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Preliminaries: What is this about?

In this talk I present the first-order corrections to the three-charge

black hole solution in heterotic string effective theory.

This solution became universally famous after the Strominger-Vafa

microscopic computation of the entropy, which agrees with the

Bekenstein-Hawking entropy.

SCFT = SSUGRA = 2π
√
NS5NF1NW (for α′ = 0)

This computation agrees at zeroth-order in α′ expansion. What happens

beyond leading order?

The microscopic result from the CFT is known to all orders in α′,

obtained by Castro and Murthy.

SCFT = 2π
√

(NS5 + 16)NF1NW

Studies of near-horizon solutions point in the right direction, but more

information is needed. (Sahoo, Sen)
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The three-charge black hole

Compactification scheme, relates to N = 1, d = 5 SEYM theory:

Cano, Meessen, Ortin, PFR

Cano, Ortin, Santoli

Fundamental objects in the solution

v 1 2 3 4 u ρ θ φ ψ

NS5 X X X X X X - - - -

F1 X ∼ ∼ ∼ ∼ X - - - -

W X ∼ ∼ ∼ ∼ X - - - -

G5 X X X X X X - - - -
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The three-charge black hole at zeroth order in α′

Bosonic field configuration, metric gµ, Kalb-Ramond 2-form Bµν with

field strength H and dilaton φ,

ds2 =
2

Z−
du
(
dv − 1

2Z+du
)
−Z0(dρ2 + ρ2dΩ2

(3))− dy idy i ,

H = dZ−−1 ∧ du ∧ dv − ρ3(Z0)′

8
sin θdθ ∧ dψ ∧ dφ ,

e−2φ = e−2φ∞
Z−
Z0

,

Completely specified by three harmonic functions in R4,

Z0+− = 1 +
Q0+−

ρ2
.

Q0 = α′NS5 , Q− = α′g2
s NF1 , Q+ =

(
α′gs
Ru

)2

NW .
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Review of the three-charge black hole

The metric naturally describes a 5-dimensional black hole,

ds2 = (Z0Z+Z−)−2/3dt2 − (Z0Z+Z−)1/3(dρ2 + ρ2dΩ2
(3)) ,

AdS2 × S3 near-horizon geometry, with area of horizon

AH = 2π2
√
Q0Q+Q− ,

The ADM mass is just

M =
π

4G
(5)
N

[Q0 + Q− + Q+] .

There is no hair, completely determined by its conserved charges, which

are related to the presence of solitonic 5-branes (Q0), strings (Q−) and

momentum (Q+).
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Let’s add α′ corrections

The action is

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g | e−2φ

{
R − 4(∂φ)2 + 1

2·3!H
2

−α′
[
FA

µνF
Aµν + R(−)µν

a
bR(−)

µν b
a

]}
,

with

FA = dAA + 1
2ε

ABCAB ∧ AC ,

R(−)
a
b = dΩ(−)

a
b − Ω(−)

a
c ∧ Ω(−)

c
b ,

Ω(−)
a
b = ωa

b − 1
2Hµ

a
bdx

µ ,

H = dB + 2α′(ωYM + ωL
(−)) ,

ωYM = FA ∧ AA − 1
3!ε

ABCAA ∧ AB ∧ AC ,

ωL
(−) = R(−)

a
b ∧ Ω(−)

b
a + 1

3Ω(−)
a
b ∧ Ω(−)

b
c ∧ Ω(−)

c
a .
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Low energy Heterotic String

Anomaly cancellation mechanism, Tr(F ∧ F ) and Tr(R ∧ R)

contributions cancel between them. This suggest the spin connection

ωa
b is treated at the same level than the vector AA.

However, it is more convenient to work with a torsionful spin

connection Ω(−)
a
b, which builds a SO(1, 9) Super Yang-Mills multiplet.

(Bergshoeff, de Roo)

Ω(−)
a
b ≡ Ωa

b −
1

2
Ha

b ,

Enhancement of the gauge group to SU(2)× SO(1, 9). Notice, however,

that the SO(9, 1) factor is not independent!

Problem! The recursive definition of H

H = dB + 2α′(ωYM − ωL) ,

introduces an infinite tower of corrections to recover supersymmetry. 6



Supersymmetric field configuration

Structure of fields for supersymmetric configurations, (T. Ortin talk)

ds2 =
2

Z−
du

(
dv − 1

2
Z+du

)
−Z0

(
dρ2 + ρ2dΩ2

(3)

)
− dy idy i , i = 1, . . . , 4 ,

H = dZ−1
− ∧ du ∧ dv − ρ3Z ′0

8
sin θdθ ∧ dψ ∧ dφ ,

e−2φ = e−2φ∞ Z−
Z0

,

AA = − ρ2

(κ2 + ρ2)
vA
L , BPST instanton

How do supersymmetric configurations solve the equations of motion?
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Solving the e.o.m.

Write the general eqs.

• Yang-Mills equations:

α′e2φD
(
e−2φ ? FA

)
= 0 .

Solved for self-dual FA on hyperKähler base. Instanton.

• Kalb-Ramond 2-form equation

d
(
e−2φ ? H

)
= 0 → ?(4)∇2Z− = 0.

• Einstein equations

Rµν−2∇µ∂νφ+ 1
4HµρσHν

ρσ−2α′
(
FA

µρF
A
ν
ρ + R(−)µρ

a
bR(−) ν

ρ b
a

)
= 0 ,

Only uu component is relevant

→ ∇2Z+ ·
(

1
4Z0Z−

)
= 2α′R(−) uρ

a
bR(−) u

ρ b
a .

• Dilaton equation automatically satisfied.
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Solving the e.o.m.

• Bianchi identity of Kalb-Ramond 2-form

dH = 2α′FA∧FA → ?(4)∇2Z0 = 2α′
[
FA ∧ FA + R(−)

a
b ∧ R(−)

b
a

]
,

In conclusion, the solution is specified in terms of the functions

Z0 = Z(0)
0 +α′f0 +O(α′2) ,

Z− = Z(0)
− +O(α′2) ,

Z+ = Z(0)
+ + α′f+ +O(α′2) ,

with

Z(0)
0,+,− = 1 +

Q0,+,−

ρ2
.
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Correction induced by Yang-Mills fields

The BPST instanton, particular case of ‘t Hooft ansatz

AA = − ρ2

(κ2 + ρ2)
vA
L → AA = ML

mp∂p logZYMdxm

with ML
mp are su(2)L generators in so(4) ∼= su(2)L ⊕ su(2)R ,

(Mmq)np = (Mnp)mq ≡ 2δn[mδq]p , MR,L
mq ≡ 1

2

(
Mmq ± 1

2εmqrsMrs

)
.

and

ZYM = 1 +
κ2

ρ2

Then,

2α′FA∧FA = 2α′?(4)∇2

[
4

ρ2
− (∂ logZYM)2

]
= ?(4)∇2

[
8α′

ρ2 + 2κ2

(ρ2 + κ2)2

]
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Deciphering the torsionful spin connection

As already pointed out, Ω(−) is a local connection; a 1-form taking values

in so(1, 9).

First, the ansatz breaks so(1, 9)→ so(1, 5).

Moreover, when explicitly computed, it is possible to distinguish two

type of contributions Ω(−) = Ω
SO(1,2)
(−) + Ω

SO(4)
(−) .

Let us first focus on the so(4) ∼= su(2)L ⊕ su(2)R sector, showing the

details of the computation.

Spin connection (before adding torsion) obtained from a metric

conformal to flat space:

Z0

(
dρ2 + ρ2dΩ2

(3)

)
Cartan structure equation: dea = Ωa

b ∧ eb.
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Deciphering the torsionful spin connection

Origin of the ‘t Hooft ansatz for instantons on R4, based on

Attiyah-Hitchin-Singer theorem.

Consider the metric

ds2 = Z2
YM

(
dρ2 + ρ2dΩ2

(3)

)
, ea = ZYMdxa

It has vanishing Ricci scalar if ZYM is a harmonic function. From Cartan

structure equations:

dea = Ωa
b ∧ eb , d(logZYM) ∧ dxa = Ωa

b ∧ dxb

Projecting the so(4)-valued connection on the su(2)L subalgebra, we get

Ωa
b|su(2)L = (ML

mp)a b∂p logZYMdxm

This can be generalized to any hyperKähler space!

12



Deciphering the torsionful spin connection

Our case: Ωa
b|su(2)L component itself is not an instanton!

Our 4-dimensional metric is of the form

Z0

(
dρ2 + ρ2dΩ2

(3)

)
Missing factor of 2! Moreover, Ωa

b|su(2)R can be anything.

But remember! Heterotic string effective action adds torsion to the spin

connection through the 3-form H. This introduces a magical

cancellation, such that

Ω(−)
a
b|su(2)L = (ML

mp)a b∂p logZ0dx
m , Ω(−)

a
b|su(2)R = 0 .

Which implies that the so(4) part of the spin connection is nothing

but a BPST instanton, to first order in α′.

13



Deciphering the torsionful spin connection

The torsionful spin connection modifies Z0 as

−8α′
[
ρ2 + 2Q0

(ρ2 +Q0)2

]
+O(α′2) ,

Notice the curvature squared term has the wrong sign in the action!

This means it behaves as a source of negative-energy.

The remaining part of the torsionful spin connection, Ω(−)|so(1,2),
decouples from the e.o.m. except at the uu component of Einstein

equations. It is solvable, giving a term

+16α′
Q+(ρ2 +Q0 +Q−)

Q0(ρ2 +Q0)(ρ2 +Q−)
+O(α′2) ,

Which is positive, related to character of so(1, 2).

Technical observation: Similar to a non-Abelian dyon! (PFR)
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The α′-corrected solution

The solution is then specified by the functions

Z0 = Z(0)
0 +8α′

[
ρ2 + 2κ2

(ρ2 + κ2)2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
+O(α′2) ,

Z− = Z(0)
− +O(α′2) ,

Z+ = Z(0)
+ +16α′

Q+(ρ2 +Q0 +Q−)

Q0(ρ2 +Q0)(ρ2 +Q−)
+O(α′2) ,

Again, the solution describes a collection of NS5 solitonic 5-branes, NF1

strings carrying NW momentum wrapping coordinate u and one

gauge 5-brane.

Moreover, the torsionful spin connection contributes as one BPST

anti-instanton and delocalized momentum.
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The α′-corrected solution

Taking into account all the contributions, the mass is

M =
π

4G
(5)
N

[Q0+(8α′ − 8α′) +Q− +Q+(1+16α′/Q0)] .

While the (5-dimensional) area receives no corrections

AH = 2π2
√
Q0Q+Q− ,

However the entropy, computed using Wald’s formula, gets modified

S = −2π

∫
H

d3x
√
|h|

∂L(5)

∂Rabcd
εabεcd ,

L(10) =
g2
s

16πG
(10)
N

e−2φ
{

R− 4(∂φ)2 + 1
2·3!H

2

−α′
[
FA

µνF
Aµν + R(−)µν

a
bR(−)

µν b
a

]}
,
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The α′-corrected solution: Entropy

Wald’s formula requires the compactification of the whole heterotic

action to 5 dimensions. Can we avoid it?

Certainly, L(5) ∼ L(10). Moreover, we can track the 5-dimensional

Riemann in L(10),

dŝ2 = eφ−φ∞
[
(k/k∞)−2/3ds2 − k2A2

]
− dy idy i ,

so

êaµ = e(φ−φ∞)/2(k/k∞)−1/3eaµ , R̂abcd = e−(φ−φ∞)(k/k∞)2/3Rabcd+. . .

We can rewrite Wald’s entropy formula as

S = −2π

∫
H×S1×T4

d8x̂

√
|ĝ |√
f

e−(φ−φ∞)(k/k∞)2/3
∂L(10)

∂R̂abcd

εabεcd ,

which can be applied directly in 10 dimensions.
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The α′-corrected solution: Entropy

Three type of contributions:

• The term R gives S (0) = 2π
√
NS5NF1NW.

• The term R(−)µν
a
bR(−)

µν b
a gives S

(1)
1 = 0.

• The term H2 gives S
(1)
2 = 8

NS5
2π
√
NS5NF1NW.

S = 2π
√
NS5NF1NW (1+8/NS5)

∼ 2π
√

(NS5+16)NF1NW , CFT result!! (Castro, Murthy)

18



Final remarks

We have found analytically the corrections of first order in α′ to the

Strominger-Vafa black hole in heterotic theory.

The modification of the entropy is in agreement with CFT results.

Negative energy sources. This contribution can be compensated when

Yang-Mills fields are present.

Notice that the apperance of non-Abelian effects is unavoidable, even

if Yang-Mills fields are turned off.

More general results: KK monopoles and multicenter solutions. Dyonic

solutions in progress.
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THANKS FOR YOUR ATTENTION


