Three-charge black hole with α^{\prime} corrections

Pedro F. Ramírez

Based on 1704.01134, 1803.01919 and 1803.04463
With P. Cano, S. Chimento, P. Meessen, T. Ortín and A. Ruipérez

May 23, 2018 - Murcia - Geometry, Duality and Strings

INFN - Sezione di Milano

Preliminaries: What is this about?

In this talk I present the first-order corrections to the three-charge black hole solution in heterotic string effective theory.

This solution became universally famous after the Strominger-Vafa microscopic computation of the entropy, which agrees with the Bekenstein-Hawking entropy.

$$
S_{C F T}=S_{S U G R A}=2 \pi \sqrt{N_{S 5} N_{F 1} N_{W}} \quad\left(\text { for } \alpha^{\prime}=0\right)
$$

This computation agrees at zeroth-order in α^{\prime} expansion. What happens beyond leading order?

The microscopic result from the CFT is known to all orders in α^{\prime}, obtained by Castro and Murthy.

$$
S_{C F T}=2 \pi \sqrt{\left(N_{S 5}+16\right) N_{F 1} N_{W}}
$$

Studies of near-horizon solutions point in the right direction, but more information is needed. (Sahoo, Sen)

The three-charge black hole

Compactification scheme, relates to $\mathcal{N}=1, d=5$ SEYM theory:
Cano, Meessen, Ortin, PFR

Five-dimensional $\mathrm{N}=1$ SEYM

+ higher order corrections
Cano, Ortin, Santoli
Fundamental objects in the solution

	v	1	2	3	4	u	ρ	θ	ϕ	ψ
NS5	X	X	X	X	X	X	-	-	-	-
F1	X	\sim	\sim	\sim	\sim	X	-	-	-	-
W	X	\sim	\sim	\sim	\sim	X	-	-	-	-
G5	X	X	X	X	X	X	-	-	-	-

The three-charge black hole at zeroth order in α^{\prime}

Bosonic field configuration, metric g_{μ}, Kalb-Ramond 2-form $B_{\mu \nu}$ with field strength H and dilaton ϕ,

$$
\begin{aligned}
d s^{2} & =\frac{2}{\mathcal{Z}_{-}} d u\left(d v-\frac{1}{2} \mathcal{Z}_{+} d u\right)-\mathcal{Z}_{0}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right)-d y^{i} d y^{i} \\
H & =d \mathcal{Z}_{-}^{-1} \wedge d u \wedge d v-\frac{\rho^{3}\left(\mathcal{Z}_{0}\right)^{\prime}}{8} \sin \theta d \theta \wedge d \psi \wedge d \phi \\
e^{-2 \phi} & =e^{-2 \phi_{\infty}} \frac{\mathcal{Z}_{-}}{\mathcal{Z}_{0}}
\end{aligned}
$$

Completely specified by three harmonic functions in \mathbb{R}^{4},

$$
\begin{gathered}
\mathcal{Z}_{0+-}=1+\frac{Q_{0+-}}{\rho^{2}} . \\
\mathcal{Q}_{0}=\alpha^{\prime} N_{S 5}, \quad \mathcal{Q}_{-}=\alpha^{\prime} g_{s}^{2} N_{F 1}, \quad \mathcal{Q}_{+}=\left(\frac{\alpha^{\prime} g_{s}}{R_{u}}\right)^{2} N_{W} .
\end{gathered}
$$

Review of the three-charge black hole

The metric naturally describes a 5-dimensional black hole,

$$
d s^{2}=\left(\mathcal{Z}_{0} \mathcal{Z}_{+} \mathcal{Z}_{-}\right)^{-2 / 3} d t^{2}-\left(\mathcal{Z}_{0} \mathcal{Z}_{+} \mathcal{Z}_{-}\right)^{1 / 3}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right)
$$

$A d S_{2} \times S^{3}$ near-horizon geometry, with area of horizon

$$
A_{H}=2 \pi^{2} \sqrt{Q_{0} Q_{+} Q_{-}},
$$

The ADM mass is just

$$
M=\frac{\pi}{4 G_{N}^{(5)}}\left[Q_{0}+Q_{-}+Q_{+}\right] .
$$

There is no hair, completely determined by its conserved charges, which are related to the presence of solitonic 5 -branes $\left(Q_{0}\right)$, strings $\left(Q_{-}\right)$and momentum $\left(Q_{+}\right)$.

Let's add α^{\prime} corrections

The action is

$$
\begin{aligned}
S= & \frac{g_{s}^{2}}{16 \pi G_{N}^{(10)}} \int d^{10} \times \sqrt{|g|} e^{-2 \phi}\left\{R-4(\partial \phi)^{2}+\frac{1}{2 \cdot 3!} H^{2}\right. \\
& \left.-\alpha^{\prime}\left[F^{A}{ }_{\mu \nu} F^{A \mu \nu}+R_{(-) \mu \nu}{ }^{a}{ }_{b} R_{(-)}{ }^{\mu \nu} b_{a}\right]\right\},
\end{aligned}
$$

with

$$
\begin{aligned}
& F^{A}=d A^{A}+\frac{1}{2} \epsilon^{A B C} A^{B} \wedge A^{C}, \\
& R_{(-){ }^{a} b}=d \Omega_{(-)}{ }^{a} b-\Omega_{(-)}{ }^{a}{ }_{c} \wedge \Omega_{(-)}{ }^{c} b, \\
& \Omega_{(-)}{ }^{a}{ }_{b}=\omega^{a}{ }_{b}-\frac{1}{2} H_{\mu}{ }^{a}{ }_{b} d x^{\mu}, \\
& H=d B+2 \alpha^{\prime}\left(\omega^{\mathrm{YM}}+\omega_{(-)}^{\mathrm{L}}\right), \\
& \omega^{\mathrm{YM}}=F^{A} \wedge A^{A}-\frac{1}{3!} \epsilon^{A B C} A^{A} \wedge A^{B} \wedge A^{C}, \\
& \omega_{(-)}^{\mathrm{L}}=R_{(-)}{ }^{a}{ }_{b} \wedge \Omega_{(-)}{ }^{b}{ }_{a}+\frac{1}{3} \Omega_{(-)}{ }^{a}{ }_{b} \wedge \Omega_{(-)}{ }^{b}{ }_{c} \wedge \Omega_{(-)}{ }^{c}{ }_{a} .
\end{aligned}
$$

Low energy Heterotic String

Anomaly cancellation mechanism, $\operatorname{Tr}(F \wedge F)$ and $\operatorname{Tr}(R \wedge R)$ contributions cancel between them. This suggest the spin connection $\omega^{a}{ }_{b}$ is treated at the same level than the vector A^{A}.

However, it is more convenient to work with a torsionful spin connection $\Omega_{(-)}{ }^{a}$ b, which builds a $S O(1,9)$ Super Yang-Mills multiplet. (Bergshoeff, de Roo)

$$
\Omega_{(-)}{ }^{a}{ }_{b} \equiv \Omega^{a}{ }_{b}-\frac{1}{2} H^{a}{ }_{b},
$$

Enhancement of the gauge group to $S U(2) \times S O(1,9)$. Notice, however, that the $S O(9,1)$ factor is not independent!

Problem! The recursive definition of H

$$
H=d B+2 \alpha^{\prime}\left(\omega_{Y M}-\omega_{L}\right),
$$

introduces an infinite tower of corrections to recover supersymmetry.

Supersymmetric field configuration

Structure of fields for supersymmetric configurations, (T. Ortin talk)

$$
\begin{aligned}
d s^{2} & =\frac{2}{\mathcal{Z}_{-}} d u\left(d v-\frac{1}{2} \mathcal{Z}_{+} d u\right)-\mathcal{Z}_{0}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right)-d y^{i} d y^{i}, \quad i=1, \ldots, 4 \\
H & =d \mathcal{Z}_{-}^{-1} \wedge d u \wedge d v-\frac{\rho^{3} \mathcal{Z}_{0}^{\prime}}{8} \sin \theta d \theta \wedge d \psi \wedge d \phi, \\
e^{-2 \phi} & =e^{-2 \phi \infty} \frac{\mathcal{Z}_{-}}{\mathcal{Z}_{0}}, \\
A^{A} & =-\frac{\rho^{2}}{\left(\kappa^{2}+\rho^{2}\right)} v_{L}^{A}, \quad \text { BPST instanton }
\end{aligned}
$$

How do supersymmetric configurations solve the equations of motion?

Solving the e.o.m.

Write the general eqs.

- Yang-Mills equations:

$$
\alpha^{\prime} e^{2 \phi} \mathfrak{D}\left(e^{-2 \phi} \star F^{A}\right)=0 .
$$

Solved for self-dual F^{A} on hyperKähler base. Instanton.

- Kalb-Ramond 2-form equation

$$
d\left(e^{-2 \phi} \star H\right)=0 \quad \rightarrow \quad \star(4) \nabla^{2} \mathcal{Z}_{-}=0 .
$$

- Einstein equations

$$
R_{\mu \nu}-2 \nabla_{\mu} \partial_{\nu} \phi+\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}{ }^{\rho \sigma}-2 \alpha^{\prime}\left(F^{A}{ }_{\mu \rho} F^{A}{ }_{\nu}{ }^{\rho}+R_{(-) \mu \rho}{ }^{a}{ }_{b} R_{(-) \nu}{ }^{\rho b}{ }_{a}\right)=0,
$$

Only uu component is relevant

- Dilaton equation automatically satisfied.

Solving the e.o.m.

- Bianchi identity of Kalb-Ramond 2-form

$$
d H=2 \alpha^{\prime} F^{A} \wedge F^{A} \rightarrow \star_{(4)} \nabla^{2} \mathcal{Z}_{0}=2 \alpha^{\prime}\left[F^{A} \wedge F^{A}+\mathbf{R}_{(-)}{ }^{\mathrm{a}} \mathrm{~b} \wedge \mathbf{R}_{(-)}{ }^{\mathrm{b}} \mathrm{a}\right],
$$

In conclusion, the solution is specified in terms of the functions

$$
\begin{aligned}
& \mathcal{Z}_{0}=\mathcal{Z}_{0}^{(0)}+\alpha^{\prime} \mathrm{f}_{0}+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
& \mathcal{Z}_{-}=\mathcal{Z}_{-}^{(0)}+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
& \mathcal{Z}_{+}=\mathcal{Z}_{+}^{(0)}+\alpha^{\prime} \mathbf{f}_{+}+\mathcal{O}\left(\alpha^{\prime 2}\right),
\end{aligned}
$$

with

$$
\mathcal{Z}_{0,+,-}^{(0)}=1+\frac{\mathcal{Q}_{0,+,-}}{\rho^{2}} .
$$

Correction induced by Yang-Mills fields

The BPST instanton, particular case of 't Hooft ansatz

$$
A^{A}=-\frac{\rho^{2}}{\left(\kappa^{2}+\rho^{2}\right)} v_{L}^{A} \quad \rightarrow \quad A^{A}=\mathbb{M}_{m p}^{L} \partial_{p} \log \mathcal{Z}_{\mathrm{YM}} d x^{m}
$$

with $\mathbb{M}_{m p}^{L}$ are $s u(2)_{L}$ generators in so $(4) \cong s u(2)_{L} \oplus s u(2)_{R}$,

$$
\left(\mathbb{M}_{m q}\right)_{n p}=\left(\mathbb{M}_{n p}\right)_{m q} \equiv 2 \delta_{n[m} \delta_{q] p}, \quad \mathbb{M}_{m q}^{R, L} \equiv \frac{1}{2}\left(\mathbb{M}_{m q} \pm \frac{1}{2} \varepsilon_{m q r s} \mathbb{M}_{r s}\right) .
$$

and

$$
\mathcal{Z}_{\mathrm{YM}}=1+\frac{\kappa^{2}}{\rho^{2}}
$$

Then,
$2 \alpha^{\prime} F^{A} \wedge F^{A}=2 \alpha^{\prime} \star_{(4)} \nabla^{2}\left[\frac{4}{\rho^{2}}-\left(\partial \log \mathcal{Z}_{\mathrm{YM}}\right)^{2}\right]=\star_{(4)} \nabla^{2}\left[8 \alpha^{\prime} \frac{\rho^{2}+2 \kappa^{2}}{\left(\rho^{2}+\kappa^{2}\right)^{2}}\right]$

Deciphering the torsionful spin connection

As already pointed out, $\Omega_{(-)}$is a local connection; a 1-form taking values in so(1,9).

First, the ansatz breaks so $(1,9) \rightarrow$ so $(1,5)$.
Moreover, when explicitly computed, it is possible to distinguish two type of contributions $\Omega_{(-)}=\Omega_{(-)}^{S O(1,2)}+\Omega_{(-)}^{S O(4)}$.
Let us first focus on the so $(4) \cong s u(2)_{L} \oplus s u(2)_{R}$ sector, showing the details of the computation.

Spin connection (before adding torsion) obtained from a metric conformal to flat space:

$$
\mathcal{Z}_{0}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right)
$$

Cartan structure equation: $d e^{a}=\Omega^{a}{ }_{b} \wedge e^{b}$.

Deciphering the torsionful spin connection

Origin of the 't Hooft ansatz for instantons on \mathbb{R}^{4}, based on Attiyah-Hitchin-Singer theorem.

Consider the metric

$$
d s^{2}=\mathcal{Z}_{Y M}^{2}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right), \quad e^{a}=\mathcal{Z}_{Y M} d x^{a}
$$

It has vanishing Ricci scalar if $\mathcal{Z}_{Y M}$ is a harmonic function. From Cartan structure equations:

$$
d e^{a}=\Omega^{a}{ }_{b} \wedge e^{b}, \quad d\left(\log \mathcal{Z}_{Y M}\right) \wedge d x^{a}=\Omega^{a}{ }_{b} \wedge d x^{b}
$$

Projecting the so(4)-valued connection on the $s u(2)_{L}$ subalgebra, we get

$$
\left.\Omega^{a}{ }_{b}\right|_{s u(2)_{L}}=\left(\mathbb{M}_{m p}^{L}\right)^{a}{ }_{b} \partial_{p} \log \mathcal{Z}_{\mathrm{YM}} d x^{m}
$$

This can be generalized to any hyperKähler space!

Deciphering the torsionful spin connection

Our case: $\left.\Omega^{a}{ }_{b}\right|_{s u(2) \iota}$ component itself is not an instanton!
Our 4-dimensional metric is of the form

$$
\mathcal{Z}_{0}\left(d \rho^{2}+\rho^{2} d \Omega_{(3)}^{2}\right)
$$

Missing factor of 2! Moreover, $\left.\Omega^{a}{ }_{b}\right|_{s u(2)_{R}}$ can be anything.
But remember! Heterotic string effective action adds torsion to the spin connection through the 3 -form H . This introduces a magical
cancellation, such that

$$
\left.\Omega_{(-)}{ }^{a} b\right|_{s u(2)_{L}}=\left(\mathbb{M}_{m p}^{L}\right)^{a}{ }_{b} \partial_{p} \log \mathcal{Z}_{0} d x^{m},\left.\quad \Omega_{(-)}{ }^{a} b\right|_{s u(2)_{R}}=0 .
$$

Which implies that the so(4) part of the spin connection is nothing but a BPST instanton, to first order in α^{\prime}.

Deciphering the torsionful spin connection

The torsionful spin connection modifies \mathcal{Z}_{0} as

$$
-8 \alpha^{\prime}\left[\frac{\rho^{2}+2 \mathcal{Q}_{0}}{\left(\rho^{2}+\mathcal{Q}_{0}\right)^{2}}\right]+\mathcal{O}\left(\alpha^{\prime 2}\right)
$$

Notice the curvature squared term has the wrong sign in the action! This means it behaves as a source of negative-energy.

The remaining part of the torsionful spin connection, $\left.\Omega_{(-)}\right|_{\text {so }(1,2)}$, decouples from the e.o.m. except at the $u u$ component of Einstein equations. It is solvable, giving a term

$$
+16 \alpha^{\prime} \frac{\mathcal{Q}_{+}\left(\rho^{2}+\mathcal{Q}_{0}+\mathcal{Q}_{-}\right)}{\mathcal{Q}_{0}\left(\rho^{2}+\mathcal{Q}_{0}\right)\left(\rho^{2}+\mathcal{Q}_{-}\right)}+\mathcal{O}\left(\alpha^{\prime 2}\right)
$$

Which is positive, related to character of so(1,2).
Technical observation: Similar to a non-Abelian dyon!

The α^{\prime}-corrected solution

The solution is then specified by the functions

$$
\begin{aligned}
& \mathcal{Z}_{0}=\mathcal{Z}_{0}^{(0)}+8 \alpha^{\prime}\left[\frac{\rho^{2}+2 \kappa^{2}}{\left(\rho^{2}+\kappa^{2}\right)^{2}}-\frac{\rho^{2}+2 \mathcal{Q}_{0}}{\left(\rho^{2}+\mathcal{Q}_{0}\right)^{2}}\right]+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
& \mathcal{Z}_{-}=\mathcal{Z}_{-}^{(0)}+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
& \mathcal{Z}_{+}=\mathcal{Z}_{+}^{(0)}+16 \alpha^{\prime} \frac{\mathcal{Q}_{+}\left(\rho^{2}+\mathcal{Q}_{0}+\mathcal{Q}_{-}\right)}{\mathcal{Q}_{0}\left(\rho^{2}+\mathcal{Q}_{0}\right)\left(\rho^{2}+\mathcal{Q}_{-}\right)}+\mathcal{O}\left(\alpha^{\prime 2}\right)
\end{aligned}
$$

Again, the solution describes a collection of $N_{S 5}$ solitonic 5-branes, $N_{F 1}$ strings carrying N_{W} momentum wrapping coordinate u and one gauge 5-brane.

Moreover, the torsionful spin connection contributes as one BPST anti-instanton and delocalized momentum.

The α^{\prime}-corrected solution

Taking into account all the contributions, the mass is

$$
M=\frac{\pi}{4 G_{N}^{(5)}}\left[\mathcal{Q}_{0}+\left(8 \alpha^{\prime}-8 \alpha^{\prime}\right)+\mathcal{Q}_{-}+\mathcal{Q}_{+}\left(1+16 \alpha^{\prime} / \mathcal{Q}_{0}\right)\right] .
$$

While the (5-dimensional) area receives no corrections

$$
A_{\mathrm{H}}=2 \pi^{2} \sqrt{\mathcal{Q}_{0} \mathcal{Q}_{+} \mathcal{Q}_{-}},
$$

However the entropy, computed using Wald's formula, gets modified

$$
\begin{aligned}
S= & -2 \pi \int_{\mathrm{H}} d^{3} x \sqrt{|h|} \frac{\partial \mathcal{L}_{(5)}}{\partial R_{a b c d}} \epsilon_{a b} \epsilon_{c d}, \\
\mathcal{L}_{(10)}= & \frac{\underline{g}_{s}^{2}}{16 \pi G_{N}^{(10)}} e^{-2 \phi}\left\{\mathrm{R}-4(\partial \phi)^{2}+\frac{1}{2 \cdot 3!} \mathrm{H}^{2}\right. \\
& \left.-\alpha^{\prime}\left[F^{A}{ }_{\mu \nu} F^{A \mu \nu}+\mathrm{R}_{(-) \mu \nu}{ }^{{ }^{a}}{ }_{\mathrm{b}} \mathrm{R}_{(-)}{ }^{\mu \nu} \mathrm{b}_{\mathrm{a}}\right]\right\},
\end{aligned}
$$

The α^{\prime}-corrected solution: Entropy

Wald's formula requires the compactification of the whole heterotic action to 5 dimensions. Can we avoid it?

Certainly, $\mathcal{L}_{(5)} \sim \mathcal{L}_{(10)}$. Moreover, we can track the 5-dimensional Riemann in $\mathcal{L}_{(10)}$,

$$
d \hat{s}^{2}=e^{\phi-\phi_{\infty}}\left[\left(k / k_{\infty}\right)^{-2 / 3} d s^{2}-k^{2} \mathcal{A}^{2}\right]-d y^{i} d y^{i},
$$

so
$\hat{e}^{a}{ }_{\mu}=e^{\left(\phi-\phi_{\infty}\right) / 2}\left(k / k_{\infty}\right)^{-1 / 3} e^{a}{ }_{\mu}, \quad \hat{R}_{a b c d}=e^{-\left(\phi-\phi_{\infty}\right)}\left(k / k_{\infty}\right)^{2 / 3} R_{a b c d}+\ldots$
We can rewrite Wald's entropy formula as

$$
S=-2 \pi \int_{\mathrm{H} \times \mathrm{S}^{1} \times \mathrm{T}^{4}} d^{8} \hat{x} \frac{\sqrt{|\hat{g}|}}{\sqrt{f}} e^{-\left(\phi-\phi_{\infty}\right)}\left(k / k_{\infty}\right)^{2 / 3} \frac{\partial \mathcal{L}_{(10)}}{\partial \hat{R}_{a b c d}} \epsilon_{a b} \epsilon_{c d},
$$

which can be applied directly in 10 dimensions.

The α^{\prime}-corrected solution: Entropy

Three type of contributions:

- The term R gives $S^{(0)}=2 \pi \sqrt{N_{\mathrm{S} 5} N_{\mathrm{F} 1} N_{\mathrm{W}}}$.
- The term $R_{(-) \mu \nu}{ }_{b} R_{(-)}{ }^{\mu \nu}{ }^{b}{ }_{a}$ gives $S_{1}^{(1)}=0$.
- The term H^{2} gives $S_{2}^{(1)}=\frac{8}{N_{\mathrm{S} 5}} 2 \pi \sqrt{N_{\mathrm{S} 5} N_{\mathrm{F} 1} N_{\mathrm{W}}}$.

$$
S=2 \pi \sqrt{N_{\mathrm{S} 5} N_{\mathrm{F} 1} N_{\mathrm{W}}}\left(1+8 / \mathrm{N}_{\mathrm{S} 5}\right)
$$

$$
\sim 2 \pi \sqrt{\left(N_{\mathrm{S} 5}+16\right) N_{\mathrm{F} 1} N_{\mathrm{W}}}, \quad \text { CFT result!! (Castro, Murthy) }
$$

Final remarks

We have found analytically the corrections of first order in α^{\prime} to the Strominger-Vafa black hole in heterotic theory.

The modification of the entropy is in agreement with CFT results.
Negative energy sources. This contribution can be compensated when Yang-Mills fields are present.

Notice that the apperance of non-Abelian effects is unavoidable, even if Yang-Mills fields are turned off.

More general results: KK monopoles and multicenter solutions. Dyonic solutions in progress.

THANKS FOR YOUR ATTENTION

