q ∈ [0, 1]. This deformation was
proven to be integrable and conformally invariant [Cagnazzo,
Zarembo, 2012].

The q = 0 limit corresponds to the pure R-R flux limit, where the
usual AdS5 × S5 methods work without any change, up to
massless excitations. This is the set-up studied in the references
shown on the previous slide.

The q = 1 limit corresponds to pure NS-NS flux limit and can be
reinterpreted as a WZW model, thus we expect important
simplifications therein.
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Spinning string ansatz and Lagrangian for R× S3

We are going to focus on classical spinning strings at the center of
AdS3

Y1 + iY2 = 0 , Y3 + iY0 = e iw0τ ,

X1 + iX2 = r1(σ) e i [ω1τ+α1(σ)] , X3 + iX4 = r2(σ) e i [ω2τ+α2(σ)] ,

with r2
1 (σ) + r2

2 (σ) = 1. This ansatz has to be supplemented with
the periodicity conditions

ri (σ + 2π) = ri (σ) , αi (σ + 2π) = αi (σ) + 2πmi .

Using the global target space symmetries we can define

E = 4πhw0 , Jj = 2h

∫ 2π

0
dσ

(
r2
j ωj −

2∑
i=1

qεij r
2
2α
′
i

)
.
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The (deformed) Neumann-Rosochatius Lagrangian

The Polyakov action takes the form

LS3 = h

[
2∑

i=1

1

2

[
(r ′i )

2 + r2
i (α′i )

2 − r2
i ω

2
i

]
− Λ

2
(r2

1 + r2
2 − 1)

]
+ h

[
qr2

2 (ω1α
′
2 − ω2α

′
1)
]
,

whereas the Virasoro constrains become

2∑
i=1

(
r
′2
i + r2

i (α
′2
i + ω2

i )
)

= w2
0 ,

2∑
i=1

r2
i ωiα

′
i = 0 .

This Lagrangian is a deformation of the Neumann-Rosochatius
Lagrangian used to describe spinning strings in AdS5 × S5

[Arutyunov,Russo,Tseytlin, 2003]. Such Lagrangian is integrable,
and the flux deformation we are studying does not spoil the
integrability.
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Integrability and constant radii solutions

Integrability is assured by the existence of the (deformed)
Uhlenbeck constant [Hernández,Nieto, 2015]

Ī1 = r2
1 (1−q2)+

1

ω1 − ω2

[
(r1r

′
2 − r ′1r2)2 +

(v1 + qω2)2

r2
1

r2
2 +

v2
2

r2
2

r2
1

]
.

If we set ri = ai =const., the Virasoro constrains fix the radii to

a2
1 =

−ω2m2

ω1m1 − ω2m2
=

J1 + 4πhqm2

4πh(ω1 + qm2)
, α′1 =

v1 + qr2
2ω2

r2
1

,

a2
2 =

ω1m1

ω1m1 − ω2m2
=

J2

4πh(ω2 + qm1)
, α′2 =

v2 − qr2
2ω1

r2
2

,

Sadly, a closed dispersion relation cannot be written in general.
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Two particular limits

However, there are two regimes where we can write it:

The pure NS-NS limit: q = 1.

In this case the equations of
motion are solved by

ω1 =
J

4πh
, ω2 =

J

4πh
− (m1 −m2) ,

while the first Virasoro constraint imposes

E = J + 4πhm1 . (1)

The su(2) sector: m1 = −m2. Here instead

ω1 = Υ + qm , ω2 = Υ− qm ,

which fixes the dispersion relation to

E =
√

J2 + (1− q2)16π2h2m2 = 4πh
√

Υ2 + κ2m2 . (2)
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Quadratic fluctuations

The classical solution we are interested in presents a linear
relationship between the worldsheet time and target space time
t = w0τ . This allows us to relate the spacetime energy and the
worldsheet energy as

w0E = E2-dim. .

Therefore the one-loop correction to the dispersion relation can be
obtained by summing the characteristic frequencies of fluctuations
around the classical background.
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S3 bosonic fluctuations

The Lagrangian for the quadratic fluctuations can be obtained by
substituting

ri cosϕi → ai cos(αi + ωiτ) + r̃i cos(αi + ωiτ)− ρi sin(αi + ωiτ) ,

ri sinϕi → ai sin(αi + ωiτ) + r̃i sin(αi + ωiτ) + ρi cos(αi + ωiτ) ,

into the Polyakov action with the B-field.

After imposing the
orthogonality a1r̃1 + a2r̃2 = 0, the equations of motion are

− ρ̈1 + ρ′′1 + 2
a2

a1

[
(ω1 + qm2) ˙̃r2 − (m1 + qω2)r̃ ′2

]
= 0 ,

− ρ̈2 + ρ′′2 − 2
[
(ω2 + qm1) ˙̃r2 − (m2 + qω1)r̃ ′2

]
= 0 ,

−
¨̃r2
a2

1

+
r̃ ′′2
a2

1

− 2
a2

a1

[
(ω1 + qm2)ρ̇1 − (m1 + qω2)ρ′1

]
+ 2

[
(ω2 + qm1)ρ̇2 − (m2 + qω1)ρ′2

]
= 0 . (3)
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Characteristic equation

Expanding in Fourier modes

ρj =
∞∑

n=−∞

6∑
k=1

A
(k)
j ,n e

iωk,nτ+inσ , r̃2 =
∞∑

n=−∞

6∑
k=1

B
(k)
n e iωk,nτ+inσ ,

the equations of motion become algebraic equations on the mode
number n and the frequencies ωn.

The existence of non-trivial solutions requires

(ω2
k,n − n2)

{
(ω2

k,n − n2)2 − 4a2
1 [(ω1 + qm2)ωj ,n − (m1 + qω2)n]2

−4a2
2 [(ω2 + qm1)ωk,n − (m2 + qω1)n]2

}
= 0 . (4)
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Solving the characteristic equation (1)

In the su(2) sector we can solve the equation as a series in Υ

ω1,n = 2Υ− nq +
n2κ2

2Υ
+

qκ2n(n2 − 2m2)

2Υ2
+O

(
1

Υ3

)
, (5)

ω2,n = −2Υ− nq − n2κ2

2Υ
+

qκ2n(n2 − 2m2)

2Υ2
+O

(
1

Υ3

)
,

ω3,n = nq +
nκ2
√
n2 − 4m2

2Υ
− qκ2n(n2 − 2m2)

2Υ2
+O

(
1

Υ3

)
,

ω4,n = nq − nκ2
√
n2 − 4m2

2Υ
− qκ2n(n2 − 2m2)

2Υ2
+O

(
1

Υ3

)
.
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Solving the characteristic equation (2)

On the contrary, in the pure NS-NS limit we can derive closed
expressions for the roots of the characteristic equation

ω1,n = 2

(
J

4πh
+ m2

)
− n , ω3,n = n , (6)

ω2,n = −2

(
J

4πh
+ m2

)
− n , ω4,n = n .

In the overlap of both regimes the frequencies can be written as
follows

ω1,n = 2

(
J

4πh
−m

)
− n = 2Υ− n , ω3,n = n , (7)

ω2,n = −2

(
J

4πh
−m

)
− n = 2Υ− n , ω4,n = n .
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The AdS3 and T 4 bosonic fluctuations

We proceed analogously for AdS3 fluctuations using the
parameterization

z0 cos t → (1 + z̃0) cos(κτ)− χ0 sin(κτ) , z1 sinφ→ z̃1 ,

z0 sin t → (1 + z̃0) sin(κτ) + χ0 cos(κτ) , z1 cosφ→ χ1 .

Following similar steps, the characteristic frequencies for the AdS3

modes are

ωk,n = ±
√

n2 ± 2qw0n + w2
0

q→1−−−→ ±n ± w0 . (8)

Since we consider no classical dynamics on the torus, we are leaded
to a free Lagrangian for the fluctuations. Therefore, the
characteristic frequencies are

ωk,n = ±n . (9)
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Fermionic Lagrangian

As our background solution is purely bosonic, the Lagrangian for
the fermionic fluctuations reduces to the usual fermionic type IIB
Lagrangian computed up to quadratic order in the fermionic fields

L̃F = i(ηαβδİ J̇ − ε
αβ(σ3)İ J̇)θ̄İρα(Dβ)J̇ K̇θ

K̇ .

Here the covariant derivative is given by

(Dα)İ J̇ = δ İ J̇

(
∂α −

1

4
ωαabΓaΓb

)
+

1

8
(σ1)İ J̇e

a
αHabcΓbΓc +

1

48
(σ3)İ J̇FabcΓaΓbΓc .

whit fluxes

/Ha = 2q
[
/E a(Γ012 + Γ345) + (Γ012 + Γ345)/E a

]
,

Fabc = 12κ(Γ012 + Γ345) ,

where κ2 = 1− q2.
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Solving the characteristic equation

Expanding in periodic modes in σ, the characteristic frequencies
associated to the su(2) sector are

ωk,n = ±n ±
(
q − 1

2

)
w0 , (10)

ω4+k,n = ±
√

n2 − q2w2
0 + Υ2 ± 1

2
w0 , (11)

Note that half of the frequencies cancels the frequencies coming
from the T 4.

If we also take q = 1, we obtain

ωk,n = n ± 1

2
w0 , ωk+4,n = −n ± 3

2
w0 . (12)
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Presentation of the method

In order to check our results, we are going to derive the
characteristic frequencies through a different method: the algebraic
curve [Kazakov,Marshakov,Minahan,Zarembo, 2004]. The central
object is a collection of quasi-momenta that define a many-sheet
Riemann surface. There exists a correspondence between the set of
classical solutions and geometrical data [Dorey,Vicedo, 2006].

Features of classical solutions are encoded in cuts on this Riemann
surface, hence quantum fluctuations around this classical solutions
amounts to add small cuts.

Although [Gromov,Vieira, 2007] used this method to find the
one-loop correction in AdS5 × S5, it requires some modifications
before applying it to AdS3 × S3 × T 4 with flux
[Babichenko,Dekel,Ohlsson Sax, 2014].
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Steps of the computation

The method [Gromov,Vieira, 2007] is the following:

1 Compute the Lax connection and monodromy matrix
associated to our solution. From that, compute the classical
quasi-momenta.

2 Perturb them by adding microscopic cuts (which behave like a
poles).

3 Reconstruct the perturbation from the known poles and
residues, and the asymptotic information (as the Lax
connection is chosen to be related to Noether currents).

4 Extract the asymptotic behaviour of the reconstructed
quasi-momenta associated to AdS sheets, as they encode the
correction to the energy.
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Classical quasi-momenta

The quasi-momenta, obtained from the logarithm of the
eigenvalues of the monodomy matrix, are
[Babichenko,Dekel,Ohlsson Sax, 2014], [Nieto,Ruiz, 2018]

p̂A1 (x) = −p̂A2 (x) = p̌A1

(
1

x

)
= −p̌A2

(
1

x

)
=

2πxw0

κ(x − s)
(
x + 1

s

) ,
p̂S1 (x) = −p̂S2 (x) =

2πxK (1/x)

κ(x − s)
(
x + 1

s

) ,
p̌S1 (x) = −p̌S2 (x) = − 2πxK (x)

κ(x + s)
(
x − 1

s

) + 2πm ,

where K (x) =
√

m2x2κ2 + 2qκm2x + Υ2.
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Graphical representation of the set-up
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Final result

w0δ∆ =
∑
n

[(
nκx̂AAn − qn − w0

)
N̂AA
n +

(
nκ

x̌AAn

− qn

)
ŇAA
n

+

(
κ(n + 2m)

x̌SSn
− qn

)
ŇSS
n +

(
nκx̂SSn − qn + 2K (0)

)
N̂SS
n

+

(
κ
n + m

x̌Fn
− qn

)
(ŇAS

n + ŇSA
n )

+
(
nκx̂Fn − qn − K (0)− κw0

)
(N̂AS

n + N̂SA
n )

]
where xXYn solve

pX (xXYn )− pY (xXYn ) = 2πn
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Pure NS-NS frequencies

The method leads to the following frequencies in pure NS-NS
regime

Ω̂AA
q→1 = n + 2Υ , Ω̌AA

q→1 = n − 2Υ ,

Ω̂SS
q→1 = n + 2Υ , Ω̌SS

q→1 = n + 4m − 2Υ ,

Ω̂F
q→1 = n + 2Υ , Ω̌F

q→1 = n + 2m − 2Υ . (13)
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Pure NS-NS one-loop correction

In terms of the characteristic frequencies

E1-loop = E0 + δE , δE =
1

2w0

∑
n∈Z

(ωB
n − ωF

n ) . (14)

Substituting the frequencies obtained from quadratic fluctuations

ωB
n = 2n + (n + w0) + (n − w0) + 4n = 8n ,

ωF
n = 2

[
2
(
n +

w0

2

)
+ 2

(
n − w0

2

)]
= 8n . (15)

As their difference vanish, we have

δE
q→1−−−→ 0 . (16)
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General case

The frequencies for general values of q are

ωS
1,n = n + (1− q)w0 +

κ2[Υ2 −m2(1 + q2)]

2n
+O(n−2) ,

ωS
2,n = n − (1− q)w0 +

κ2[Υ2 −m2(1 + q2)]

2n
−O(n−2) ,

ωAdS
n =

√
n2 + 2qnw0 + w2

0 +
√

n2 − 2qnw0 + w2
0

=
√

(n + qw0)2 + κ2w2
0 +

√
(n − qw0)2 + κ2w2

0 ,

ωT
n = 4n ,

ωF
n = 4n + 4

√
n2 − q2w2

0 + Υ2 .
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Finiteness of the contribution

δE ∝2
∑
n∈Z+

[
2n +

κ2[Υ2 −m2(1 + q2)]

n
+O(n−2)

]
+ I (qw0, κw0)

+ I (−qw0, κw0)− 4I

(
0,
√

Υ2 − q2w2
0

)
,

where the log divergence cancels due to the identity

2κ2[Υ2 −m2(1 + q2)] = 4(Υ2 − q2w2
0 )− 2κ2w2

0 .

This proves that the correction is finite for all values of the mixing
parameter q.
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Conclusions

We have computed the characteristic frequencies and
one-loop correction for the rigid spinning string solution on
flux-deformed AdS3 × S3 × T 4.

This correction has been computed through two different
methods to check the results.

The correction is finite for all values of the mixing parameter
q, and it vanishes in the pure NS-NS limit.

This argument, in principle, seems to be generalizable to
non-rigid strings under some assumptions. However, an
explicit computation is needed.
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The importance of this computation

As commented in the introduction, this results is important as it
can be compared with the one Bethe string solution of the string
Bethe ansatz (Ohlsson Sax, Sfondrini, Stefański, Torrielli, et al.).

However, it was shown for the pure R-R flux case that massless
excitations are an obstruction to this computation [Abbot,Aniceto,
2016]. This is because finite volume correction are exponentially
suppressed by the mass of the particle involved in the loop.
We expect that the mixing parameter might be used as a way to
control the Lüscher corrections.
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The importance of this computation (2)

Although at q = 1 a remarkable simplification has to happen, it
can be associated not to a control from the q parameter but to the
dispersion relation becomes linear and the S-matrix becoming
equal for bosonic and fermionic excitations, which imply the
cancellation of the Lüscher corrections due to supersymmetry.

Despite so, we hope that the comparison between the one-loop
string correction and the Thermodynamical String Bethe Ansatz
for mixed flux can shed some light on the understanding of
massless Lüscher corrections.
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Thank you for your attention
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Representative and Lax connection

Choosing the representative gL ⊕ gR = g ⊕ 1 ∈ psu(1, 1|2)2 where,
for classical spinning strings,

g =


e iw0τ 0 0 0

0 e−iw0τ 0 0

0 0 a1e
i(ω1τ+m1σ) a2e

i(ω2τ+m2σ)

0 0 −a2e
−i(ω2τ+m2σ) a1e

−i(ω1τ+m1σ)

 ,

the Lax connection becomes

L(x) =

(
L̂(x) 0

0 Ľ(x)

)
=

(
L̂(x) 0

0 L̂
(

1
x

)) ,

L̂(x) =
ix

(x − s)
(
x + 1

s

)

w0/κ 0 0 0

0 −w0/κ 0 0

0 0 −m
(q
κ − x

) √
Υ2−m2q2

εκ

0 0
ε
√

Υ2−m2q2

κ m
(q
κ − x

)

 ,

with ε = e2im(σ+qτ).
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A small trick to compute infinite sums

To perform the infinite sums on the mode number we used the
relation [Schafer-Nameki, 2006]

2πi
∑
n∈Z

ωn =

∮
C
dz π cot(πz)ωz . (17)

In the semiclassical limit we can approximate the cotangent to 1,
and use that

I (a, b) = −
∫ iΛ

a+ib
dz
√

(z − a)2 + b2 =

∫ Λ

b−ia

√
(z + ia)2 − b2

=
1

4

[
−2Λ2 − 4iaΛ− 2a2 + b2(1 + log 4)

−2b2(log b − log Λ)
]

+O(Λ−1) .
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A non-rigid generalization

A general non-rigid solution is given by

r2
1 (σ) = c1 + c2 sn2

(
c3σ, ν

)
,

with the same functional form as its AdS5 × S5 counterpart.

The characteristic equation for spinning folded and pulsating
strings in AdS5 × S5 can be rewritten as the eigenvalue problem of
a single-gap Lamé operators[

∂2
x + 2ν̄2sn2(x |ν̄) + Ω2

]
fΛ(x) = ΛfΛ(x) . (18)

Since ν vanishes in the limit q = 1, all the Lamé equations reduce
to a wave equation in such limit as long as the functional form of
this eigenvalue problem remains unaltered when we include the
NS-NS flux.
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